
Am J Cardiovasc Dis 2020;10(4):272-283
www.AJCD.us /ISSN:2160-200X/AJCD0116854

Review Article
Echocardiographic evaluation of right ventricular-arterial 
coupling in pulmonary hypertension

Maria Chiara Todaro1*, Scipione Carerj2*, Concetta Zito2, Maria Paola Trifirò1, Giovanni Consolo1, Bijoy 
Khandheria3

1Department of Cardiology, Papardo Hospital, Messina, Italy; 2Department of Clinical and Experimental Medicine - 
Cardiology Unit - University of Messina, Messina, Italy; 3Aurora Research Institute, Aurora Health Care, Milwaukee, 
WI, Italy. *Equal contributors.

Received June 18, 2020; Accepted August 24, 2020; Epub October 15, 2020; Published October 30, 2020

Abstract: Pulmonary hypertension (PH) is a hemodynamic condition characterized by chronically elevated mean pul-
monary artery pressure (m-PAP ≥ 25 mmHg) measured at rest by right heart catheterization (RHC). It includes a pre-
capillary and a post-capillary form. Pulmonary artery hypertension (PAH) is a pre-capillary form of PH potentially gen-
erated by several heterogeneous systemic disorders, whose main hemodynamic change is represented by severely 
increased pulmonary vascular resistance (PVR). In order to preserve an efficient right ventricular-arterial (RV-PA) 
coupling, the right ventricle (RV) adapts to this chronic increase of its afterload, with a compensatory hypertrophy, 
until RV dilatation and dysfunction occur. Right ventricular (RV) function and especially RV-PA coupling assessment 
showed to be very important prognostic markers in this subset of patients, especially for those with pre-capillary PH. 
The aim of this review is to provide a pathophysiological insight into the spectrum of RV adaptive changes occurring 
in response to chronic increase of RV afterload and to present the role of echocardiographic parameters as possible 
tools for early non-invasive evaluation of RV-PA coupling, before overt heart failure ensues. 
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Introduction 

The normal adult pulmonary vascular bed is a 
low-pressure, low-resistance, and high compli-
ance system, capable of accommodating large 
increases in blood flow with minimal elevations 
of mean pulmonary artery pressure (mPAP); the 
normal right ventricle (RV) is coupled to this 
low-pressure and high-compliance pulmonary 
circulation to ensure transfer of blood to the 
pulmonary arteries in an energy efficient fash-
ion [1].

In physiological conditions, the right heart is 
“coupled” to the pulmonary circulation as a 
single cardiopulmonary unit, keeping a relative 
matching between contractility and afterload 
and a favourable right ventricular to pulmonary 
artery coupling (RV-PA coupling) [2]. 

As pulmonary hypertension (PH) develops, the 
vascular bed becomes a high-pressure, high-
resistance, and low compliance system resem-

bling the hemodynamic properties of the sys-
temic arterial system. All these hemodynamic 
changes lead to an additional load on the con-
tracting ventricle and altered RV-PA coupling.

Especially in pulmonary artery hypertension 
(PAH), RV-PA uncoupling detection is crucial for 
early identification of patients with poor progno-
sis [3].

Trans-thoracic echocardiography (TTE) imple-
mented with two-dimensional speckle tracking 
(2DSTE) and three-dimensional (3D) technolo-
gies, due to its wide availability and ease of use 
at bedside, gained a pivotal role for diagnosis 
and prognostic stratification of patients affect-
ed by PH. The aim of this review is to summarize 
the available methods for RV-PA coupling evalu-
ation with special focus on the role of echocar-
diography and to provide the clinical cardiolo-
gists with a practical and comprehensive over-
view of echocardiographic parameters that 
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should never lack in the evaluation of these 
patients.

Definition and classification of PH

Pulmonary hypertension is not a disease but a 
pathophysiological and hemodynamic condi-
tion characterized by elevated m-PAP (m-PAP ≥ 
25 mmHg) measured at rest by right heart cath-
eterization (RHC) [4].

The hemodynamic classification of PH includes 
a pre-capillary and a post-capillary form [5]. 
Available data have shown that normal m-PAP 
at rest is 14+3 mmHg with an upper limit of nor-
mal of approximately 20 mmHg, for this reason 
a new definition based on lower threshold 
(m-PAP >20 mmHg) has been recently pro-
posed [6]. However, the adoption of this new 
definition in future guidelines remains to be 
confirmed. 

According to the clinical classification present-
ed in the latest European guidelines [4], PH can 
be found in more than fifty clinical conditions 
classified in 5 groups which include pulmonary 
arterial hypertension (PAH) (Group 1), PH due to 
heart diseases (Group 2), lung diseases (Group 
3), pulmonary thromboembolic disease (Group 
4), and unclear and/or multifactorial mecha-
nisms (Group 5) Table 1. 

Pulmonary artery hypertension (PAH) (Type 1 
according to clinical classification), is a relative-
ly rare form of pre-capillary PH, whose diagno-

sis is based upon the following hemodynamic 
parameters: m-PAP ≥ 25 mmHg, pulmonary 
artery wedge pressure (PAWP) ≤15 mmHg and 
PVR >3 Wood Units (WU). In contrast, post-cap-
illary PH due to left heart disease (Type 2) is 
characterized by increased PAWP (>15 mmHg) 
at RHC; however mixed forms of pre capillary 
and post-capillary hypertension can be encoun-
tered in clinical practice, causing challenging 
diagnostic dilemmas and management issues.

RV adaptation to afterload  

In PAH which can be diagnosed in several and 
heterogeneous systemic diseases, such as 
connective tissue disorders, HIV infection, por-
tal hypertension, drug-induced PH, the increase 
of PVR is followed by an irreversible anatomical 
remodelling of pulmonary vasculature with nar-
rowing of pulmonary vessels and a chronic 
pressure overload on the RV [7]. 

The difference of RV failure in PH in comparison 
to left ventricular (LV) failure is that the RV fails 
after a long-time adaptation to increased after-
load [8] and especially in PAH, RV dysfunction 
appears the tip of the iceberg after a continu-
um of hemodynamic alterations (Figure 1).

Initially a “homeometric” adaptation occurs, ch- 
aracterized by RV hypertrophy and increased 
wall thickness. When compensatory mecha-
nisms fail to maintain a favourable RV-PA cou-
pling, RV enlargement ensues (“heterometric 

Table 1. Hemodynamic definition and clinical classification of PH, adapted from 2015 European 
Guidelines on PH1

Definition Parameters Clinical classification
PH mPAP ≥ 25 mmHg All
Pre-capillary mPAP ≥ 25 mmHg

PAWP ≤15 mmHg
PVR >3 WU

1. PAH
3. PH due to lung diseases
4. CTEPH
5. PH with unclear and/or multifactorial mechanisms

Post-capillary mPAP ≥ 25 mmHg
PAWP >15 mmHg
PVR ≤3 WU

2. PH due to left heart disease
5. PH with unclear and/or multifactorial mechanisms

Combined mPAP ≥ 25 mmHg
PAWP >15 mmHg 
dTPG ≥ 7 mmHg and/or
PVR >3 WU

PH-pulmonary hypertension, mPAP-mean pulmonary artery pressure; PAWP-pulmonary artery wedge pressure; PVR-pulmonary 
vascular resistance; dTPG-diastolic trans-pulmonary gradient; PAH-pulmonary artery hypertension; CTEPH-chronic thromboem-
bolic PH.
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more beneficial due to the lower amount of RV 
fibrosis and RV diastolic stiffness [13]. The 
prognostic role of RV-PA coupling has been 
demonstrated in several disease states: even 
in the setting of heart failure with both reduced 
and preserved ejection fraction (EF), or in 
patients with advanced heart failure potentially 
candidates for cardiac transplant, RV-PA cou-
pling demonstrated to be an important predic-
tor of outcome [14-16].

Invasive assessment of RV-PA coupling  

Right ventricular-pulmonary artery coupling can 
be defined as the relationship between RV con-
tractility and RV afterload. RV contractility or 
ventricular elastance (Ees) is a load indepen-
dent parameter of intrinsic myocardial function; 
RV afterload is the opposition to ventricular 
ejection and includes a pulsatile component or 
arterial elastance (Ea) and a steady compo-
nent, represented by mPAP and PVR [7]. 
Ventricular-arterial coupling can be invasively 
derived from the ratio between ventricular elas-
tance and arterial elastance (Ees/Ea). In physi-
ologic conditions Ees/Ea ratio is between 1,5 
and 2, allowing the RV flow output a minimal 
energy cost and optimal RV-PA coupling [17].  

Right heart catheterization is the gold standard 
technique for RV-PA coupling evaluation, allow-
ing direct estimation of RV pressures and 
volumes. 

Figure 1. Pulmonary artery hypertension iceberg. Schematic representa-
tion of pathophysiological and hemodynamic alterations of PAH. In the first 
stage of the disease, in response to a chronic increase of RV afterload, RV 
“homeometric” adaptation occurs with preservation of RV-PA coupling; in 
the second stage of the disease RV “heterometric” adaptation follows with 
RV-PA uncoupling, leading to RV failure at end-stage. PAH-pulmonary artery 
hypertension; RV-right ventricle; HR-heart rate; CO-cardiac output; PVR-pul-
monary vascular resistance.

Figure 2. Right ventricular pressure-volume (P-V) loop 
relationship. Ees is the slope of the end-systolic pres-
sure volume relation as measure of RV contractility, 
and Ea is a measure of the arterial load. A. RV P/V 
Loops in a normal subject, Ees/Ea is within normal 
range. B. RV P/V Loops in a patient with early stage 
PH, RV contractility enhances in order to cope with a 
chronically increased afterload and RV-PA coupling is 
still preserved. C. RV P/V Loops in a patient with PH 
and RV-PA uncoupling, RV enlarges and HR increas-
es in order to maintain SV, Ees/Ea ratio decreases. 
Ees, End-systolic elastance; Ea, arterial elastance; 
ESP, end-systolic pressure; ESV, end-systolic volume; 
SV, stroke volume.

adaptation”), in order to maintain an effective 
stroke volume (SV) [9].  

The progression from homeo-
metric to heterometric adap-
tation depends upon several 
factors, including the time of 
onset and the aetiology of PH, 
genetic and neuro-hormonal 
factors, regulating cell hyper-
trophy, and fibrosis [10].

For example, it was shown 
that RV adaptation in idiopath-
ic PAH is characterized not 
only by increased RV hypertro-
phy but also by local inflam-
mation, ischemia and exces-
sive fibrosis, responsible for a 
less effective RV contractility 
and less preserved RV-PA cou-
pling [11, 12]. On the contrary, 
RV adaptation in patients wi- 
th congenital heart disease 
and Eisenmenger syndrome is 
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Arterial elastance can be invasively derived by 
the creation of multiple pressure-volume (P-V) 
loops obtained by reducing ventricular diastolic 
filling, through partial vena cava occlusion, or 
otherwise by the Valsalva maneuver [2]. The 
slope of this line is the RV end-systolic elas-
tance and the linear regression line connecting 
these P-V points is used to determine the end-
systolic P-V relationship (Figure 2). This method 
remains difficult and time consuming; there-
fore, it is predominantly used as a research 
tool.

According to the more commonly used “single-
beat method”, Ees is derived from the ratio 
between end-systolic pressure (ESP) to end-
systolic volume (ESV) (ESP/ESV) and Ea is 
obtained from the ratio between ESP to SV 
(ESP/SV) invasively assessed from P-V loops 
[18]. Since the Ees/Ea ratio can be simplified 
by omitting ESP as common terms, Ees/Ea is 
also estimated by the ratio of SV/ESV, (also 
defined as the “volume method”) [19]. 

When RV contractility cannot rise anymore to 
match RV afterload, RV-PA uncoupling occurs 
and the ratio Ea/Ees decreases. A value of 0,8 
has been identified as marker of RV-PA uncou-
pling [20]. However, this invasive approach is 
technically demanding, expensive, and not fea-
sible at the bedside, for this reason, non-inva-
sive surrogates of Ees/Ea therefore, have been 
investigated.

Non-invasive assessment of RV-PA coupling: 
from catheter to probe 

Although RHC is the gold standard for diagnosis 
and periodic monitoring of patients affected by 
PAH, due to its invasive nature, it should be per-
formed with caution and only when clinically 
indicated. Echocardiography plays a role of 
paramount importance for both diagnosis and 

is the peak of tricuspid regurgitation (TR) jet 
velocity; the probability of PH at echocardiogra-
phy is defined as “low”, “intermediate” or “high” 
according to peak TR jet velocity and the pres-
ence of other echocardiographic signs of PH 
(Table 2; Figure 3). 

The opportunity of performing further inves- 
tigation, especially RHC, is defined by the prob-
ability of PH according to echocardiographic 
parameters [4].

A standard RHC provides useful tools for RV-PA 
coupling evaluation through the relationship 
between basic hemodynamic measurements: 
mPAP, PVR, cardiac output (CO) and right atrial 
pressure (RAP) (Table 3, invasive method) [17]. 
However, in the recent years several parame-
ters obtained with TTE and cardiac magnetic 
resonance (CMR), have been investigated, with 
the aim to validate hybrid or completely non-
invasive surrogates of invasively derived RV-PA 
coupling [21]. For this purpose, a simple echo-
cardiographic index of RV function is ‘matched’ 
to an index of RV afterload. Tricuspid annular 
plane systolic excursion (TAPSE) is the most 
important parameter of RV longitudinal func-
tion and its abnormality threshold is < 17 mm; 
other methods of RV function assessment 
include the peak systolic tissue Doppler veloci-
ty (denoted S’; abnormal < 12 cm/sec) and the 
right ventricular area change (RVFAC) [22, 23]. 

A hybrid approach that offers promising insight 
into RV-PA coupling, matches TAPSE to inva-
sively measured PVR (TAPSE/PVR) or RVFAC to 
mPAP (RVFAC/mPAP), obtained from RHC [24, 
25]. 

Van de Veerdonk et al. [20] provided an exam-
ple of this hybrid approach in patients with PAH, 
investigating the relationship between cardiac 

Table 2. Echocardiographic probability of PH in symptom-
atic patients with a clinical suspicion of PH, adapted from 
2015 European Guidelines on PH1

Peak TR velocity ≥ 2 echocardiographic 
signs of PH

Probability 
of PH

< 2,8 m/sec NO Low
< 2,8 m/sec YES Intermediate
>2,8 m/sec; < 3,4 m/sec NO Intermediate
>2,8 m/sec; < 3,4 m/sec YES High
>3,4 m/sec Not required High
TR-tricuspid regurgitation; PH-pulmonary hypertension.

prognostic stratification of patients 
affected by PAH and according to the 
latest Guidelines on PH [4], it should be 
performed in all patients that, accord-
ing to symptoms and history, are with 
suspected PH. In this setting, echocar-
diography can provide precious hemo-
dynamic information, useful for diagno-
sis, prognosis and therapeutic gui- 
dance. 

The first echocardiographic measure-
ment to be performed in these patients 
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Figure 3. Echocardiographic signs of PH. A. Tricuspid regurgitation (TR) jet obtained with colour-Doppler across 
tricuspid valve, from parasternal right ventricular (RV) inflow view. B. Peak TR Velocity, measured by Continuous 
Wave Doppler across tricuspid valve in apical four chamber view (A4C) or parasternal short axis (PSAX) view for RV 
inflow, peak TR velocity >2,8 m/sec is considered abnormal. C. The ratio between the basal diameter of right and 
left ventricle (RV/LV ratio) is measured at end-diastole from the standard A4C view without foreshortening; the ratio 
RV/LV >1 suggests RV dilatation. D. Eccentricity Index is measured from PSAX axis view at mid LV level; the ratio D2/
D1 ≥ 1.1 is considered abnormal. E. Pulmonary artery diameter is measured in PSAX in end diastole; a diameter of 
>25 mm is considered abnormal. F. RV outflow tract acceleration time is measured in PSAX, with sample volume of 
pulsed wave Doppler positioned in the RV outflow tract; acceleration time of < 100 ms is considered a marker of PH. 
G. Right atrial area is measured in A4C view at end ventricular systole just prior to tricuspid valve opening; a right 
atrial area >18 cm2 is considered abnormal. H. Early diastolic pulmonary regurgitation (PR) jet velocity is measured 
in PSAX or parasternal RV outflow view; an early PR velocity >2.2 m/s is considered a marker of PH. 

Table 3. Methods for right ventricular-arterial coupling evaluation
Method RV afterload RV function RV-PA coupling
Invasive (standard RHC) mPAP = 50 mmHg,

PVR = 7 WU
CO = 5,7 ml
RAP = 5 mmHg

preserved

CO = 2,5 ml
RAP = 20 mmHg

not preserved

Non-invasive PASP = 60 mmHg
RVOT notched pattern
RVOT AT < 100 msec
pPTT 130 msec

TAPSE = 24 mm
TAPSE/PASP = 0,4
S’ = 14 cm/sec
FAC = 55%
RVFWS = -28%

preserved

TAPSE = 16 mm
TAPSE/PASP = 0,26
S’ = 9 cm/sec
FAC = 35-40 %
RVFWS = -17%

not preserved

RHC-right heart catheterization; mPAP-mean pulmonary artery pressure; PVR-pulmonary vascular resistance; RVOT-right ven-
tricular outflow tract; AT-acceleration time; pPTT-pulmonary pulse transit time; TAPSE-tricuspid annular plane systolic excursion; 
CO-cardiac output; RAP-right atrial pressure; FAC-fractional area change; RVFWS-Right ventricular free wall strain; PASP-pulmo-
nary artery systolic pressure; SV-stroke volume; ESV-end-systolic volume.

MRI derived right ventricular ejection fraction 
(RVEF) with invasive PVR assessment.

Completely non-invasive ratios have been pro-
posed as bedside surrogate of RV-PA coupling, 
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such as the ratio of RVFAC to RV end-systolic 
area [26], or the ratio of TAPSE to pulmonary 
artery acceleration time (AT) [27] and the ratio 
of S’ to RV end-systolic area index [28]. However 
not all of these echocardiographic parameters 
have been directly compared with invasive P-V 
loop measures of RV contractility and afterload; 
therefore, their incremental prognostic value 
has to be confirmed. 

Among non-invasive surrogates of RV-PA cou-
pling, only TAPSE/PASP emerged as an inde-
pendent predictor of invasively measured RV- 
PA coupling and associated with significantly 
improved prognostic prediction of outcome, 
when compared with either variable separately 
(Table 3, non-invasive method) [29].

In the setting of PH secondary to left heart dis-
ease, such as in heart failure with preserved 
and reduced EF, Guazzi et al. [15] combined 
functional capacity assessed by cardiopulmo-

nary exercise testing and RV-PA coupling, as 
evaluated by TAPSE/PASP. The group with 
RV-PA uncoupling as expressed by a TAPSE/
PASP ratio < 0, 36 mm/mmHg had worse func-
tional capacity and the poorest outcome in 
terms of cardiac events.  

Tello et al. [29] validated TAPSE/PASP as a reli-
able method for RV-PA coupling assessment  
in patients with severe idiopathic and thrombo-
embolic PH: a cut-off value of TAPSE/PASP < 
0.31 mm/mm Hg was able to predict RV- 
arterial uncoupling, defined as Ees/Ea < 0.805, 
with a sensitivity of 87.5% and specificity of 
75.9%.

In conclusion, TAPSE/PASP is an easily execut-
able ratio that could be used for early bedside 
identification of RV-PA uncoupling in patients 
with PAH, encouraging the implementation of 
PH therapy for RV unloading, before heart fail-
ure ensues. However, further studies are need-
ed to evaluate the possible benefit of this ratio 
in current risk assessment strategies for severe 
PH.  

Pulmonary wave transmission 

Pulmonary pulse transit time (pPTT), defined as 
the time for the systolic pressure pulse wave to 
travel from the pulmonary valve to the pulmo-
nary veins, revealed to be a promising non-inva-
sive surrogate of RV-PA coupling [30].

This interval can be easily obtained at bedside 
with TTE measuring the interval between R 
wave in the electrocardiogram trace and the 
corresponding peak late systolic pulmonary 
vein flow velocity, measured by pulsed wave- 
Doppler in the pulmonary veins (Figure 4). 

Recently, Wibmer et al. [31] showed that mean 
pPTT, was significantly shorter in 12 consecu-
tive patients with PH (6 patients with group 1 
PH and 6 patients with group 3 PH) compared 
with 12 subjects without any cardiovascular  
or respiratory disease (138.0±16.78 msec vs 
383.5±23.84 msec). Interestingly, within the 
PH group, the subgroup of patients with pulmo-
nary fibrosis showed significantly shorter pPTT 
than the subgroup of patients with PH without 
pulmonary fibrosis. These data are consistent 
with those reported by K.W. Prins et al. [30] and 
M. Dogan et al. [32] who confirmed the reduc-
tion of pPTT in patients with PAH and systemic 

Figure 4. Echocardiographic evaluation of pulmonary 
pulse transit time (pPTT). Transthoracic echocardiog-
raphy, pPTT is obtained with Pulsed wave-Doppler in 
the pulmonary veins measuring the interval between 
R wave in the electrocardiogram trace and the cor-
responding peak late systolic pulmonary vein flow 
velocity (S). 
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sclerosis respectively, compared with controls. 
Importantly pPTT was most strongly associated 
with markers of RV-PA coupling as defined by 
RVFAC/mPAP (r = 0.72, P < 0.0001) and by 
TAPSE/mPAP (r = 0.74, P < 0.0001) [30]. All 
these findings encourage the use of pPTT as 
surrogate marker of pulmonary hemodynamic 
and vascular alterations in PH, especially with 
pulmonary fibrosis.

From a pathophysiological perspective, a re- 
duction of pPTT could be associated with the 
progressive alterations that occur on pulmo-
nary vasculature of patients affected by PH 
[33]. It is demonstrated that in PH, decreased 
pulmonary arterial compliance and arterial 
stiffening compromise wave transmission 
between the proximal and distal vasculature, 
leading to increased pulse wave velocity, reduc-
tion of pPTT and premature reflection of waves 
from the distal pulmonary vasculature [33]. 

Although the significance of arterial waves in 
PH is not well understood, the correlation 
between invasively measured RV-PA coupling 
and pPTT, reinforce the use of this parameter 
as a surrogate marker of intrinsic pulmonary 
vascular disease, thereby allowing its use for 
monitoring of disease progression and regres-
sion [34].

In addition, the shape of the pulsed wave 
Doppler profile in the RV outflow tract (RVOT) 
can provide interesting hemodynamic insights 
into pulmonary vascular status: the presence 
of a notched Doppler signal, either a late sys-
tolic or mid-systolic notching, are highly specific 
for an increased PVR and loss of pulmonary 
vascular compliance [35].

The time to peak velocity of this pulsed wave 
Doppler pattern in the RVOT, referred to as the 
AT provides similar information with respect to 
RV afterload. An AT < 70 ms denotes a marked 
increase in RV afterload, 70-100 ms mild to 
moderately increased RV afterload, and >100 
ms relatively normal RV afterload (Figure 3) 
[36].

Both loss of pulmonary arterial compliance and 
impaired RV-PA coupling are clinically impor-
tant, because they are associated with in- 
creased mortality in patients with PH.  

Right ventricular strain 

Echocardiography is the most widely available 
technique to evaluate RV performance. How- 
ever, conventional echocardiographic measure-
ments of RV function are not always reliable 
due to the complex geometry of the right heart 
chamber and varying loading conditions [23]. 
Longitudinal deformation analysis through 
2DSTE does not rely on geometrical assump-
tions and therefore, provides angle-indepen-
dent assessment of regional myocardial defor-
mation [37]. This echocardiographic technique 
demonstrated to be a promising tool not only 
for the evaluation of RV systolic function but 
also for risk stratification of patients with PH 
[38]. Compared with the left ventricle, RV glob-
al longitudinal strain (RVGLS) is obtained only 
from the apical-four chamber view, with special 
focus on the RV chamber. The speckles for RV 
longitudinal function analysis are manually 
located in the endocardial border of RV free 
wall (RVFW) to obtain RVFW strain. As for LV 
longitudinal function, RV longitudinal strain is 
expressed with negative values. 

RV global longitudinal strain measured with 
2DSTE is reduced in patients with PH, if com-
pared to controls (-12.6 vs -16%), and a cutoff 
value of -13.7% is able to predict reduced long-
term survival [39].

In another study, patients with PH regardless 
the aetiology, have shown more impaired val-
ues of RVFW strain compared with normal con-
trols, with a cut-off of -19% associated with 
worse functional class and outcome [40] (Fi- 
gure 5). Moreover, RVFW strain presented a 
good correlation with brain natriuretic peptides, 
hemodynamic measurements, such as mPAP, 
PVR and with 6-minute walking test and showed 
a significant improvement after specific PH 
therapy, allowing follow up of patients during 
treatment [41]. 

In addition to reduced RV strain, RV dyssyn-
chrony measured with tissue Doppler imaging 
[42] and with 2DSTE was detected in patients 
with mPAP between 20 mmHg and 25 mmHg, 
indicating that RV deformation is impaired even 
in mild/borderline PH [43]. Furthermore, when 
RV dyssynchrony was added to a multivariate 
model including conventional parameters, it 
was able to improve the prediction of functional 
capacity in this setting of patients [44].   
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Figure 5. Right ventricular longitudinal peak systolic strain with two-dimensional speckle-tracking echocardiography 
in apical 4-chamber view. (A) normal longitudinal RV function (-25%) and (B) reduced longitudinal performance 
(-13%) in a patient with idiopathic pulmonary artery hypertension (B).

In conclusion, RV strain and RV dyssynchrony 
are both valuable tools for early RV dysfunction 
detection and for prognostic stratification of 

patients with early or advanced PH, before 
deterioration of conventional echocardiograph-
ic parameters [45].



Right ventricular-arterial coupling in pulmonary hypertension

280	 Am J Cardiovasc Dis 2020;10(4):272-283

Three-dimensional echocardiography 

The use of volumes for non-invasive assess-
ment of RV-PA coupling was first validated with 
CMR, which is currently considered the non-
invasive gold standard for the estimation of RV 
volumes and EF [46]. Indeed the simplified for-
mula SV/ESV obtained with CMR demonstrated 
to be feasible when compared with RHC and 
showed to be a reliable index of RV-PA coupling 
in adult and paediatric patients with PH [47]. 
Three-dimensional (3D) echocardiography has 
been validated for RV volume measurements, 
with good inter- and intra-observer reproducibil-
ity, since it allows a correct visualization of com-
plex RV geometry and delineation of apical tra-
beculae and endocardial borders, overcoming 
the limitation of two-dimensional echocardiog-
raphy [48].

Aubert et al. [49] used SV/ESV ratio obtained by 
means of 3D echocardiography to assess 
RV-PA coupling in a group of 91 patients with 
PH, showing a good correlation with the refer-
ence measurements of arterial and ventricular 
elastance obtained with RHC and CMR. More- 
over, despite a systematic overestimation of 
volumes, RV-PA coupling was significantly 
impaired in patients with severe PH, suggesting 
failure of the RV to maintain coupling. 

In addition, the efficacy of 3D derived volumes 
for RV-PA coupling evaluation was successfully 
tested in a paediatric population with PH. 
Patients with RV-PA uncoupling, presented a 
decreased SV/ESV ratio if compared with nor-
mal controls (0.88±0.18 versus 1.24±0.23) 
and interestingly, SV/ESV correlated with RVFW 
strain and disease severity, behaving as a 

strong predictor of adverse clinical events [50]. 
In this subset of patients, the use of 3D echo-
cardiography reveals to be particularly favour-
able, in order to avoid sedation often required 
in children who undergo CMR.

Conclusions and future directions

Pulmonary hypertension is a chronic patho-
physiological condition characterized by a high 
burden of morbidity and mortality, with majority 
of patients experiencing important limitations 
in daily activities and impairment of their quali-
ty of life. The extreme heterogeneity of possible 
underlying aetiologies, the long time between 
the onset of symptoms and diagnosis and the 
late initiation of a specific therapy, contribute to 
the poor outcome of these patients. Moreover, 
the low specificity of symptoms requires a high 
level of suspicion and a teamwork of several 
specialists for achievement of correct dia- 
gnosis.  

Catheterization rightfully remains the gold stan-
dard for diagnosing PAH; however, due to the 
low prevalence of the disease and the cost and 
risk of invasive procedure, there is a need for 
non-invasive screening tools for diagnosis and 
follow-up of patients in order to reduce diag-
nostic delay and allow monitoring of therapy.

Echocardiography provides a great amount of 
important hemodynamic information and due 
to its ease of use and the possibility of being 
performed at bedside has proven particularly 
suitable for the periodical follow-up of these 
patients, allowing early detection of intrinsic 
pulmonary vascular disease and RV-PA uncou-
pling before RV failure (Table 4).   

Table 4. Echocardiographic follow-up of a patient with PAH. The identification of RV-PA uncoupling 
should encourage the implementation of specific therapy to avoid the development of overt RV failure

Echocardiographic Parameters Normal heart PH with preserved
RV-PA coupling

PH with RV-PA 
uncoupling RV failure

PAPs mmHg 15 70 70 50
TAPSE mm 25 30 18 12
TAPSE/PAPs 1,6 0,42 0,25 0,24
Septal S’ cm/sec 13 12 9 6
RVFWS % -28 -23 -18 -13
FAC % 50 45 40 30
RV Basal Diameter mm 35 40 43 50
PAPs, Pulmonary artery systolic pressure; TAPSE, Tricuspid annular plane systolic excursion; RVFWS, Right ventricular free wall 
strain; FAC, Fractional m.
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For this purpose, simplified methods to asse- 
ss RV-arterial coupling, including conventional 
echocardiographic parameters as well as 
2DSTE and 3D echocardiography, should be 
incorporated into routine clinical follow-up and 
future clinical trials.
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