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Abstract: Extracellular ATP (eATP) is the most abundant among extracellular nucleotides and is commonly con-
sidered as a classical danger signal, which stimulates immune responses in the presence of tissue injury. In fact, 
increased nucleotide concentration in the extracellular space is generally closely associated with tissue stress or 
damage. However non-lytic nucleotide release may also occur in many cell types under a variety of conditions. Ex-
tracellular nucleotides are sensed by a class of plasma membrane receptors called P2 purinergic receptors (P2Rs). 
P2 receptors are expressed by all immunological cells and their activation elicits different responses. Extracellular 
ATP can act as an initiator or terminator of immune responses being able to induce different effects on immune 
cells depending on the pattern of P2 receptors engaged, the duration of the stimulus and its concentration in the 
extracellular milieu. Millimolar (high) concentrations of extracellular ATP, induce predominantly proinflammatory 
effects, while micromolar (low) doses exert mainly tolerogenic/immunosuppressive action. Moreover small, but 
significant differences in the pattern of P2 receptor expression in mice and humans confer diverse capacities of ATP 
in regulating the immune response.
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Extracellular nucleotides

Nucleotides (ATP, ADP, UTP and UDP) are among 
the most ancient biologic molecules and this is 
consistent with their multifunctional role in liv-
ing organisms. Nucleotides are the constitu-
ents of nucleic acids, represent an intracellular 
energy source and serve as substrate in signal 
transduction pathways. Intracellular nucleo-
tides can be also massively released in the 
extracellular space and play a role in intercel-
lular communication [1-3].

ATP is the most abundant among nucleotides. 
Intracellular concentration of ATP ranges 
between 1 and 10 mM while, in normal condi-
tions, the extracellular compartment contains 
ATP in the low nanomolar concentration range. 
Because of such steep concentration gradient, 
ATP small size and high mobility, a dramatic 
increase of ATP concentration can occur in the 
extracellular space around damaged cells leak-
ing their cytoplasmic content [3-7].

ATP can be also actively released by many dif-
ferent cell types under certain conditions. 

Activated platelets represent one of the most 
abundant source of actively released adenine 
nucleotides [8-10]. ATP is also released from 
vascular endothelial cells under mechanical or 
shear stress [11-13]. In addition, ATP secretion 
from endothelial cells as well as from leuko-
cytes can be induced by pathogen-associated 
molecules [7, 14-17]. T lymphocytes secrete 
ATP in the early stages of activation [18]. 
Moreover commensal bacteria in the gut are 
able to secrete ATP exerting relevant modulato-
ry effects on immune responses [19]. Finally 
ATP is released during the early stages of apop-
tosis inducing monocyte/macrophages recruit-
ment acting as a “find me” signal to exert an 
efficient cell clearance [20]. Of note, different 
eukaryotic cells use different mechanisms to 
release ATP. For example, under proper stimula-
tion, neurons and platelets secrete adenine 
nucleotides stored in cytoplasmic vesicles [21, 
22]. In other cell types, such as T lymphocytes, 
PMN neutrophils and monocyte/macrophages, 
ATP is released in response to increased cyto-
solic calcium concentration through pannexin 
(panx)-1 hemichannels [18, 23-25]. Alternative-
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ly, ATP can be released through the opening of 
volume-sensitive channels [26], purinergic X 
receptors (P2X)-gated channels [27, 28] or by 
the opening of connexin 43 channels upon 
mechanical stress [29]. Different secretion 
pathways are used by different cells of the 
immune system for ATP release depending on 
the nature of the activating stimulus and/or 
pathophysiological condition.

Purinergic receptors

Once in the extracellular space, nucleotides 
bind to specific plasma membrane receptors, 
named P2 receptors, widely distributed in a 
variety of different organisms such as mam-
mals, plants, yeasts and bacteria, suggesting 
that nucleotides represent an archaic commu-
nication system [30, 31]. All eukaryotic cells 
express P2 receptors and nucleotides trigger 
intracellular signaling pathways in almost every 
tissue. Intracellular signaling pathways activat-
ed by P2 receptors depend on cell type, pattern 

of P2 receptors expressed 
and type/quantity of 
released nucleotides. Two 
P2 receptor subfamilies 
have been described so far: 
P2X and P2Y [32-34]. P2 
receptors signaling altogeth-
er cooperate in determining 
the basal level of cell activa-
tion for signal transduction 
pathways [35]. Moreover, a 
wide variety of physiological 
functions are regulated by 
P2 receptors, including the 
regulation of cell volume, tis-
sue blood flow and 
inflammation. 

The P2X subfamily is com-
posed of seven members 
named P2X1-P2X7. P2X 
receptors are ligand-gated 
ion channels selective for 
monovalent and divalent cat-
ions. The amino- and carbox-
yl-terminal domains of the 
P2X subtypes are both cyto-
plasmic. Upon activation, 
P2X subunits aggregate to 
form homo- or in some cases 
hetero-multimers and deter-
mine Ca2+ and Na+ influx and 

Table 1. Agonists binding affinity (EC50) for all P2 receptors and their 
main downstream signaling events 

K+ efflux [34]. The only known physiological ago-
nist for P2X receptors is ATP. P2X receptors 
were originally identified in mammalian sensory 
neurons, and subsequently also found in sev-
eral additional cell types such as smooth mus-
cle cells, fibroblasts, megakariocytes, platelets, 
lymphocytes, macrophages, granulocytes, den-
dritic cells [36, 37].

P2Y receptors are widely expressed, being 
present in platelets [38, 39] mucosal cells [40, 
41], monocytes [42, 43], macrophages [43, 
44], dendritic cells [45-47], NK cells [48], gran-
ulocytes [49-51], neurons [52, 53], smooth and 
striated muscle cells [54-58]. Eight P2Y sub-
types have been cloned (P2Y1, P2Y2, P2Y4, 
P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) [59-
62]. P2Y receptors are seven membrane-span-
ning, G-protein-coupled receptors whose acti-
vation exerts different effects depending on 
the G protein subtype involved. P2Y1, 2,4,6, 
and 11 are coupled to Gq/11 proteins that trig-
ger the generation of inositol 1,4,5-trisphos-
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phate and release of Ca2+ from the intracellular 
stores. P2Y12, 13 and 14 are associated with 
Gi/0 proteins, which inhibits adenylate cyclases 

[63]. Of note, P2Y11 activation is associated 
with increased intracellular cAMP concentra-
tion [45, 64, 65]. As each P2Y family member 
display different affinity for diverse ligands, 
each receptor is characterized by a distinct 
agonist rank of potency (see Table 1 and Figure 
1). P2Y1, P2Y11, P2Y12 and P2Y13 are acti-
vated by ATP or ADP. P2Y2 is activated both by 
UTP and ATP; P2Y4 and P2Y6 have UTP and 
UDP as agonists, whereas UDP-glucose acti-
vates the P2Y14 subtype.

Extracellular metabolism of nucleotides

The nature and intensity of purinergic signaling 
depend on extracellular nucleotide/nucleoside 
concentrations, which are controlled by a family 
of ectoenzymes known as ecto-nucleoside tri-
phosphate diphosphohydrolases (E-NTDPase 
1, 2, 3 and 8). CD39/ENTPD1 ectonucleotidase 
(CD39) is expressed by monocytes, NK cells, T 
and B lymphocytes and dendritic cells [66, 67]. 
It can hydrolyze tri- and di-phosphate nucleo-
sides, but is not able to hydrolyze monophos-
phate nucleosides [68]. Regulation of extracel-
lular ATP concentration by ATP scavenging 
CD39 has been shown to regulate immune 

cells function and inflammation in different set-
tings [66, 67, 69, 70].

Another important membrane-bound enzyme 
involved in the metabolism of extracellular 
nucleotides is CD73/ecto-5’-nucleotidase. It 
catalyzes the hydrolysis of adenosine–mono-
phosphate (AMP) generating adenosine that is 
in turn recognized by P1 adenosine receptors. 
Interestingly CD39 and CD73 are simultane-
ously expressed on the same cellular popula-
tion as occurs for example on murine T regula-
tory lymphocytes (Tregs) and on a subset of 
human Tregs [71] or on human monocyte-
derived dendritic cells [72]. Effects due to ATP 
catabolites rather than to ATP itself can be dis-
tinguished by comparing the observations 
made using ATP with those obtained with non-
hydrolyzable ATP analogues (e.g. ATP-γ-S), ade-
nosine deaminase (ADA; that converts adenos-
ine into inosine) or exogenous apyrase that 
hydrolyzes extracellular ATP.

Regulation of innate immunity by extracellular 
nucleotides 

The innate immune system is the first line of 
defense against invading pathogens. Four 
major pattern recognition receptor (PRR) fami-
lies, are involved in the recognition of a wide 

Figure 1. Type 2 purinergic receptors and their nucleotide agonists. Extracellular nucleotides bind to type 2 puriner-
gic receptors exerting their effects on cells’ function. Two distinct P2 receptor subfamilies were described P2X and 
P2Y. P2X receptors are membrane cation channels gated exclusively by extracellular ATP. Seven P2X receptors have 
been cloned and named P2X1-7. They are oligomers of three subunits each composed by an extracellular loop, two 
transmembrane domains and an amino- and a carboxyl-terminal both cytoplasmic. ATP binding induce the subunits 
assembly to form omo- or etero-multimerc channels permeable to monovalent and divalent cations. P2Y recep-
tors are seven membrane-spanning, G-protein-coupled receptors. Eight P2Y subtype receptors have been cloned 
so far named P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14. They can be subdivided into adenine 
nucleotide-preferring receptors (P2Y1, P2Y11, P2Y12 and P2Y13), uracil nucleotide-preferring receptors (P2Y4 and 
P2Y6), a receptor of mixed specificity (P2Y2) and a UDP-glucose-preferring receptor (P2Y14).
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range of pathogen-associated molecular pat-
terns (PAMPs): Toll-like receptors (TLRs), cyto-
solic RIG-I-like receptors (RLRs), Nod-like recep-
tors and C-type lectins. It is now clear that 
detection of foreign microorganisms is not suf-
ficient to induce inflammation, but recognition 
of a damage signal is also necessary. 

For example, DCs reside in peripheral tissues 
and serve as “sentinels”, and they are not only 
activated upon encounter with foreign patho-
gens recognized by Toll like receptors, but they 
also react to the presence of environmental 
molecules associated with tissue stress, the 
so-called damage-associated molecular pat-

Figure 2. Extracellular ATP exerts different effects on cells of the innate immunity depending on its concentration. 
Low (1-250 μM) eATP concentrations activate high and intermediate ATP-binding affinity P2 receptors. High (1-10 
mM) concentrations of eATP activate P2X7 receptor which displays low ATP-binding affinity. 
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terns (DAMPs). Constitutively expressed endog-
enous molecules can function as danger sig-
nals as for example ATP, adenosine, high 
mobility box group 1 (HMBG1) and heat shock 
proteins, while other danger signal are induc-
ible factors such as type I interferons [73]. The 
recognition of endogenous danger signals by 
cells of the immune system participate in deter-
mining the quality and the strength of the 
immune response and enables the immune 
system to distinguish between pathogenic or 
harmless/commensal organisms. 

In order to maintain homeostasis the termina-
tion of the immune response and the resolution 
of inflammation is as important as its initiation 
and tissue damage might be caused by the 
intrinsic toxicity of sustained inflammation. 
Extracellular ATP can act as an initiator or ter-
minator of immune responses. Relatively high 
concentrations of extracellular ATP (in the milli-
molar range) induce predominantly proinflam-
matory effects through the engagement of the 
low affinity receptor P2X7. On the other hand 
low (micromolar) doses exert mainly tolerogen-
ic/immunosuppressive action (Figure 2) 
through the activation of the high affinity P2Y11 
receptor [74, 75]. 

Monocytes/macrophages

Macrophages continuously differentiate from 
monocytes that leave blood flow to reach the 
tissues throughout the body. When a potential-
ly pathogenic microorganism crosses the epi-
thelial barrier is immediately recognized by 
macrophages that reside in the host tissues 
and that are able to pahgocyte and kill it.

In macrophages, millimolar extracellular ATP 
engages P2X7 and trigger the activation of the 
inflammasome [16, 76]. K+ efflux occurring 
through the opened P2X7 channel is a key 
event leading to the assembly of the Natch 
Domain-, Leucine-Rich Repeat-, PYD-Containing 
Protein 3 (NLRP3) inflammasome [77]. Two dis-
tinct triggering signals are necessary for mac-
rophages to secrete IL-1 β and IL-18: the activa-
tion of Toll-like receptor pathway that 
determines the expression and accumulation 
of pro-IL-1β and pro-IL-18, and the engagement 
of P2X7 receptor that activate the inflamma-
some, composed by NLRP3, the ASC adaptor 
and procaspase1. Once activated, NLRP3 pro-
motes the oligomerization of procaspase 1 and 

its subsequent proteolytic activation into active 
Caspase 1 that in turn cleaves pro-IL-1β and 
pro-IL-18 into active cytokines [78-81]. In keep-
ing, macrophages from P2X7 KO mice display 
impaired NLRP3 inflammasome activation and 
reduced secretion of IL-1β and IL-18 after LPS 
stimulation [82]. As a consequence, in a mono-
clonal anti-collagen induced arthritis model, 
P2X7 KO mice develop less severe synovial 
inflammation as well as reduced cartilage 
destruction [83]. Moreover high levels (mM) of 
extracellular ATP increase macrophage secre-
tion of inflammatory cytokines such as IL-1α 
[84], IL-1β [85-87], IL-6 [82], IL-18 [88, 89], 
TNF-α [90, 91], whereas low micromolar ATP 
concentrations sufficient to trigger the P2Y11 
but not the P2X7 receptor, inhibit TNF-α and 
CCL-2 production while increasing the produc-
tion of the immunoregulatory cytokine IL-10 
[92]. Extracellular nucleotides have been 
shown to regulate several other cell functions 
in a P2X7 receptor-independent manner. For 
example macrophages exposed to micromolar 
levels of extracellular nucleotides, display 
increased ROS production, [44, 93, 94]. Such 
event in turn activates different signalling path-
ways leading to the production of macrophage 
inflammatory protein-2 (MIP-2), that promote 
migration of neutrophils toward inflamed tis-
sues [95]. In addition micromolar levels of both 
extracellular ATP and ADP also induce chemo-
taxis of monocyte/macrophages [92, 96-98]. 
Phagocytic activity of macrophages is also 
influenced by extracellular nucleotides. 
Clearance of apoptotic cells is a crucial task 
performed by macrophages. Removal of apop-
totic cells normally does not lead to upregula-
tion of co-stimulatory molecules or cytokine 
production by macrophages and therefore does 
not contribute to or stimulate immune respons-
es [99]. On the contrary upon encounter with 
necrotic cells macrophage proinflammatory 
activity is stimulated while phagocytosis is not. 
As dying cells release nucleotides and macro-
phages express most of purinergic receptors, 
Marques-da-Silva and colleagues recently 
investigated whether extracellular nucleotides 
could influence phagocytosis of murine macro-
phages through the activation of purinergic 
receptors [100]. Pretreatment of macrophages 
with low concentrations of several extracellular 
nucleotides, induced increased expression of 
adhesion molecules such as CD11b/CD18 
(Mac-1) and CD51/61 and consequent 
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enhanced phagocytosis, possibly through the 
engagement of P2X1, P2X3 ,P2Y1 and/or P2Y6. 
This scenario is consistent with an homeostatic 
environment where low levels of nucleotides, 
released by apoptotic cells, stimulate macro-
phages to clear apoptotic bodies enhancing 
pahgocytosis. Higher concentrations of extra-
cellular nucleotides, consistent with a necrotic 
environment, do not stimulate the upregulation 
of adhesion molecules, nor the clearance of 
necrotic cells, determinig the amplification of 
inflammatory effects exerted by necrotic debris.

Dendritic cells

Dendritic cells (DCs) are professional antigen 
presenting cells. They reside in tissues where 
they uptake the antigen and then migrate to 
lymph nodes toward cytokines gradients, to 
stimulate T cells. Extracellular ATP is able to 
induce immature (but not mature) DCs migra-
tion [101]. P2X7 activation on DCs is able to 
induce inflammasome activation as well as 
secretion of proinflammatory cytokines such as 
IL-1β, IL-18, TNF-α and IL-23. On the other hand, 

Figure 3. Peculiarities of the P2Y11 receptor. P2Y11 is expressed on human cells but has no ortholog in rodents. 
ATP is the P2Y11 preferred physiological ligand, it can also be activated by extracellular NAD+ and NAADP. The 
P2Y11 is the only P2Y receptor coupled to a Gq/s protein and upon activation stimulates adenylate cyclase (AC) as 
well as phospholypase C (PLC) activities. Consequent increased concentration of cAMP mediates several inhibitory 
effects of eATP on human cells of the innate immunity.
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dendritic cells maturing in the presence of 
micromolar concentrations of extracellular ATP 
display impaired production of TNF-α, IL-1β and 
IL-12 as well as reduced secretion of inflamma-
tory chemokines such as CXCL-10, CCL-5, CCL-2 
and CCL-3, while the expression of IL-10, IL-1 
receptor antagonists or of CCL-17 and CCL-22 
are either unaffected or upregulated [102-104]. 
In the same experimental setting, pharmaco-
logical inhibition of P2Y11 receptor restores 
the production of TNFα and IL-12 by DCs (la 
Sala et al., unpublished). Moreover extracellu-
lar ATP has been shown to induce the expres-
sion of two important immunosuppressive pro-
teins: indoleamine 2,3-dioxygenase (IDO) and 
thrombospondin-1 via P2Y11 activation [105]. 
Of note the P2Y11 receptor is the only P2YR 
coupled to a Gs protein that in turn is able to 
activate adenylate cyclase determining an 
increase in intracellular cAMP concentration as 
depicted in Figure 3. Interestingly the treat-
ment of DCs with different cyclic AMP elevating 
agents or cell-permeable cAMP analogs pro-
duce similar modifications of DC maturation 
process resulting in impaired capacity of DC to 
promote type 1 T cell responses [102, 106-
108]. Depending on the microenvironment, 
extracellular ATP can promote immunogenic or 
tolerogenic activity of DCs. For example micro-
molar concentrations of eATP that block IL-12 
expression elicited by LPS, synergize with TNF 
for the induction of IL-12p70 [45, 108]. 
Moreover, eATP has been shown to inhibit IL-27 
secretion via P2Y11 activation and upregulate 
IL-23 mRNA expression through a P2Y11-
independent mechanism [109]. 

The “dualism” between P2X7 as low affinity ATP 
receptor exerting mainly proinflammatory 
effects and P2Y11 an high affinity receptor trig-
gering cyclic AMP-mediated immune suppres-
sion, determines a complex regulation of 
immune functions also in other leukocyte sub-
populations. Importantly as no orthologue gene 
of the human P2Y11 receptor have been identi-
fied in rodents, murine cells converge in delin-
eating a marked proinflammatory role for ATP, 
while in the human system both pro and anti-
inflammatory effect have been documented 
[110]. Adding to such complex scenario, the 
duration of the stimulus must be taken into 
consideration as well. While P2X7 opening for a 
short time leads to the activation of the proin-
flammatory pathway to sustain inflammation, 
prolonged P2X7 receptor stimulation causes 

the enlargement of the pore that leads to cell 
death.

NK cells 

Natural killer cells are bone marrow-derived cir-
culating lymphocytes that contribute to the 
innate immune response by exerting cytolytic 
activity against virally infected and neoplastic 
cells and by secreting cytokines, especially IFN-
γ. Extracellular ATP is a modulator of the activity 
of NK cells as well. It inhibits NK cells prolifera-
tion and IFN-γ production [111]. In addition NK 
cells cytotoxic activity and chemotaxis elicited 
by CX3CL1 is blocked by eATP, an effect that is 
mediated by the P2Y11 receptor [48]. CX3CL1 
might have a role in the crosstalk between leu-
kocytes and endothelial cells. Soluble CX3CL1 
is released by activated ECs during early stages 
of inflammation, and is able to induce the 
recruitment of leukocytes expressing its cog-
nate receptor CX3CR1. In addition, CX3CL1 
triggers interferon-γ production by NK cells that 
reinforces CX3CL1 expression by ECs [112]. 
Moreover, activated ECs can express both the 
soluble and the membrane-bound form of 
CX3CL1, the latter acting as an adhesion mol-
ecule thus reinforcing the strength of leuko-
cyte-endothelial cell interaction [113]. In addi-
tion CX3CL1 can stimulate the cytolytic activity 
of NK cells toward ECs [114]. Noteworthy ECs 
represent a major source of actively secreted 
ATP [115], pointing it out as an important player 
in the regulation of NK-EC interaction. It has 
been proposed that activated NK cells may 
mediate vascular injury in different pathologi-
cal conditions such as vascular leak syndrome, 
allograft rejection, and cytomegalovirus infec-
tion [113, 114, 116]. In the presence of ATP, 
CX3CL1 failed to enhance NK cell–mediated 
cytolysis of endothelial cells. Most importantly 
increased degradation of extracellular ATP by 
exogenous apyrase significantly increased NK 
cells capacity to kill endothelial cell. In addition 
ATP influences NK chemotaxis by inhibiting 
CX3CL1-induced cell migration. Such effect is 
not due to a general inhibition of the capacity of 
NK cell to migrate because in the same experi-
mental settings extracellular ATP has proven 
able to increase chemotaxis toward CXCL12 
and enhance chemokinesis [48].

Polymorphonuclear cells (PMN)

Eosinophils are bone marrow-derived granu-
locityc leukocytes. Only few of these cells are 



Extracellular nucleotides and innate immunity

21 Am J Blood Res 2013;3(1):14-28

normally present in the circulation the majority 
of them residing in connective tissues, just 
under epithelium. Eosinophils exert two effec-
tor functions: upon activation they release high-
ly toxic granule proteins and free radicals, and 
secrete several cytokines and chemical media-
tors to attract and activate other immunologi-
cal cells. Extracellular ATP in low (micromolar) 
concentration enhances eosinophil migration 
toward inflamed tissues [117, 118].

In eosinophils, extracellular ATP increases 
intracellular calcium concentration through the 
opening of ion channels allowing Ca2+ influx 
from the extracellular space and by triggering 
Ca2+ release from the intracellular stores as 
well [119]. As actin reorganization is preceded 
by increased intracellular Ca2+ concentration, 
extracellular nucleotides, especially ATP, UTP 
and ADP, are able to induce a rapid and tran-
sient actin polymerization, in a concentration 
dependent manner [119, 120]. In addition, 
extracellular nucleotides trigger the secretion 
of eosinophil cationic protein, and IL-8, two 
potent chemoattractants recruiting other 
eosinophils and neutrophils [121, 122].

Polymorphonuclear neutrophilic leukocytes are 
short living cells very abundant in blood, but 
normally not present in healthy tissues. They 
share with macrophages a key role in innate 
immunity because they are able to recognise, 
ingest and kill many pathogens without an aid 
of adaptive immune response. Extracellular 
ATP enhances chemotactic response of neutro-
phils [24, 123]. 

Noteworthy, neutrophils express P2 receptors 
[50, 124, 125], and they are able to actively 
secrete ATP [126]. Neutrophils can transiently 
but rapidly secrete ATP through panx1 and con-
nexin 43 channels, from the protruding edge of 
the cell during migration. ATP activate P2Y2 
receptors through an autocrine pathway and at 
the same time ATP is hydrolyzed by ectonucleo-
tidases to adenosine that engages the 
Gi-coupled A3 receptor. These two concomitant 
mechanisms determine an amplification of che-
motaxis [123]. Neutrophils also express a maxi-
anion channel known as human tweety homo-
log 3 (hTTYH3), which upon cell activation by 
N-formil-Met-Leu-Phe bacterial peptide recep-
tors (FPRs), is able to secrete ATP. Noteworthy 
panx1 hemichannels colocalize with FPRs and 
hTTYH3 at the leading edge of migrating neu-

trophils, delimiting an area for active ATP 
release [24]. ATP secretion by neutrophils is 
induced not only upon FPRs stimulation, but 
also after activation by IL-8, leukotriene B4 
(LTB4), the complement component C5α and 
FcγR receptor, pointing out the importance of 
this autocrine purinergic pathway [127]. 

Neutrophil adhesion to endothelium [128-132], 
the production of reactive oxygen species (ROS) 
[50, 133-138] and degranulation are also 
increased by extracellular ATP [134, 136, 139, 
140]. Interestingly extracellular nucleotides 
regulate neutrophils phagocytosis in a complex 
manner. It has been previously shown that both 
ATP and ADP at micromolar concentrations 
stimulate phagocytosis via activation of Mac-1 
[141, 142], but recently Kudo and colleagues 
have shown that low micromolar concentration 
of the same nucleotides can inhibit neutrophil 
phagocytosis until pathogen stimulation [143]. 
It is possible that ATP and ADP can enable 
phagocytic cup formation thus inihibiting the 
binding/uptake of antigens [144]. The inhibi-
tion of phagocytic activity by neutrophils should 
might be important for limiting excessive 
phagocytosis that occurs in pathological condi-
tions such as hemophagocytic syndrome [145]. 
However neutrophil bactericidal activity is unaf-
fected by this regulatory mechanism as the 
inhibition of phagocytosis by ATP and ADP is 
abrogated by stimulation with fMLP or LPS 
[143].

Plasmacytoid dendritic cells

The regulation of plasmacytoid dendritic cells 
(pDCs) function by extracellular nucleotides 
has been only partially investigated. 
Plasmacytoid DCs are a subpopulation of den-
dritic cells playing a crucial role in antiviral 
immunity. These cells are specialized in the 
rapid and abundant production type I interfer-
ons (IFN-α, -β, -ω) in response to viral infection 
[146, 147].

The presence of nucleotides such as ATP, ADP, 
UTP, UDP and UDP-glucose in the extracellular 
milieu inhibits type I IFN production by pDCs in 
response to influenza virus or the TLR9 agonist 
CpG. Nucleotides that exert the most potent 
inhibitory effect include UDP, UTP and UDP-
glucose. This finding suggests the involvement 
of P2Y4, P2Y6 and P2Y14 receptors [148]. 
Because type I IFNs enhance cytotoxic activity 
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and IFN-γ production by NK and CD8+ T lym-
phocytes, their inhibition may reduce immune 
surveillance against virally infected and neo-
plastic cells. 

Conclusions

Extracellular nucleotides can modulate the 
function of cells of the innate immune system 
as well as of T lymphocytes. The role of extra-
cellular ATP in the regulation of immune 
responses and inflammation appears to be dif-
ferent in humans as compared to that estab-
lished in mice. While several observations point 
out ATP as a signal that induces the innate 
immune system to trigger and sustain inflam-
mation, other evidences suggest that ATP might 
represent a negative feedback signal to limit 
detrimental inflammation in the surrounding of 
stressed or damaged cells. Several of such reg-
ulatory effects of extracellular ATP are mediat-
ed by the P2Y11 receptor expressed in humans 
but not in rodents and linked to increased intra-
cellular cAMP levels that play a major role as 
immunosuppressive signal.
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