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Abstract: Aims: No data is available about the significance of cardiovascular magnetic resonance (CMR) derived 
vascular distensibility (VD) and vessel wall ratio (VWR) for risk stratification in patients with type 2 diabetes mellitus 
(T2DM). Therefore, this study aimed to investigate the effects of T2DM on VD and VWR using CMR in both central 
and peripheral territories. Methods: Thirty-one T2DM-patients and nine controls underwent CMR. Angulation of the 
aorta, the common carotid, and the coronary arteries was performed to obtain cross-sectional vessel areas. Results: 
In T2DM the Carotid-VWR and the Aortic-VWR correlated significantly. Mean values of Carotid-VWR and Aortic-VWR 
were significantly higher in T2DM than in controls. Coronary-VD was significantly lower in T2DM than in controls. No 
significant difference in Carotid-VD or Aortic-VD in T2DM vs. controls, respectively, could be observed. In a subgroup 
of thirteen T2DM patients with coronary artery disease (CAD), Coronary-VD was significantly lower and Aortic-VWR 
was significantly higher compared to T2DM patients without CAD. Conclusion: CMR allows a simultaneous evalu-
ation of the structure and function of three important vascular territories to detect vascular remodeling in T2DM.

Keywords: Coronary artery disease, diabetes mellitus, type 2, cross-sectional studies, vascular remodeling, CMR, 
cardiac MRI, magnetic resonance imaging, caritid, aorta distensibility

Introduction

The prevalence of T2DM is increasing world-
wide [1]. T2DM comprises a broad spectrum of 
long-term cardiovascular complications and 
places a burden on both patients and society. 
T2DM is associated with an up to 8-fold 
increased mortality from cardiovascular dis-
ease [2]. Patients with T2DM have reduced vas-
cular elasticity and thickened vessels in carot-
ids, coronaries, and the aorta, and these vas-
cular abnormalities are associated with an 
increased risk of cardiovascular events [3, 4]. 

The capacity of a vessel to distend to a given 
pressure provides valuable information about 
vascular age [3, 5-7]. Ultrasound-based meth- 
ods like Carotid-Intima-Media-Thickness (CIMT) 
provide information on vascular anatomy and 
their application is standard of care for the 
peripheral vasculature. However, the elastic 
properties of the coronaries and thoracic aorta 
cannot be obtained with this technique. 
Cardiovascular magnetic resonance (CMR) has 
been shown to detect morphologic and func-
tional changes in central and peripheral vascu-
lar territories with good reproducibility and no 
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exposure to radiation [8]. CMR allows for a 
simultaneous assessment of the elastic res- 
ponse of a vessel to the blood flow, reflected by 
vascular distensibility (VD), and the morphology 
of the vascular wall itself. Measurements of VD 
provide information on alteration of the vascu-
lature due to systolic pressure or aging, even 
before the onset of atherosclerosis [9-11]. 
Furthermore, CMR is less observer-dependent 
than other imaging modalities and well suited 
to examine vascular pathologies in multiple ter-
ritories and serial studies [12]. Successful 
application of CMR for coronary, aortic, and 
carotid distensibility and quantification of ath-
erosclerosis has been described [4, 11-15]. 

The relationship between VD and vessel wall 
morphology is still unclear. Moreover, no infor-
mation is available on the elastic properties 
among different vessels in patients with long-
term T2DM. This study aimed to investigate the 
effects of T2DM on vascular distensibility and 
morphology using CMR in both central and 
peripheral territories.

Materials and methods

Patient study

Thirty-one (n = 31) patients with T2DM were 
prospectively included in this study. Inclusion 
criteria were a) known T2DM and b) referral for 
a risk stratification using CMR in the setting of 
the prospective trial. Exclusion criteria were a) 
age < 18 years and b) incomplete or missing 
CMR dataset. All patients were referred to our 
cardiological outpatient department. Nine (n = 
9) healthy subjects served as controls. All 
healthy controls were referred to our cardiology 
outpatient clinic for routine check-up examina-
tions. Exclusion criteria for healthy subjects 
were the same as for the patient cohort. All  
participants underwent CMR, using a 3.0  
Tesla scanner (Ingenia 3.0T, Philips, Best, The 
Netherlands). The study was approved by  
the local institutional review board (Charité-
Universitätsmedizin Berlin; DMAINS-BER-01- 
2005). Written informed consent was provided 
by all patients before inclusion. All datasets 
were anonymized.

CMR protocol 

CMR was performed according to a standard 
protocol and following the recommendations  
of the Society for Cardiovascular Magnetic 

Resonance (SCMR) Board of Trustees Task 
Force on Standardized Protocols [16-18]. Cine 
images were registered during 10-15 s breath-
holds using standard vector ECG gating and 
steady-state free precession (SSFP) imaging. 
Cross-sectional scans of the common carotid 
arteries, the ascending aorta, and the proximal 
segment of one coronary artery were per-
formed to obtain area measurements. Figure 1 
illustrates the corresponding points of mea- 
surement.

The peripheral blood pressure (BP) was record-
ed directly before, during, and directly after the 
examination, and the average of these three 
values was used in the calculation of VD. 

Common carotid artery imaging

The acquisition protocol for carotid artery ves-
sel wall area (VWA) measurements has been 
described previously [19]. Briefly, a standard-
ized series of oblique axial slices were planned 
perpendicular to the course of the common 
carotid artery. The carotid bifurcation on the 
oblique sagittal images was used as a land-
mark to ensure that the acquisition was 
planned at the same location for all partici-
pants. All measurements of the carotid artery 
were performed exactly 10 mm below the  
bifurcation of both the left and right carotid 
artery. A two-dimensional turbo-spin echo, 
black-blood pre-pulsed acquisition protocol 
using a 15-channel head coil was performed. 
The MRI parameters were as follows: repetition 
time (TR) 2 heartbeats; echo time (TE) 30 ms; 
inter-echo spacing turbo-spin-echo (TSE) es 
11.3 ms; spatial resolution 0.5 × 0.5 × 4 mm3. 
Images were acquired in diastole only. The 
acquisition protocol for carotid artery distensi-
bility measurements was as follows: Scout 
images were planned perpendicular at the level 
of the carotid bifurcation. We then acquired  
a two-dimensional, segmented gradient-echo, 
ECG-triggered scan with the following MRI 
parameters: TR 6.1 ms; TE 4 ms; field of view 
(FOV) 250 × 210 mm2; flip angle (FA) 10 
degrees; spatial resolution 0.98 × 0.98 × 10 
mm3, 35 phases per heartbeat.

Ascending aorta imaging

The aortic vessel wall area acquisitions were 
done as previously described [20]. Briefly, scout 
scans were planned perpendicular to the aorta 
at the level of the ascending aorta. We used a 
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two-dimensional turbo-spin echo, black-blood 
pre-pulsed acquisition protocol with a 28-chan-
nel coil-combination (16-channel anterior coil 
and a 12-channel posterior coil under the table) 
with the following scan parameters: TR 2 beats; 
TE 10 ms; FOV 340 × 310 mm2; spatial resolu-
tion 1.5 × 2 × 8 mm3. The acquisition protocol 
for ascending aorta distensibility measure-
ments was as follows: After positioning the 
slice perpendicular to the ascending aorta, we 
acquired a 2-dimensional, segmented gradient-
echo, electrocardiogram (ECG)-triggered scan 
with the following MRI parameters: TR 3.7 ms; 
TE 2.2 ms; FOV 350 × 270 mm2, FA 10 degrees; 
spatial resolution 2.2 × 2.2 × 10 mm3; 30 phas-
es per heartbeat.

Coronary artery imaging 

Coronary artery distensibility measurements 
were performed as previously described [13]. 
Scout scans were performed to determine the 
3-dimensional course of the proximal coronary 

arteries. Magnetic resonance angiography of 
the right coronary artery (RCA) or left anterior 
descending artery (LAD) and/or left circumflex 
artery (RCX) was performed using a 2-dimen-
sional, gradient-echo technique with a spiral 
acquisition window of 15 ms, 21 spiral inter-
leaves, and fat suppression using a 28-channel 
coil-combination (16-channel anterior coil and 
a 12-channel posterior coil under the table). 
The MRI parameters were as follows: TR 18 ms; 
TE 0.85 ms; FOV 220 × 220 mm2; FA 20 
degrees; spatial resolution 0.9 × 0.9 × 8 mm3; 
30 phases per heartbeat. 

Image analysis

The carotid, aortic and coronary images were 
analyzed for the absolute cross-sectional lumi-
nal area using full-width half-maximum criteria 
(cine version 3.15.17, GE, Milwaukee, Wis- 
consin) [21, 22]. The images were magnified, 
and a circular region of interest was manually 
traced around the artery lumen. The computer 

Figure 1. CMR images with cross-sectional measurements displaying three different parts of the vasculature. (A, D) 
Cross-sectional view of the left coronary artery in end-diastolic (A) and end-systolic phases (D) of the cardiac cycle. 
(B, E) Cross-sectional view indicating Left Common Carotid Artery (B) and corresponding black blood sequence (E). 
(C, F) Cross sectional view indicating Ascending Aorta (C) and corresponding black blood sequence (F).
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algorithm then automatically measured the 
cross-sectional luminal area. The VD (mmHg-1 × 
103) was determined as follows: (lumenmax - 
lumenmin)/(pulse pressure × lumenmin). The 
VWA was assessed by View Forum R5 (Philips 
Healthcare, Best, The Netherlands) by manual-
ly tracing the inner and outer border of the ves-
sel wall and by then subtracting the calculated 
areas. The pulse pressure was calculated as 
the difference between the systolic and diastol-
ic brachial blood pressure. lumenmax and 
lumenmin were defined as the maximal and 
minimal cross-sectional areas measured th- 
roughout the cardiac cycle, respectively. For all 
vascular territories, cross-sectional luminal 
area and VWA were assessed, and the vessel 
wall ratio (VWR = 106 * VWA/body surface 
area) was calculated. Figure 2 illustrates the 
specific measurement methods. 

Cross-sectional areas in 10 subjects were mea-
sured two times by the same observer and 
once by an additional observer to obtain inter- 
and intra-observer variability.

Statistical analysis

The Statistical Package for Social Sciences, 
version 20.0 for Windows (SPSS, Chicago, 

Illinois) was used for all statistical analyses. 
The data are presented as mean ± standard 
deviation (SD) unless stated otherwise. The 
study characteristics were compared using the 
χ2- and Student’s t-test. The Student’s t-test 
was used to compare the distensibility and 
VWR measurements between and within the 
study groups. Bivariate analysis was used to 
test for the correlation of VWR and VD mea-
surements within the two study groups. To test 
for inter- and intra-observer variability, the data 
were analyzed using reliability analysis based 
on a two-way mixed model of absolute agree-
ment type and a confidence interval of 95%. 
The data acquired was used to create Bland-
Altman-Plots. A P-value of < 0.05 was consid-
ered statistically significant.

Results

Study population

Forty (n = 40) participants were included in this 
study. The patients and healthy subjects’ char-
acteristics are shown in Table 1. 

The mean age in T2DM patients was 62 years, 
20/31 (64%) were male, and mean BP was 
137/78 mmHg. In the control group, the mean 

Figure 2. CMR images demonstrating the measurement methods. (A) Arrow indicating the right coronary artery. (B, 
C) Measurements of the coronary distensibility: The image from (A) was magnified, and a circular region of interest 
was manually traced around the artery lumen. The computer algorithm then automatically measured the cross-
sectional luminal area. The distensibility (mmHg-1 × 103) was determined as follows: (lumenmax - lumenmin)/(pulse 
pressure × lumenmin). Measurements of the aortic and carotid distensibility were performed analogously. (D, E) 
Measurements of the vessel wall area (VWA): Arrow in (D) indicating the right common carotid artery with image (E) 
demonstrating a magnification of the vessel with depiction of the inner and outer border of the vessel wall, allowing 
to calculate the VWA. Image in (F) analogously demonstrating the inner and outer border of the ascending aorta. 
Ultimately, the vessel wall ratio (VWR = 106 * VWA/body surface area) was calculated.
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age was 53 years, 2/9 (22%) were male, and 
the mean BP was 122/77 mmHg. 

MRI findings

VD and VWR in carotid arteries, aorta, and cor-
onary arteries: Table 2 and Figure 3 provide an 
overview of the VD and VWR of the correspond-
ing vessels in healthy subjects and T2DM 
patients. 

In T2DM the Carotid-VWR and the Aortic-VWR  
(r = 0.492, P = 0.011) correlated significantly. 
Mean values of Carotid-VWR and Aortic-VWR 
were significantly higher in T2DM than in con-
trols: 20.75 ± 6.02 vs. 13.18 ± 1.90 × 10-6, P < 
0.001 and 147 ± 31.63 vs. 85.38 ± 8.54 × 
10-6, P < 0.001. Also, the Carotid-VWA and 
Aorta-VWA showed to be significantly increased 
in the diabetic group vs. controls: 42.33 ± 
11.55 vs. 24.41 ± 3.88 mm2, P < 0.001 and 
300.68 ± 66.40 vs. 158.30 ± 23.40 mm2, P < 
0.001. 

Differences in absolute cross-sectional luminal 
areas were not statistically significant. There 
was a significant difference in coronary artery 
VD between the groups: 6.35 ± 2.87 mmHg-1 × 
103 in controls vs. 2.41 ± 1.66 mmHg-1 × 103 in 
patients, P < 0.001. The carotid VD (3.91 ± 
1.78 vs. 2.97 ± 1.28 mmHg-1 × 103, P = 0.192) 

or aortic VD (3.18 ± 1.40 vs. 3.61 ± 2.39 
mmHg-1 × 103, P = 0.549) were comparable 
between the groups. 

Correlation between central and peripheral 
vascular distensibility: There was no significant 
correlation between aortic and carotid VD (r = 
0.430; P = 0.215) in T2DM patients, whereas 
we found a significant correlation in healthy 
controls (r = 0.855; P = 0.007). 

No significant correlation of carotid and coro-
nary VD or aortic and coronary VD was found in 
both T2DM and healthy controls (carotid and 
coronary artery VD (r = -0.074; P = 0.840), (r = 
0.236; P = 0.573); aortic and coronary VD (r = 
0.446; P = 0.196), (r = 0.380; P = 0.356) for 
T2DM and controls respectively). Correlation 
curves are illustrated in Figure 4. 

T2DM patients with coronary artery disease 
(CAD): For the subgroups of thirteen T2DM 
patients with and eighteen T2DM patients with-
out CAD (confirmed by coronary angiography) 
Table 3 and Figures 5, 6 provide an overview of 
the aortic areas, vascular distensibility (VD), 
and VWAs of the corresponding vessels. 

The absolute cross-sectional inner and outer 
area measurements were similar in both gr- 
oups. However, coronary artery VD significantly 

Table 1. Patient’s characteristics
Characteristics Healthy subjects (n = 9) Diabetic patients (n = 31) P-value
Age (years) 53 ± 2 62 ± 10 P < 0.001
Male 2 (22%) 20 (64%) P = 0.025
Body-Mass Index (BMI) 25 ± 5.03 (26.23) 31.28 ± 4.3 (31.35) P = 0.003
SBP (mmHg) 122 ± 14 (123) 137 ± 18 (133) P = 0.017
DBP (mmHg) 77 ± 11 (75) 78 ± 11 (75) P = 0.741
Pulse Pressure (mmHg) 50 ± 14 (48) 59 ± 15 (55) P = 0.001
Heart Rate (beats/min) 67 ± 9 (62) 75 ± 15 (72) P = 0.064
Hypertension 0 (0%) 31 (100%) P < 0.001
Smoking 0 (0%) 6 (13%) P < 0.001
Dyslipidemia 0 (0%) 30 (97%) P < 0.001
Diabetes 0 (0%) 31 (100%) P < 0.001
HbA1c (%) n/a 6.96 ± 0.65 n/a
CAD 0 (0%) 13 (42%) P < 0.001
Previous CABG 0 (0%) 0 (0%) NS
Previous PCI 0 (0%) 13 (42%) P < 0.001
Previous MI 0 (0%) 5 (16%) P < 0.001
Data expressed as mean value ± standard deviation (SD). Values in brackets represent median values. CABG: Coronary artery 
bypass graft; CAD: Coronary artery disease; DBP: Diastolic blood pressure; MI: Myocardial infarction; PCI: Percutaneous coro-
nary intervention; SBP: Systolic blood pressure.
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differed between the groups: VD was 3.10 ± 
1.75 mmHg-1 × 103 in patients without CAD (no-
CAD) vs. 1.44 ± 0.91 mmHg-1 × 103 in CAD 
patients, P = 0.007. No such difference was 
observed for the carotid VD (2.82 ± 0.83 vs. 
3.20 ± 1.73 mmHg-1 × 103, P = 0.507) or aortic 
VD (3.61 ± 2.14 vs. 3.60 ± 2.71 mmHg-1 × 103, 
P = 0.996), respectively. Compared to T2DM 
patients without CAD, the VWA and VWR were 
significantly increased in T2DM patients with 
CAD: 273.77 ± 56.21 vs. 334.31 ± 62.72 mm2, 
P < 0.018 and 134.14 ± 27.15 vs. 163.08 ± 
29.40 × 10-6, P = 0.017. 

Age-matched T2DM patients: In an age-
matched sub-group of ten T2DM patients (53 ± 
5 years) the coronary artery VD differed signifi-
cantly compared to the controls: 2.12 ± 1.09 
vs. 6.74 ± 2.59 mmHg-1 × 103, P < 0.001. 

In this group, carotid VWR (13.18 ± 1.90 vs. 
20.75 ± 6.02 × 10-6, P < 0.001) and aortic VWR 

(85.38 ± 8.54 vs. 147 ± 32.23 × 10-6, P < 
0.001) were significantly lower in the healthy 
volunteer group. Table 4 provides an overview 
of the aortic areas, vascular distensibility (VD), 
and vessel wall ratio (VWR) in the correspond-
ing vessels. 

Intra- and inter-observer variability: Repeat 
evaluations of 10 patients demonstrated excel-
lent intra- and inter-observer agreement for dis-
tensibility and vessel wall thickness measure-
ments in all 3 vessel territories (Table 5).

Discussion

The present study investigated the effects of 
T2DM on vascular function and anatomy by 
CMR in a group of thirty-one diabetic patients 
and nine controls. The following major findings 
were made: (i) Among T2DM patients, a signifi-
cant reduction in coronary VD, as well as an 
increase in carotid and aortic VWR, was found 

Table 2. CMR findings of cross-sectional luminal areas, vascular distensibility, and vessel wall areas
Characteristics Healthy subjects (n = 9) Diabetic patients (n = 31) P-value
Cross-sectional luminal area measurements (mm2)
    Common Carotid Artery
        Lumen max 38.78 ± 11.04 (38.17) 45.23 ± 10.64 (45.52) 0.145
        Lumen min 33.62 ± 10.65 (32.09) 38.12 ± 9.61 (37.26) P = 0.304
    Ascending Aorta 
        Lumen max 823.38 ± 215.32 (877.86) 905.76 ± 176.22 (894.15) P = 0.278
        Lumen min 737.00 ± 210.79 (774.10) 759.65 ± 153.95 (715.46) P = 0.739
    Coronary Artery
        Lumen max 18.06 ± 5.95 (15.64) 16.89 ± 4.42 (16.14) P = 0.529
        Lumen min 14.23 ± 5.19 (13.07) 14.93 ± 3.74 (14.59) P = 0.660
Vascular distensibility (mmHg-1 × 10-3)
    Common Carotid Artery 3.91 ± 1.78 (3.71) 2.97 ± 1.28 (2.76) P = 0.192
    Ascending Aorta 3.01 ± 1.38 (2.64) 3.61 ± 2.39 (3.00) P = 0.549
    Coronary Artery 6.35 ± 2.87 (6.20) 2.41 ± 1.66 (1.81) P < 0.001
Vessel Wall Area (mm2)
    Common Carotid Artery
        Outer Area 55.63 ± 12.31 (54.35) 79.57 ± 19.26 (78.58) P = 0.002
        Inner Area 31.23 ± 9.07 (29.75) 37.24 ± 9.49 (36.08) P = 0.122
        Vessel Wall Area 24.41 ± 3.88 (24.45) 42.33 ± 11.55 (40.58) P < 0.001
        Vessel Wall Ratio (× 10-6) 13.18 ± 1.90 (13.74) 20.75 ± 6.02 (21.12) P < 0.001
    Ascending Aorta 
        Outer Lumen 883.36 ± 203.09 (917.15) 1063.16 ± 175.51 (1032.90) P = 0.021 
        Inner Lumen 725.06 ± 194.45 (751.20) 762.49 ± 142.81 (745) P = 0.558
        Vessel Wall Area 158.30 ± 23.40 (148.60) 300.68 ± 66.40 (279.50) P < 0.001
        Vessel Wall Ratio (× 10-6) 85.38 ± 8.54 (88.46) 147 ± 31.36 (141.24) P < 0.001
Comparison of Healthy subjects (left column) and Diabetic patients (right column). Data expressed as mean ± standard devia-
tion. Values in brackets represent median values.
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Figure 3. Comparison of carotid, aortic and coronary vascular distensibility (A) and carotid, aortic and coronary vessel wall ratio (B) between healthy controls and 
diabetic patients.
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Figure 4. Correlation of Carotid and Aortic Vascular Distensibility (A, D); Correlation Carotid and Coronary Vascular Distensibility (B, E); Correlation of Aortic and 
Coronary Distensibility (C, F). Upper graphs illustrating Healthy controls; Lower graphs illustrating Diabetic patients.
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compared to controls. (ii) The findings were 
more severe in T2DM patients with CAD. (iii) In 
healthy participants, we found a significant cor-
relation between aortic and carotid VD. This 
was not the case in T2DM patients. (iv) 
Coronary-, Aortic- and Carotid vascular distensi-
bility (VD) and Aortic- and Carotid vessel wall 
ratio (VWR) can be obtained easily and repro-
ducibly by CMR.

The long-term systemic effects of diabetes mel-
litus include stiffening of the arterial wall [23]. 
Specifically, the atherosclerotic process in 
T2DM is highly complex and has to be interpret-
ed within the spectrum of metabolic syndrome. 
An altered glucose metabolism causes overpro-
duction of reactive oxygen species (ROS) and 
glycemic end-products, ultimately leading to 
inflammation of the vessel wall [24, 25]. In 
combination with specific dyslipidemia in 

T2DM, mainly characterized by high triglycer-
ides and low high-density lipoprotein (HDL), this 
process causes premature atherosclerosis 
resulting in major cardiovascular events [24, 
25]. 

We investigated to what extent different vascu-
lar territories are affected by the atheroscle-
rotic process and whether it was feasible to 
assess this process in one CMR examination. 
Previous studies indicated carotid and aortic 
vessels to stiffen earlier than femoral or bra-
chial arteries [26]. In general, vascular aging is 
more prominent in central vessels closer to the 
heart with higher pressure differences. CMR is 
very well suited to detect vascular function and 
vascular anatomy simultaneously [27]. In line 
with previous studies, we found that aortic and 
carotid VWR were significantly higher in patients 
with T2DM, reflecting atherosclerotic changes 

Table 3. CMR findings of cross-sectional luminal areas, vascular distensibility, and vessel wall areas

Characteristics Diabetic patients 
no CAD (n = 18)

Diabetic patients 
with CAD (n = 13) P-value

Cross-sectional area measurements (mm2)
    Common Carotid Artery 
        Lumen max 45.13 ± 10.13 (39.81) 48.35 ± 10.48 (51.06) P = 0.208
        Lumen min 37.61 ± 9.20 (35.89) 38.89 ± 10.15 (42.65) P = 0.737
    Ascending Aorta 
        Lumen max 909.94 ± 176.28 (926.15) 899.84 ± 175.96 (838.06) P = 0.885
        Lumen min 769.06 ± 160.41 (715.46) 749.30 ± 143.25 (716.95) P = 0.703
    Coronary Artery 
        Lumen max 17.51 ± 4.90 (17.87) 16.02 ± 3.73 (14.84) P = 0.900
        Lumen min 15.01 ± 3.96 (15.02) 14.82 ± 3.61 (13.24) P = 0.660
Vascular distensibility (mmHg-1 × 10-3)
    Common Carotid Artery 2.82 ± 0.83 (2.76) 3.20 ± 1.73 (2.56) P = 0.507
    Ascending Aorta 3.61 ± 2.14 (3.00) 3.60 ± 2.71 (3.10) P = 0.996
    Coronary Artery 3.10 ± 1.75 (3.15) 1.44 ± 0.91 (1.36) P = 0.007
Vessel Wall Area (mm2)
    Common Carotid Artery
        Outer Lumen 77.08 ± 19.83 (74.40) 83.30 ± 17.73 (79.90) P = 0.395
        Inner Lumen 35.87 ± 10.36 (33.98) 39.29 ± 7.54 (40.35) P = 0.320
        Vessel Wall Area 41.21 ± 11.60 (38.98) 44.00 ± 11.28 (43.15) P = 0.533
        Vessel Wall Ratio (× 10-6) 20.33 ± 6.22 (20.66) 21.39 ± 5.65 (21.44) P = 0.653
    Ascending Aorta 
        Outer Lumen 1074.73 ± 171.21 (1032.90) 1048.71 ± 179.69 (1037.70) P = 0.715
        Inner Lumen 800.95 ± 134.94 (770.00) 714.40 ± 137.72 (706.80) P = 0.123
        Vessel Wall Area 273.77 ± 56.21 (263.00) 334.31 ± 62.72 (318.30) P = 0.018
        Vessel Wall Ratio (× 10-6) 134.14 ± 27.15 (133.54) 163.08 ± 29.40 (164.40) P = 0.017
Comparison of Diabetic patients without Coronary artery disease (left column) and Diabetic patients with Coronary artery 
disease (right column). Data expressed as mean ± standard deviation. Values in brackets represent median values. 
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Figure 5. Comparison of Carotid, Aortic and Coronary Vascular Distensibility (A) and Carotid, Aortic and Coronary Vessel Wall Ratio (B) in Diabetic patients without 
and with Coronary Artery Disease (CAD).
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in these vessels in T2DM. VWR of the coronary 
artery could not be obtained due to its small 
size. However, coronary VD was significantly 
altered in T2DM, regardless of pre-existing cor-
onary stenosis or intervention. Even in the 
absence of CAD, the mean values of coronary 
VD were halved compared to the healthy volun-
teers of this study (3.10 ± 1.75 vs. 6.35 ± 2.87 
mmHg-1 × 103, P = 0.012). 

Remodeling in small vessels begins early in 
T2DM, and CAD likely represents only the final 
stage of the progressive atherosclerotic cas-
cade over years. In addition, the age-related 
process of vascular stiffening is accelerated in 
diabetic patients, even more in long-standing 
disease and insulin therapy [28]. However, prior 
studies pointed out that a loss of elasticity can 
be partially reversible even at an advanced  
age, especially with regular physical activity 
[29]. The mean age of this group was 53 years, 
and the respective VD and VWR values were 
already significantly compromised. This under-
lines that the reported vascular alterations in 
T2DM patients are not simply triggered by the 
age difference of our two cohorts. 

Previous studies described a correlation 
between the severity of coronary atherosclero-
sis and increased CIMT measured by ultra-
sound. A correlation of aortic wall thickening 

Diabetes (DMT1) [32]. As no follow-up data is 
included in this work, we cannot report on this 
in our T2DM patients. A mean HbA1c of 6.96% 
suggests however a considerably low long-term 
risk of complications and probably less acceler-
ated stiffing. We suggest that future studies 
should address the effects of therapeutic 
agents and therapeutic adherence on athero-
sclerosis in T2DM.

A recent study found that regular physical activ-
ity might improve arterial stiffness in T2DM 
patients [33]. Unfortunately, no information 
regarding physical activity was available in this 
study.

Among the major limits of this study is the rela-
tively modest sample size. Small differences 
between groups might therefore have been 
missed. Due to the limited spatial resolution of 
the images, the SD in the VD values is high. 
Another limitation is the use of non-invasive 
peripheral blood pressure to obtain VD in the 
aorta and coronaries. The invasiveness though 
clearly limits the feasibility of these central 
measurements. The results have furthermore 
not been compared with other imaging modali-
ties. Concerning the common carotid artery, 
ultrasound-derived CIMT measurements would 
have allowed a valid comparison to a standard 
technique of daily clinical practice. Also, a com-

Figure 6. Comparison of Coronary Vascular Distensibility between Healthy 
Controls and Diabetic patients without and with Coronary Artery Disease 
(CAD).

and increased lifetime risk of 
cardiovascular events was 
found when CT was used to 
assess the aorta [30, 31]. We 
found a significant correlation 
between the coronary VD and 
the carotid and aortic VWR in 
the patient group. Thickened 
carotid walls might indicate 
increased coronary risk in 
T2DM. In healthy participants, 
aortic and carotid VD corre-
lated well with each other, 
whereas this was not the case 
in T2DM patients. 

It remains unanswered wheth-
er glycemic control in T2DM 
patients improves arterial sti- 
ffness, independent of antihy-
pertensive therapy. Long-term 
effects of hyperglycemia on 
aortic stiffness have previ-
ously been reported in Type 1 
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parison with CT would have been of high inter-
est, but radiation exposure did not justify the 
use of this technique in our cohort. Moreover, 
our CMR sampling selected only limited seg-
ments of an artery when measuring the lumen. 
Such measurements reflect the ability to dis-
tend only at a single position and limit the sig-
nificance of the overall atherosclerotic burden 

that may be regionally heterogeneous in the 
coronary artery vasculature. 

Conclusions

Our findings suggest that CMR allows a simulta-
neous evaluation of the structure and function 
of three important vascular territories to detect 

Table 4. CMR findings of cross-sectional luminal areas, vascular distensibility, and vessel wall areas

Characteristics Healthy subjects
(n = 9)

Age-matched Diabetic  
patients (n = 10) P-value

Cross-sectional area measurements (mm2)
    Common Carotid Artery 
        Lumen max 38.78 ± 11.04 (38.17) 47.12 ± 10.76 (50.10) P = 0.124
        Lumen min 33.62 ± 10.65 (32.09) 41.36 ± 9.97 (43.39) P = 0.131
    Ascending Aorta 
        Lumen max 823.38 ± 215.32 (877.86) 875.78 ± 176.08 (836.75) P = 0.587
        Lumen min 737.00 ± 210.79 (774.10) 763.96 ± 181.61 (687.24) P = 0.779
    Coronary Artery 
        Lumen max 18.06 ± 5.95 (15.64) 15.22 ± 3.07 (15.18) P = 0.201
        Lumen min 14.23 ± 5.19 (13.07) 13.89 ± 2.83 (13.90) P = 0.860
Vascular distensibility (mmHg-1 × 10-3)
    Common Carotid Artery 3.91 ± 1.78 (3.71) 2.80 ± 1.20 (2.51) P = 0.507
    Ascending Aorta 3.01 ± 1.38 (2.64) 3.04 ± 1.70 (2.56) P = 0.973
    Coronary Artery 6.35 ± 2.87 (6.20) 1.92 ± 1.26 (1.67) P < 0.001
Vessel Wall Area (mm2)
    Common Carotid Artery 
        Outer Lumen 55.63 ± 12.31 (54.35) 78.31 ± 20.94 (74.28) P = 0.012
        Inner Lumen 31.23 ± 9.07 (29.75) 38.52 ± 9.30 (37.10) P = 0.114
        Vessel Wall Area 24.41 ± 3.88 (24.45) 39.79 ± 12.37 (38.10) P = 0.003
        Vessel Wall Ratio (× 10-6) 13.18 ± 1.90 (13.74) 18.93 ± 6.54 (18.36) P = 0.023
    Ascending Aorta
        Outer Lumen 883.36 ± 203.09 (917.15) 1061.80 ± 143.28 (1074.10) P = 0.064
        Inner Lumen 725.06 ± 194.45 (751.20) 767.50 ± 142.55 (754.90) P = 0.628
        Vessel Wall Area 158.30 ± 23.40 (148.60) 294.30 ± 52.78 (285.95) P < 0.001
        Vessel Wall Ratio (× 10-6) 85.38 ± 8.54 (88.46) 138.30 ± 21.36 (139.49) P < 0.001
Comparison of Healthy subjects (left column) and age-matched Diabetic patients (right column). Data expressed as mean ± 
standard deviation. Values in brackets represent median values. 

Table 5. Intra- and Interobserver measurements

Characteristics Intra-observer agreement  
(ICC; 95% CI)

Inter-observer agreement  
(ICC; 95% CI)

Vascular distensibility
    Common Carotid Artery 0.99 (0.98/0.99); P < 0.001 0.98 (0.94/0.99); P < 0.001
    Ascending Aorta 0.86 (0.45/0.97); P = 0.001 0.86 (0.45/0.96); P = 0.004
    Coronary Artery 0.87 (-0.02/0.97); P < 0.001 0.83 (0.37/0.96); P = 0.006
Vessel Wall Ratio
    Common Carotid Artery 0.95 (0.37/0.98); P < 0.001 0.99 (0.97/0.99); P < 0.001
    Ascending Aorta 0.95 (0.51/0.99); P < 0.001 0.96 (0.86/0.99); P < 0.001
CI: Confidence interval; ICC: Intra-class correlation.
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vascular remodeling in T2DM patients. T2DM 
patients showed significant reductions in coro-
nary artery VD and increases in aortic VMR, 
potentially reflecting atherosclerotic remodel-
ing. The alterations were more pronounced in 
T2DM patients with CAD than those without. 
CMR assessed VD and VMR might therefore 
serve as early markers for cardiovascular 
remodeling in diabetic patients and aid in the 
diagnosis, risk stratification, and therapy of car-
diovascular disease. Potentially, a combination 
of CMR and CT to assess the calcific burden of 
the vasculature could improve this prediction. 
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