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Abstract: Objective: Glucose 6-phosphate dehydrogenase (G6PD) activity of red blood cells (RBC) may be helpful as 
a prognostic factor and a probable predictive indicator of disease activity in children with acute lymphoblastic leuke-
mia (ALL). Materials and methods: This cross-sectional, case-control study was performed on almost 133 pediatric 
ALL cases from 2016 to 2020 in an oncology hospital. Patients with a history of blood transfusion within the last 
three months, acute hemolytic crisis, any other type of enzyme deficiency like pyruvate kinase and hexokinase, and 
chronic liver disease were excluded. The G6PD activity in RBC was measured using the spectrophotometric method. 
In addition, the G6PD activity was assessed in 133 normal individuals as a control group. According to the kit, the 
G6PD <1.5 IU/g of Hb level was recognized as severely deficient. The correlation of G6PD activity with disease activ-
ity and other parameters in ALL patients was determined using the Pearson correlation test. Data were measured 
by an independent t-test and a one-way ANOVA test. Results: The mean G6PD activity of RBC in the control (n=133) 
and patient group (n=128) was 9.1±2.08 IU/g of Hb and 11.12±3.8 IU/g of Hb, P<0.001, respectively. There was 
a significant difference in the G6PD activity of RBC in patients’ blastic and non-blastic phases, t (128) =-2.48, 
P=0.014. Conclusion: The G6PD activity of RBC is higher in childhood ALL than in the control group. Moreover, the 
G6PD activity of RBC in the blastic phase of leukemia was higher than that of patients in remission.
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Introduction

Glucose 6-phosphate dehydrogenase G6PD 
activity has been observed to increase in many 
cancers [1, 2]. A study in which nude mice we- 
re inoculated with fibroblasts overexpressing 
G6PD revealed that overexpression of G6PD 
can lead to malignant transformation [3].

The enzyme G6PD is involved in the initial stage 
of the pentose phosphate pathway (PPP), which 
maintains NADPH enzyme levels and, thus, cell 
energy. The main biological activities of G6PD 
include: NADPH production, antioxidant de- 
fense, lipid and nucleotide biosynthesis, cell 
proliferation and cancer, and immune response 
support [4-9] as shown in detail in Table 1. The 

primary physiological functions of G6PD inclu- 
de generating NADPH, a vital reducing agent 
essential for antioxidant defense through the 
regeneration of reduced glutathione, maintain-
ing cellular redox homeostasis, supporting ana-
bolic processes such as fatty acid and cho- 
lesterol biosynthesis, and safeguarding cells- 
especially red blood cells-from oxidative stress 
and associated cellular damage [5, 7-9].

NADPH, in turn, maintains glutathione levels in 
these cells, helping to protect red blood cells 
(RBCs) against oxidative damage from com-
pounds such as hydrogen peroxide. Further- 
more, G6PD is one of several glycolytic enzy- 
mes regulated by the transcription factor hypox-
ia-inducible factor 1α (HIF1α) [5, 10-12].
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Table 1. The main biological activities of G6PD [4-7]
Biological activity of G6PD Description
NADPH production Catalyzes the first step of the PPP, generating NADPH, a crucial cofactor in 

reductive biosynthesis and antioxidant defense
Antioxidant defense Provides NADPH for glutathione reductase to maintain reduced glutathione 

(GSH), defending against oxidative stress
Lipid and nucleotide biosynthesis Supplies NADPH for fatty acid and nucleotide synthesis, especially important 

in the liver, adipose tissue, and proliferating cells
Cell Proliferation and Cancer Supports growth and survival of rapidly dividing cells (e.g., cancer cells) by fu-

eling anabolic reactions and controlling reactive oxygen species (ROS) levels
Immune response support Provides NADPH for the NADPH oxidase complex in phagocytes, enabling 

production of superoxide for microbial killing

Acquired enzymatic abnormalities of RBCs are 
often observed in patients with acute leukemia 
or after chemotherapy. The suggested causes 
for changes in erythrocyte enzyme activity in 
individuals with leukemia are (1) Intracellular 
stress and transient inhibition of glycolysis in 
erythrocytes, (2) post-translational molecular 
modification, and (3) genetic abnormalities of 
cell division (the cytoplasm or nucleus) associ-
ated with loss of function leading to defects in 
enzyme production [13, 14].

Devi G.S. and coworkers found in 1995 that 
leukocyte G6PD activity can be utilized as a 
diagnostic and prognostic tool for children with 
ALL [15].

A study by Devi GS et al. 1996 showed that 
RBCs’ G6PD activity may be helpful as a predic-
tive indicator of relapse in children with acute 
leukemia [16].

The study’s objective is to evaluate G6PD ac- 
tivity in children with ALL and its relationship  
to disease activity because our country has a 
higher prevalence of G6PD deficiency.

Methods

Patients

One hundred thirty confirmed ALL pediatric 
patients from Amir Oncology Hospital, affiliat- 
ed with Shiraz University of Medical Sciences, 
were enrolled in this prospective cross-section-
al study from February 2016 to February 2020.

ALL was confirmed via bone marrow aspira- 
tion and biopsy, flow cytometry, and molecular 
cytogenetics.

The study was conducted using a convenience 
sampling method for patients who had con-
firmed ALL and were under 18 years old. We 
use the B-ALL trials of the Children’s Oncology 
Group (COG) protocol to treat childhood ALL in 
our institute. Routine karyotyping was done  
on bone marrow (deletions, translocations, or 
extra chromosomes, hyperdiploid, and hypo- 
diploidy) and also cytogenetic abnormalities, 
including [t(9;22), t(12;21), t(1;19), and t(4;11)] 
by PCR.

Individuals who have had a blood transfusion 
within three months, chronic liver disease, 
acute hemolytic crisis, or any other type of 
enzyme deficiency, like pyruvate kinase defi-
ciency and hexokinase deficiency, were exclud-
ed. This study received approval from the lo- 
cal Ethics Committee of Shiraz University of 
Medical Sciences. (IR. Sums. MED. Rec. 1395. 
s187).

Written informed consent was obtained from 
each patient or legal guardian who participated 
in this study.

Sample collection

Blood samples were taken from the patients 
during their hospitalization or follow-up treat-
ment after a detailed review of their files. 
Therefore, patients have the possibility of being 
in any phase of the disease. For instance, the 
blastic phase can be associated with a relapse 
or a newly diagnosed patient who needs 
hospitalization.

Samples were collected in two tubes using the 
venoject method and observing the standard 
sampling method.
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1) K2EDTA containing tube for complete cell 
count test (CBC), reticulocyte count, blood 
group, and isolation of RBCs. 

2) Clot activator containing tube for isolation of 
serum to measure the level of total and direct 
bilirubin and lactate dehydrogenase (LDH) for 
excluding the patients after a severe hemolytic 
crisis, at which level of G6PD is unreliable.

Isolation of RBCs

Leukocytes, platelets, and serum typically exert 
minimal influence on G6PD activation. In cases 
of severe anemia, an elevated white blood cell 
to red blood cell ratio or diminished red cell 
G6PD levels can render their impact substan-
tial. Consequently, G6PD activity is assessed in 
red blood cells following the centrifuging of 
whole blood for 5 minutes at 6000 RPM. 

1) Isolate plasma and buffy coat by Pasteur 
pipette. 2) Wash the RBCs thrice with 1x PBS 
(Phosphate Buffer Solution) for 5 minutes at 
6000 RPM. 3) The count of WBCs should be 
lower than 5×103/L; if it is higher, steps 1 to 3 
must be done again. 4) Adjust the hemoglobin 
level to 150 g/L with 1x PBS.

Control group

We selected a control group of children referred 
to the same laboratory center for a checkup 
with written informed consent from parents 
and no family history of G6PD deficiency. The 
activity level of G6PD was measured similarly to 
the case group.

G6PD activity test

G6PD catalyzes the first step in the pentose 
phosphate shunt, oxidizing glucose-6-phos-
phate (G-6-P) to 6-phosphogluconate (6-PG) 
and reducing NADP to NADPH. This procedure 
is a modification of the spectrophotometric 
methods of Betke K, and Beutler E [17, 18], 
involving the following reaction:

                               G6PD
G-6-P + NADP+→→→→→6-PG + NADPH + H+ 

G6PD reduces NADP+ in the presence of G-6-P. 
NADPH’s formation rate is proportional to the 
G6PD activity and is measured spectrophoto-
metrically as an increase in absorbance at 340 
nm by an automated analyzer (Hitachi 911, 

Tokyo, Japan). According to the reaction be- 
low, the production of a second molar equiva-
lent of NADPH by erythrocyte 6-phosphogluco-
nate dehydrogenase (6-PGDH) is prevented by 
the use of maleimide, an inhibitor of 6-PGDH.

                            6PGD
6-PG + NADP+→→→→→Ribulose-5-Phosphate 
+ NADPH + H+ + CO2

Red cell G6PD is stable in whole blood for one 
week refrigerated (2-8°C) but is unstable in  
red cell hemolysates. Freezing of blood is not 
recommended.

Since activity is reported in terms of grams of 
hemoglobin or the number of white blood cells, 
the hemoglobin concentration or WBC count 
must be determined before performing the 
G6PD activity, and in the last step, it should be 
normalized.

Reticulocytes have higher G6PD activity than 
mature RBCs. To accurately determine the 
mean of G6PD activity in ALL patients, the 
mean of G6PD activity was measured in the 
control group and then compared.

The assays should not be performed after a 
severe hemolytic crisis, since G6PD levels 
could seem falsely elevated. Under those con-
ditions, detection of deficiency may require an 
exact family history. Testing may be performed 
after the level of mature RBCs has returned to 
normal. To diagnose a severe hemolytic crisis, 
we should consider total and direct bilirubin, 
LDH levels, positive hemoglobin in urine, and 
reticulocyte count, in addition to clinical symp-
toms such as sudden weakness, pallor, jaun-
dice, dark urine, and rapid heartbeat. According 
to the kit from Biolabo SA (Maizy, France), the 
level of G6PD <1.5 IU/g of Hb was identified as 
severely deficient, 1.5-6.5 IU/g of Hb was con-
sidered as partially deficient, and levels ≥6.5 
IU/g of Hb were regarded as sufficient.

Elimination of possible anemia effects on the 
G6PD test

In this research, to eliminate possible anemia 
effects on the G6PD test measurement pro-
cess, a hematocrit test was performed on all 
samples before performing the G6PD enzyme 
level test. Samples with hematocrit lower than 
normal were separated. These samples were 
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IU/g of Hb. Moreover, the mean G6PD activity  
of RBC in the age group over ten years was 
11.3±4.0 IU/g of Hb with P=0.73 and P=0.17, 
respectively. Laboratory findings, history of 
admission, and follow-up time as clinical vari-
ables in the patient study are shown in Table 2.

113 patients had B-cell ALL, of which 44 
(33.1%) were high-risk B-cell ALL, and 69 
(51.9%) were standard-risk B-cell ALL. The 
remaining 20 patients (15%) belonged to the  
T cell ALL group.

In addition, the G6PD activity in RBC was mea-
sured in the control group (n=133) with the 
exclusion of G6PD-deficient individuals (5 pa- 
tients) from the control group. Therefore, the 
mean G6PD activity of RBC in the control 
(n=133) and patient groups (n=128) was 
9.1±2.08 IU/g of Hb and 11.12±3.8 IU/g of  
Hb, respectively, P<0.001 (95% CI: 8.73-9.45 
and 10.93-12.10, respectively).

The 3-year overall survival (OS) in our study 
patients in the standard-risk group ALL was 
80%. In addition, the 3-year OS of high-risk 
group ALL was 70.2% (P=0.007). Figure 1A and 
1B show Kaplan-Meier survival curves in stan-
dard and high-risk group ALL.

The 3-year event-free survival (EFS) in stan-
dard-risk group ALL was about 85.4%, and in  
a high-risk group, ALL was 52.5% (P=0.01) 
(Figure 1A and 1B).

In our study, there were five leukemia patients 
(3.75%) who had a severe deficiency in G6PD 
activity in RBC (<1.5 IU/g of Hb), so they were 
disqualified from the evaluation of G6PD activ-
ity in RBC.

Due to the small number of G6PD deficiency 
patients (3.75%), statistical analysis and com-
parisons are not reliable in G6PD-deficient 
patients. A Pearson product-moment correla-
tion coefficient was calculated to assess the 
relationship between the G6PD activity of RBC 
and age. There was no correlation between the 
two variables: r=0.043, n=133, and P=0.62.

There was no significant difference in the mean 
G6PD activity of RBCs in the high-risk group 
ALL with masking the age as high risk (M= 
11.01, SD=2.44) and standard-risk group ALL 
(M=11.18, SD=4.45), t (131) =0.24, P=0.807.

centrifuged at low speed for twenty minutes 
(800 RPM). After centrifugation, according to 
the normal hematocrit, plasma was removed 
from the surface of these samples. Using the 
following formula, the amount of plasma that 
had to be removed from the surface of the  
sample was determined for the hematocrit of 
the sample to be within the normal range.

Plasma volume to be withdrawn (PVW) = patient 
sample plasma volume - corrected final plasma 
volume (CFPV). The amount of (CFPV) can be 
calculated as follows.

CPVR = (100-normal hematocrit) * sample 
plasma volume/(100-patient hematocrit).

Therefore, after mixing the sample again, its 
hematocrit, according to age and sex, was in 
the normal range. In this way, the effect of all 
types of anemia in the false underexpression of 
the G6PD enzyme was eliminated.

Statistical analysis

Data were analyzed by SPSS software (SPSS 
Inc., Chicago, IL, USA) version 21. Descriptive 
data were presented as mean, standard devia-
tion, and percentage. Quantitative and qualita-
tive data were compared between the two 
groups using the Student t-test and the Chi-
square test, respectively - Correlate G6PD 
activity levels with leukemia activity markers 
using Pearson or Spearman correlation. Com- 
pare G6PD activity between patient groups 
(e.g., active disease vs. remission) using t-tests 
or Mann-Whitney tests. Use regression models 
to adjust for confounders (age, treatment, ane-
mia). A P value less than 0.05 was considered 
statistically significant.

Results

In this cross-sectional, case-control study, 133 
patients (56.4% males and 43.6% females) 
met enrollment criteria. The mean age of the 
patients was 6.98±4.44 years (range: 1.2-17 
years). Ninety-nine (74.4%) patients were be- 
tween 1 and 10 years of age, receiving the ALL 
standard-risk chemotherapy protocol. In addi-
tion, 34 (25.6%) patients were over the age of 
10 who had received the ALL-high-risk che- 
motherapy protocol (P<0.001, 95% CI: 29.7%-
62.6%). The mean G6PD activity of RBC in the 
age group between 1-10 years was 11.0±3.8 
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Table 2. Laboratory findings, history of admission, and follow-up time as clinical variables in the 
patient study
Variables Mean ± SD
Age in years Mean, (Range) 6.98±4.44, (1.2-17 y)
ALL (%) B cell 113 (85%) High risk: 44 (33%)

Standard risk: 69 (52%)
T cell 20 (15%)

Follow-up time in a month Mean, (Range) 24.71±9.35, (2-72 Mo)
Karyotype and Cytogenetic abnormality No 93 (69.9%)

Yes 40 (30.1%);
• Favorable (n=20)
• Unfavorable (n=17)
• No prognostic significance (n=3)

History of Admission due to complications Yes 79 (59.4%)
No 54 (40.6%)

Hemoglobin 9.8±1.7 g/dl
Mean corpuscular volume (MCV) 83.5±7 fl
White Blood Cell (WBC) 5672.4±10651.8/µl
Red Blood Cell (RBC) 3.8×106±0.7×106/µl
Platelet 150135.1±144338.5/µl
Lactate dehydrogenase (LDH) 953±1038 U/L
Total Bilirubin 2.5±1.41 mg/dL

Figure 1. A. 3-Year overall survival in the study in standard and high-risk groups. B. 3-year event-free survival in the 
study in a standard and high-risk group.

Thirty-four studied patients (25.6%) had lym-
phoblasts during sampling (blastic phase) for 
G6PD activity in RBC.

In addition, the G6PD activity of RBC was mea-
sured in the blastic phase of ALL patients by 
the presence of lymphoblast cells in the periph-
eral blood smear documented with flow cytom-
etry and compared with the non-blastic phase 
(patients in remission). There was a significant 

difference in the G6PD activity of RBC in the 
blastic and non-blastic phases of the disease, t 
(128) =-2.48, P=0.014.

Discussion

According to study results, the frequency of 
G6PD deficiency was 3.75% among leukemia 
patients in the study. In comparison, the preva-
lence of G6PD deficiency in our country is about 
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10-14.9% [19, 20], and also in our region, the 
prevalence of G6PD deficiency is about 12% 
[21]. Due to this, the prevalence of G6PD defi-
ciency in leukemia patients seems low. To con-
firm this issue definitively, it is recommended  
to conduct studies with larger populations in 
areas with a higher frequency of G6PD deficien-
cy. It may be due to the suppression of PPP in 
G6PD deficiency [22]. The blockage of PPP key 
enzymes, including G6PD, markedly influences 
cancer cell proliferation in vitro and in vivo [23].

Since then, the PPP has been a key in the glu-
cose metabolism pathway, which is necessary 
for cancer cell growth and metastasis. Con- 
sequently, blocking PPP, as it occurs in G6PD 
deficiency, may correlate to the fact that G6PD-
deficient subjects may have a lower prevalence 
of developing cancer and leukemia [6, 7, 22, 
23].

The mean age of the study population was 
6.98±4.44 years, compatible with the age prev-
alence of ALL in several studies [24-28]. For 
instance, Rahimi-Pordanjani et al. [29] ana-
lyzed the national registry and found a mean  
of 5.9 years, while hospital-based cohorts in 
Mashhad and Shiraz reported mean ages of 
~5.6 and ~6.3 years, respectively [30, 31].

The mean G6PD activity of RBC was not sta- 
tistically different between ALL patients of age 
group 1-10 years and over ten years (P 0.73). It 
seems that RBC’s G6PD activity is not affected 
by age. Similarly, in a study performed by Azma, 
R. Z. et al. [32], there were no significant differ-
ences in G6PD activity of different age groups 
in pediatrics. However, there is little difference 
in age groups due to young RBCs in the blood-
stream, which are more common in infants and 
gradually decrease with age. Young RBCs (retic-
ulocytes) have higher G6PD activity than adult 
RBCs. Furthermore, contamination with high 
white blood cells during hemolysate prepara-
tion in infants may contribute to higher G6PD 
activity [32, 33].

The mean of G6PD activity in RBC was signifi-
cantly higher in the ALL patient group compar- 
ed to the control group (P<0.001). It is conclud-
ed that ALL patients have a higher G6PD activ-
ity, which is compatible with other studies that 
imply increased G6PD activity in cancer and 
leukemia [14, 16, 34, 35]. Batetta et al. showed 
that G6PD activity is strongly increased in leu-

kemic cells (including in patients with heredi-
tary G6PD deficiency) compared to normal 
peripheral blood mononuclear cells [36]. Silic-
Benussi et al. revealed that mTOR inhibition 
downregulates glucose-6-phosphate dehydro-
genase and induces ROS-dependent death in 
T-cell acute lymphoblastic leukemia cells. This 
work shows that T-ALL (a subtype of ALL) cells 
rely on high G6PD activity for survival [37].

It seems that the mechanism for increased 
G6PD activity in RBC may result from a deriva-
tion of some circulating red cells from the 
abnormal pluripotent stem cells in leukemia 
patients [14, 34, 35]. A pan-cancer analysis 
revealed that G6PD expression is upregulated 
in most cancers, including AML, and is linked  
to adverse prognostic factors such as shorter 
overall survival and progression-free interval. 
The increase in G6PD activity supports the 
enhanced pentose phosphate pathway flux, 
providing NADPH necessary for biosynthesis 
and antioxidant defense, which helps leukemic 
cells to proliferate and resist oxidative stress. 
[38-40]. Higher G6PD expression correlates 
with increased immune cell infiltration in the 
tumor microenvironment, suggesting a role in 
modulating immune responses [39]. Elevated 
G6PD levels are associated with resistance to 
various chemotherapeutic agents, indicating 
that G6PD may contribute to therapeutic chal-
lenges in leukemia treatment [40-42]. Yang et 
al. discovered that G6PD expression and ac- 
tivity are heightened in several malignancies. 
Numerous studies have shown elevated G6PD 
activity in tumor cells across various cancer 
types, including solid tumors such as bladder, 
endometrial, prostate, kidney, stomach, colon, 
lung, ovarian malignancies, and particularly in 
leukemias [43].

In the future, targeting the G6PD and PPP may 
probably help cancer therapy [35]. In addition, 
G6PD deficiency may have a protective role in 
cancer or be more sensitive to chemotherapy 
[22]. However, it is against the result of Ferraris 
AM (1988) that G6PD deficiency has no protec-
tive role in hematologic malignancies [13]. Xu 
et al. observed that SIRT2, a member of the sir-
tuin family of proteins, activates G6PD to pro-
mote leukemia cell proliferation and increase 
NADPH production. It illustrates that leukemia 
cells have increased G6PD activity, which facili-
tates their proliferation. Notably, clinical AML 
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samples exhibited a substantially higher G6PD 
catalytic activity than normal hematopoietic 
cells, thereby confirming that malignant leuke-
mic cells upregulate the G6PD enzyme [44].

Catanzaro et al. showed that combining cispla-
tin treatment with inhibition of the PPP enzyme, 
like G6PD, can significantly increase the cyto-
toxic effects of cisplatin and can aid in over-
coming cancer resistance to cisplatin treat-
ment [45].

The blocking of PPP essential enzymes, includ-
ing G6PD, significantly affects cancer cell pro- 
liferation in vitro and in vivo [23, 46]. G6PD is 
upregulated in several human cancers and is 
associated with poor prognosis [47]. Cancer 
patients with G6PD mutations, on the other 
hand, show more prolonged survival and de- 
creased metastasis [48]. Additionally, G6PD 
activity can be controlled by oncogenes such as 
phosphatidylinositol 3-kinase (PI3K)-Akt, Ras, 
Src, mTORC1, or by oncosuppressors such as 
TP53 and TAp73 [6].

The 3-year OS and EFS in standard-risk ALL and 
high-risk ALL were 80% and 70.2% for OS and 
85.4% and 52.5% for EFS, respectively (Figure 
1A and 1B). We should improve our care of 
high-risk patients, probably by using targeted 
or personalized therapy.

We can not evaluate and compare OS and  
EFS in G6PD deficient because the number of 
severely deficient patients was low and statisti-
cally not feasible.

The interesting finding in our study was the sig-
nificantly higher G6PD activity of RBC in the 
blastic phase of leukemia (P=0.014). It seems 
that the existence of blasts in peripheral blood 
smears of leukemic patients, either in the acute 
phase or relapse phase, is associated with high 
G6PD activity. It may be due to hypoxia induced 
by a malignant cell that may cause overexpres-
sion of G6PD activity, leading to shunting the 
glucose flux into the PPP through activation of 
G6PD [12]. Therefore, overexpression of G6PD 
activity may be a warning sign for cancer pa- 
tients. As shown in the study of Zhang Q et al. 
[49], high G6PD activity in patients with clear 
cell renal cell carcinoma is associated with 
metastasis, poor prognosis, and advanced dis-
ease. G6PD deficiency patients’ leukemic cells 
showed higher levels of G6PD gene expression 

when compared to their normal counterparts 
[36]. Additionally, in a study by Dore MP et al. 
[50], G6PD deficiency is associated with de- 
creased oxygen-free radical mutations and a 
decrease in nicotinamide-adenine dinucleotide 
phosphate to reduce replicating cancer cells 
and consequently reduce the risk of colorectal 
cancer.

In the study by Poulain et al., by using 6-amino-
nicotinamide, the G6PD inhibitor, the PPP can 
be targeted to create in vitro and in vivo cyto-
toxicity against AML cells and synergistically 
increase leukemic cells’ susceptibility to che-
motherapy. Their study shows that high levels 
of mTORC1 activity result in a specific vulnera-
bility to G6PD inhibition, which could potentially 
be used as a new therapy for AML [51].

As a result, agents that target G6PD or PPP in 
ALL patients may help decrease malignant cell 
proliferation and antitumor activity; neverthe-
less, more extensive and multicenter studies 
with large populations are needed.

Conclusion

Assessing G6PD activity in leukemia patients 
may be pertinent for monitoring disease activi-
ty following a comprehensive multicenter study. 
The G6PD activity of red blood cells in the blas-
tic phase of leukemia was elevated compared 
to that of the patient in remission (non-blastic 
phase). Consequently, factors that target G6PD 
or PPP in all patients may effectively diminish 
the proliferation of malignant cells.
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