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Ferroptosis in ischemia-reperfusion injury:
molecular mechanisms and therapeutic strategies
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Abstract: Ferroptosis is a novel form of programmed cell death characterized by iron-dependent lipid peroxidation
(LPO). It has been widely demonstrated in the last years to play a crucial pathogenic role in ischemia-reperfusion
injury (IRI). The pathological basis for ferroptosis is established through disturbances in energy metabolism, iron
homeostasis and mitochondrial injury during ischemic phase. During the following period of reperfusion, the surge
in reactive oxygen species (ROS), along with the liberation of inflammatory mediators, and the aggravation of LPO,
will further stimulate peroxidase 4 (GPX4) inactivation and augment iron load in the cells, which will greatly intensify
bodily tissue injury. Ferroptosis, which operates through intricate cross-regulation with oxidative stress, immune-in-
flammatory responses, and autophagy, forms a multi-tiered positive feedback loop that actively contributes to injury-
repair imbalance IRl pathogenesis across various organs, including the heart, brain, liver and kidney. Studies show
that tissue damage and recovery can be improved by targeting system Xc, GPX4, ACSL4, TfR1, and NCOA4 in the
body. This review summarizes the mechanisms, organ-specific manifestations, and current therapeutic strategies
of ferroptosis in IRI. It is helpful for the theoretical foundation and potential direction of clinical targeted therapy.

Keywords: Ferroptosis, ischemia-reperfusion injury, lipid peroxidation, glutathione peroxidase 4, reactive oxygen
species, system Xc, iron homeostasis, multi-organ injury, mitochondrial function, programmed cell death

Introduction lular homeostasis. In the reperfusion phase,

the effects of oxygenation and replenishment

IRl is a shared pathological substrate for sev-
eral life-threatening conditions that are clini-
cally manifest, such as acute myocardial in-
farction, stroke, organ transplantation, hepa-
tectomy, shock and acute kidney injury. IRI
includes two phases, ischemia and reperfu-
sion, the injury mechanisms of which have dif-
ferent stage-specific characteristics. During the
ischemia phase, a sudden reduction in blood
flow and oxygen supply leads to obstruction
of the mitochondrial electron transport chain,
rapid ATP depletion, intracellular acidification,
electrolyte imbalance, and calcium overload,
resulting in a comprehensive disruption of cel-

of nutrients paradoxically increase the oxida-
tive stress. There is also the release of inflam-
matory mediators and dysfunction of the en-
dothelial cells. In addition, there is a reduction
in perfusion within the microcirculation which
leads to aggravated cell and tissue suffering
[1]. Findings indicating that an immediate and
intense postoperative neutrophil response is
an independent predictor of pulmonary com-
plication have been demonstrated clinically.
Abundant evidence currently exists for the
pathological significance of other tissue injury
inflammatory burst [2]. Recent researches sh-
owed that SGLT-2 inhibitors can provide protec-
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tion against IRl to many organs by inhibiting
oxidative stress and inflammatory responses,
and improving endothelial function, providing
new opportunities for its prevention and treat-
ment [3]. Notably, studies on colorectal cancer
models indicate that one notable consequence
of the “release of inflammatory mediators” is
profound “immunosuppression”: specific tumor
cells exploit macrophages via the MIF signaling
axis to create a pro-tumor microenvironment
which is linked to cardiac dysfunction and pro-
vides compelling evidence for similar immune
dysregulation in IRl [4]. A multitude of studies
have shown that IRl activates multiple modali-
ties of regulated cell death, including apopto-
sis, necroptosis and pyroptosis, and organ-spe-
cific injury [5].

In the last few years, a novel cell death named
ferroptosis, which refers to iron load and lipid
peroxidation has gained considerable attention
related to IRI. Ferroptosis represents a cell
death pathway whose signature features in-
clude (i) increased levels of cellular free iron; (ii)
depletion of GSH; (iii) diminished activity of
GPX4; and (iv) lipid metabolism remodeling by
ACSL4 and LPCAT3 that promote polyunsatu-
rated fatty acids to undergo peroxidation. The
major morphological features include decre-
ased mitochondrial cristae, shrinkage of mito-
chondria, and impaired membrane potential
[6]. In a wealth of studies, it has become evi-
dent that ferroptosis is a common key element
in multi-organ ischemia-reperfusion injury (IRI)
with suppressing Nrf2/GPX4 axis being a con-
sistently observed phenomenon in IRl models
of various organs. In renal IRI, this mechanism
has been directly validated: the natural com-
pound tiliroside can activate the NRF2/GPX4
pathway by hindering the NRF2-KEAP1 interac-
tion, thereby inhibiting ferroptosis and exerting
a protective effect [7].

The pathophysiological association between
IRI and Ferroptosis is close. The phase of isch-
emia is characterized by an energy metabolism
disorder which reduces antioxidant capacity,
disturbances of iron metabolism promote free
iron accumulation, and it induces ferroptosis.
When the reperfusion phase occurs, the gen-
eration of reactive oxygen species consumes
GSH, inhibits GPX4 activity and enhances li-
pid peroxidation which eventually induces cell
death with iron involvement. The above pro-
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cess creates a positive feedback loop with
the characteristic oxidative stress-inflamma-
tion-cell death axis of IRI, causing much more
damage to the tissue [8]. Iron-dependent cell
death known as ferroptosis is significant in IRI
(ischemia-reperfusion injury) alongside a vari-
ety of other regulated forms of cell death such
as apoptosis and necroptosis. Moreover, fer-
roptosis might act as a hub unifying various
metabolic disruptions and oxidation damage to
ultimate cell fate. Energy metabolism collapse
and oxidative stress-inflammation axis activa-
tion in IRl also trigger various regulated cell
deaths. For example, ATP-induced cell death
and inflammatory mediators (IL-6, etc.) mediat-
ed myocardial injury play important roles in the
process of heart failure due to IRI [9, 10]. Ac-
cording to clinical studies, the combined effect
of the cell death pathways can lead to lethal
disease, for example death due to ventricular
septal rupture from an acute myocardial infarc-
tion. The energy metabolism disorders, oxida-
tive stress and inflammatory process caused
by IRl leads to the increasing damage that is
profoundly reflected in this pathological pro-
cess [11].

With the above understanding in mind, this
review will systematically summarize the main
pathological process of IRI, summarize the core
molecular mechanism of ferroptosis, and inte-
grate research progress from different organ
models to clarify the role of ferroptosis in IRI
and its possible therapeutic value. This aims to
create a theoretical underpinning and transla-
tional reference for mechanistic research and
intervention approaches to these diseases.

Pathophysiological mechanisms of ischemia-
reperfusion (I/R) injury

Metabolism changes during an ischemic
phase

Characterized by diminished blood flow, IRl is a
damaging process. The ischemic phase initi-
ates the pathology, with its pathological chang-
es playing a most important part in disabling
function and causing damage afterwards. This
phase features the marked restructuring of
cellular metabolic networks. Also, there is dis-
ruption of energy metabolism, oxidative stress
and iron metabolism. The molecular basis of
ferroptosis may stem from the overlap of these
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pathological processes. Therefore, an investi-
gation and systematic review are warranted.

Ischemia has the most important defects in
the tricarboxylic acid or the tricarboxylic acid
(TCA) cycle and mitochondrial electron trans-
port chain in organs with a high oxygen require-
ment, such as the heart, brain, and kidney.
Suppression of oxidative phosphorylation re-
duces ATP production in oxidative tissue. To
meet minimum energy needs, cells are forced
to employ anaerobic glycolysis [12, 13]. Gly-
colysis process may be inefficient. It may cause
the buildup of lactic acid. This may lower intra-
cellular pH. Further, this kind of acidosis does
increase a sort of stress response in cells [12].
The lactate does not only act as an end prod-
uct. Also, it acts as a signalling molecule.
Through lactylation modification, it inhibits the
degradation of pyruvate kinase M2 (PKM2),
which is a key rate-limiting enzyme in glycolysis.
It sets up a positive feedback loop that further
disrupts mitochondrial homeostasis to aggra-
vate endothelial dysfunction [12].

At the molecular level, regulation of ischemia-
induced metabolic reprogramming is primarily
under the control of hypoxia-inducible factor-1a
(HIF-1a). The activity of the transcription factor
promotes the expression of various metabolic
enzymes that play important roles in the metab-
olism of glucose and lactate. These include lac-
tate dehydrogenase A (LDHA), pyruvate dehy-
drogenase kinase 4 (PDK4), and monocar-
boxylate transporter 4 (MCT4). Collectively, the-
se enzymes assist in enhancing uptake of glu-
cose and efflux of lactate [13-15]. In particular,
the activated ALDH3A1 is induced under hypox-
ia, which activates the HIF-1a/LDHA axis to
enhance glycolytic activity and cellular prolifer-
ation in tumors. The process of moving is
reversible by Allyl Disulfide [14]. In A549 lung
cancer cells, hypoxia is associated with incre-
ased glucose uptake with reduced ATP synthe-
sis, cell cycle arrest and increased migratory
capacity, whose metabolic changes depend on
p53 status [13]. Additionally, the upregulation
of MCT4, cargo that is important for lactate
efflux. This both reduces the intracellular acid
load and enhances cellular sensitivity to glyco-
lytic inhibitors [15].

In addition to energy metabolism disorders,
ischemia also disrupts the functions of mem-
brane ion pumps such as Na‘/K*-ATPase and
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Ca?-ATPase causing cell swelling, membrane
depolarization, and structural damage. More
critically, hypoxia increase the expression of
TfR41, which mediates iron uptake, while inhi-
biting GSH synthesis and activity of GPX4. The
inability to clear lipid peroxides increases oxi-
dative stress and further drives the ferroptotic
pathway [16]. Damaged mitochondria release
free iron, which interacts with hydrogen perox-
ide to generate hydroxyl radicals (¢ OH), trigger-
ing LPO chain reactions. This process causes
mitochondria membranes to collapse and fall
apart.

In the event of an energy crisis, cells can acti-
vate the 5’AMP-activated protein kinase (AMPK)
signalling pathway to help restore metabolic
homeostasis. The clinically used sedative dex-
medetomidine may also provide metabolic pro-
tection by enhancing AMPK signalling and pro-
moting PEX activation in alveolar macropha-
ges. Inhibition of NLRP3 inflammasome activa-
tion may be involved in this effect [16]. This fac-
tor is responsible for the phosphorylation of
NR3C1 and inhibition of the expression of
PDK4, reducing lactate production, enhancing
mitochondrial function and alleviating the myo-
cardial injury induced by ferroptosis during |I/R
[471].

The E3 ubiquitin ligase TRIM21 has been sh-
own to drive ferroptosis in renal ischemia mod-
els by targeting GPX4 for ubiquitination and
degradation. The knockout of TRIM21, together
with the JAK2 inhibitor Fedratinib, decreased
iron deposition and mitochondrial injury, which
improves renal function. Given its role in pro-
moting ferroptosis, TRIM21 represents a prom-
ising therapeutic target [18].

The multiple cellular stress signalling path-
ways are activated besides metabolic disorder.
Ischemia causes endoplasmic reticulum (ER)
stress, which activates the unfolded protein
response (UPR) and increases the synthesis
of pro-apoptotic molecules such as CHOP. Per-
sistent energy depletion can also induce au-
tophagy or programmed cell death, via AMPK-
mediated mechanisms [16, 19]. From an immu-
nometabolic viewpoint, hypoxic microenviron-
ments drive macrophages to polarize toward
the pro-inflammatory M1 phenotype. It is be-
lieved that weak oxidative phosphorylation is a
major regulator of metabolic programming.
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Also, it is a functional fate of macrophages that
worsens tissue inflammation and damage [19].

Oxidative stress during the reperfusion phase

Reperfusion is defined as the restoration of
blood flow to ischemic tissues and the initia-
tion of various detrimental mechanisms like
oxidative stress, inflammatory response, pro-
grammed cell death and many others. After re-
establishing blood flow oxygen delivery, oxygen
radicals, reperfusion arrhythmia, and among
other factors can cause tissue injury. These
processes are the essential pathologic basis
of I/R injury. Among other processes, reperfu-
sion injury onset is marked by the generation of
oxidative stress and an early and highly damag-
ing event playing a central role in tissue injury.
Inhibition of sodium-glucose cotransporter-2
(SGLT-2) has been demonstrated to ameliorate
such damage by effectively reducing oxidative
stress and suppressing inflammatory respons-
es [20].

Despite reoxygenation promptly reactivating
the mitochondrial respiratory chain, prior isch-
emic damage to complexes | and Il results in
electron leakage from these complexes, lead-
ing to the excessive generation of superoxide
anions (0,). At the same time, there is an up-
surge in the activity of xanthine oxidase (XO),
and malfunction of NADPH oxidases (NOX2/
4), MPO and endothelial nitric oxide synthase
(eNOS) also leads to overproduction of ROS and
reactive nitrogen species (RNS). The ROS/RNS
build-up overwhelms the internal antioxidant
system consisting of superoxide dismutase
(SOD), catalase (CAT) and GSH leading to the
generation of MDA along with attendant lipid,
protein and DNA damage [21-23].

Reactive oxygen species play an essential role
in the injury of tissues. They achieve this th-
rough multiple pathways: inducing LPO and
loss of mitochondrial membrane potential; ac-
tivating the NLRP3 inflammasome and NF-«kB
signaling, thereby enhancing local inflamma-
tion; inducing ER stress; dysregulating calcium
homeostasis; and causing mitochondrial dam-
age. This collective damage leads to the acti-
vation of various programmed cell death path-
ways, including apoptosis, necroptosis, and
ferroptosis. Additionally, ROS can mobilize iron
stores present in cells. This gives rise to reac-
tions such as the Fenton reaction. This leads to

408

an intensification of the LPO cascade which
eventually causes iron-dependent death of the
cell [21-23].

Many studies have shown that targeting oxida-
tive stress pathways reduces the harm of I/R
injury. Ligustilide (LIG) protects against renal
tubular injury by activating Sirt3 that main-
tains mitochondrial homeostasis as well as
reduces levels of ROS and mitochondrial dam-
age-induced abnormal energy metabolism in
renal tubular epithelial cells [21]. Receptor-
interacting serine/threonine-protein kinase 4
(RIPK4) is a kinase that responds to oxidative
stress. RIPK4 regulates the expression of
ACSM1 and ACSL4, facilitating the accumula-
tion of PUFAs and LPO. RIPK4 knockout alle-
viates I/R- and cisplatin-induced AKI [22].
Longxuetongluo Capsule (LTC) shows myocar-
dial dysfunction amelioration against I/R by
inhibiting NOX2/4-mediated ROS generation
and regulating mitochondrial dynamics [23].

Recent studies show transcriptional and epi-
genetic regulation may also play a role in oxida-
tive injury. The inhibitor KC7F2 can abolish the
effects HIF-1a stabilizing which causes oxida-
tive damage via deSUMOylation when SENP1 is
present [24]. Nrf2 pathway activation by ISL
and adjusting gene expression including HO-1,
SLC7A11, GPX4, ACSL4, and Drpl to modulate
LPO and restrict iron deposition showcase Nrf2
is essential to ISL's antioxidative mechanism
[25]. A mitochondria-targeted nanodrug (MHT),
constructed using tannic acid and melanin,
scavenges ROS and inhibits the cGAS-STING
pathway, thereby alleviating mitochondrial da-
mage and neuronal apoptosis induced by cere-
bral I/R [26].

Besides, SETDB1 aggravates mitochondrial
oxidative damage during I/R via the recruit-
ment of HP1p to the SESN2 promoter, causing
H3K9me3 modification and repressing SESN2
expression. Knockdown or pharmacological in-
hibition of SETDB1 significantly improves injury
phenotypes [27]. Luteolin reduces myocardial
infarct size by attenuating the activation of p53
signalling and subsequent production of ROS
and expression of apoptotic markers [28].
Curcumin reduces the oxidative damage and
mitochondrial dysfunction induced by hypoxia/
reoxygenation (H/R) through upregulating the
expression of HES1 and GPX4 to inhibit ferrop-
tosis and activating AMPK to balance autopha-
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gy and apoptosis. Interestingly, the protective
effects of curcumin are opposed by erastin and
Compound C, indicating that it uses multiple
mechanisms [29].

The role of inflammatory responses in IRI

In IRI, inflammation refers to an important early
host response to tissue injury. Although inflam-
mation protects by removing danger signals
and containing the affected area, it has a cen-
tral pathogenic role during reperfusion that
exacerbates tissue injury and initiates various
types of programmed cell death, especially fer-
roptosis. Inflammation is one of the important
parts of IRl pathophysiology.

When ischaemia occurs, injury to the cell mem-
brane of various types causes the release
of endogenous damage-associated molecular
patterns (DAMPs) like ATP and HMGB1. Sub-
sequently, damage pattern recognition recep-
tors (PRRs) such as Toll-like receptors (TLRs)
and NOD-like receptors (NLRs), which rapidly
initiate sterile inflammation. After blood flow is
restored, many immune cells are attracted to
the injury. Neutrophils, macrophages and T
cells will appear. The pro-inflammatory cyto-
kines (e.g. TNF-q, IL-18, IL-6) and chemokines
(e.g. MCP-1, CXCLS8) are released by these cells
while they induce the expression of adhesion
molecules (ICAM-1, VCAM-1) on the vascular
endothelial cells. These processes promote
the passage of immune cells through the en-
dothelium, further intensifying inflammation.
At the same time, degranulation of neutrophil
uses MPO along with huge amounts of ROS
generates oxidative stress that aggravates the
inflammation, ROS, mitochondrial dysfunction,
ferroptosis vicious circle [30-32].

Recent studies show that inflammatory signal-
ling and ferroptotic cell death have extensive
crosstalk and synergism. The NLRP3 inflamma-
some, a major inflammatory platform in isch-
emia/reperfusion injury (IRI), can be activated
by reactive oxygen species (ROS), potassium
efflux, and mitochondrial damage. This activity
induces the maturation and release of IL-13
and IL-18 via caspase-1, which triggers pyrop-
tosis. Furthermore, through causing localized
inflammation, it disrupts iron metabolism and
it accelerates LPO, thus forming the pathologi-
cal basis of ferroptosis. For example, ginsen-
oside Rg1 shows dose-dependent inhibition of
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AIM2 inflammasome activation in macropha-
ges. In addition, it also suppresses M1 macro-
phage polarization and production of pro-in-
flammatory cytokines. Overall, it relieves post-
reperfusion myocardial inflammation and alle-
viates infarct size [33]. Also, macrophage-spe-
cific protein SHEP1 inhibits MAPK inflammatory
signalling pathway by competing with G3BP1.
In doing so, it limits macrophage migration and
cytokine expression. This protective mecha-
nism has been confirmed in both SHEP1-lack-
ing models and G3BP1 inhibitor treatments
[34].

Insights from multi-organ studies have ad-
vanced our understanding of the regulatory
networks between inflammation and ferropto-
sis. GRINA promotes ubiquitin-mediated degra-
dation of ATF6 in hepatic IRl which attenuates
inflammation and apoptosis, inhibits ER-pha-
gy, and maintains calcium homeostasis [32].
Icariin aglycone (ICT) protects against hepatic
IRI by activating the PIBK/AKT/mTOR signaling
pathway, thereby suppressing excessive au-
tophagy and inflammatory mediator release.
Clinically significant levels of the lipid second
messenger, PI3P, can hypothetically block a
PtdIns(3)P-PH domain by competing with Ptd-
Ins(3)P for binding [35].

In liver transplantation-related IRl models,
hypoxia activates YAP/TEAD1 signaling in liver
endothelial cells, resulting in CXCL17 secre-
tion. CXCL17 attaches to the GPR35 receptor
on myeloid-derived suppressor cells (MDSCs),
and this enables targeted recruitment to the
liver. MDSCs via the STAT3 pathway inhibit the
M1 macrophage polarization thus reducing in-
flammation and liver injury. This mechanism
has been validated through single-cell sequenc-
ing and adoptive transfer experiments in mice
and patient samples [36]. Human induced plu-
ripotent stem cell (iPSC)-derived cardiac organ-
oid model of I/R on myocardial tissue found
type | interferon (IFN-I) to be a damaging factor
in co-culture system with THP-1 monocytes.
Application of the FDA-approved IFN-I receptor
antagonist Anifrolumab significantly inhibited
inflammation and oxidative stress, reducing
myocardial injury and demonstrating promising
translational potential [31]. In renal IRl models,
DbpA, a mitochondria-located protein (coded
by Ybx3), enhances mitochondrial membrane
potential and oxygen consumption, increases
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antioxidant capacity, and represses ferropto-
sis. As a result, this offers a new and promising
therapeutic target for kidney IRI [30]. To further
clarify the dynamic changes and specific me-
chanisms of cellular injury during ischemia or
reperfusion, we constructed a schematic illus-
tration (Figure 1).

Mechanisms of ferroptosis

Regulation of iron metabolism and cellular
homeostasis

Iron is a trace element that maintains the me-
tabolic homeostasis of the cell. Iron plays
important roles in the transport of oxygen,
energy production, DNA synthesis and redox
reactions. However, iron overabundance stem-
ming from unregulated iron metabolism can
fuel the formation of highly reactive ¢OH th-
rough the Fenton reaction. Consequently, it
induces LPO and oxidative stress that results
in the dysregulation of ferroportin (FPN). Iron
homeostasis inside the cell is maintained by
balancing its uptake, storage, and export. TfR1
is responsible for taking in Fe3®*. Ferritin, espe-
cially the heavy chain subunit FTH1, acts as
a major intracellular iron-storage protein.
Ferroportin is the only known cellular iron
exporter. Hepcidin, a hepatic hormone, nega-
tively regulates ferroportin, which can efflux
iron. In addition, microRNAs, long non-coding
RNAs (IncRNAs) and other epigenetic modi-
fications finely modulate the expression of
iron metabolism-related proteins. The stressed
cells usually uptake more iron, storage of iron is
impaired, and efflux of iron is reduced under
the conditions like I/R, impacting labile iron
pool (LIP) significantly which provides the sub-
strate necessary for ferroptosis induction [37,
38].

Execution of ferroptosis requires not only iron
accumulation but also dysfunction of antioxi-
dant defenses and unchecked accumulation of
lipid peroxides. Recent studies indicate that
NCOA4-mediated ferritinophagy plays a vital
role in the development of diabetic complica-
tions [37]. Ferroptosis triggers can be divided
into extrinsic pathway and intrinsic pathway.
The extrinsic pathway can be triggered by the
inhibition of System Xc’, leading to GSH de-
pletion. This triggers ferroptosis. The intrinsic
pathway often involves the inactivation of
GPX4. Ferroptosis can occur in acute organ
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injuries, infections, cancer, neurodegeneration,
etc. [38]. In glioblastoma, tumor progression is
promoted by E3 ubiquitin ligase TRIM7 by K48-
linked ubiquitinating and degrading NCOA4,
inhibition of ferritinophagy and intracellular
free iron accumulation and ferroptosis block-
ade. Inhibition of TRIM7 augments sensitivity
to temozolomide in tumors, highlighting its th-
erapeutic potential [39]. Research suggests
that hypoxia causes the activation of JNK-miR-
6862-5p axis which suppresses the NCOA4
expression and increases the level of FTH and
mitochondrial ferritin (FTMT). This enhances
macrophage resistance to RSL3-induced fer-
roptosis. It is important to note that not all
tumor cells have this protective mechanism,
suggesting that iron regulation is cell-type spe-
cific [40]. The tumor immune microenvironment
is shaped through the process of ferroptosis.
In gastric cancer, the cancer-associated fibro-
blasts (CAFs) increase the Hephaestin and iron
transporter to enhance iron release into the
tumor microenvironment (TME), which is then
taken up by natural killer (NK) cells. FSTL1 also
promotes ferroptosis in NK cells through the
DIP2A-P38-NCOA4 signaling pathway and in-
hibits their cytotoxicity. Treatment of DFO in
conjunction with an anti-FSTL1 neutralizing
antibody has been shown to restore NK cell
function in a study; the findings were validated
with human organoid models [41]. Cadmium
(Cd) has been reported to induce ferroptosis in
hepatocytes by activating the PERK-elF2a-
ATF4-CHOP pathway to trigger ER stress and
upregulating NCOA4 to facilitate ferritinophagy
in toxicology studies. Chloroquine, autophagy
inhibitors, ferroptosis inhibitors, and iron chela-
tors can effectively inhibit this injury process,
signifying its association with environmental
toxins-induced liver injury [42]. Context of anti-
tumor therapy also clarifies how to confound
the mechanism of ferroptosis. In head and
neck tumor, PCBP1 intervenes in BECN1 by
suppressing autophagosome formation and
inhibiting LPO enzyme ALOX15 to modulate fer-
roptosis sensitivity. ALOX15 modulates LPO.
Together, these act to reduce cellular suscepti-
bility to ferroptosis. Animal experiments have
shown that knocking down PCBP1, especially in
combination with ferroptosis inducers like sul-
fasalazine, impedes tumor growth [43]. In neu-
rodegenerative diseases, FTH1 overexpression
inhibits ferritinophagy via the LC3-1l/NCOA4
pathway and reduces Fe?* release to prevent
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Figure 1. Schematic illustration of cellular injury mechanisms during ischemia and reperfusion. This figure illustrates the key pathological processes during ischemia
and reperfusion. Ischemia causes a shift to anaerobic metabolism with ATP depletion, lactate accumulation, acidosis, and calcium overload, leading to structural
damage and necrosis. Reperfusion restores aerobic metabolism but induces mitochondrial permeability transition pore (MPTP) opening, excessive ROS generation,
and sustained calcium overload, which together activate inflammatory and pro-apoptotic pathways, exacerbating tissue injury.
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ferroptosis in a 6-OHDA-induced Parkinson’s
disease (PD) model. On the contrary, knock-
down of FTH1 aggravated mitochondrial dys-
function, confirming this axis as a potential
therapeutic target for PD [44]. Through tran-
scriptomic analysis of myocardial infarction
datasets in the cardiovascular system like
GSE116250, 10 ferroptosis/autophagy-related
hub genes, including IL-6, PTGS2 and JUN, were
found to be closely related to IL-17, JAK-STAT,
MAPK signaling pathways. The study findings
were validated by qPCR and single-cell RNA
sequencing in mice, identifying potential tar-
gets for molecular subtyping and prognostic
interventions of Ml [45]. In metabolic-associat-
ed steatohepatitis (MASH), NOX subunit NCF1
in macrophages is activated by oxidized phos-
pholipids, activating TLR4-dependent signaling
that stimulates hepatocyte secretion of hepci-
din. This cascade increases iron accumulation
and ferroptosis in Kupffer cells, leading to in-
tensified liver inflammation and immune cell
infiltration. A human hypomorphic NCF1 variant
(p.90H) appearing to antagonize this pathologi-
cal pathway, may provide a theoretical basis for
immunometabolic intervention in MASH [46].

Characteristic markers and signaling pathways
of ferroptosis

Ferroptosis is a different type of regulated cell
death that features iron-dependent LPO. It is
not identical to conventional apoptosis or au-
tophagy or necrosis. Ferroptosis characteristi-
cally features an increase of intracellular fer-
rous iron (Fe?*), massive accumulation of phos-
pholipid peroxides, depletion of GSH, and
functional inactivation of GPX4. Furthermore,
cells undergoing ferroptosis display ultrastruc-
tural alterations including smaller mitochondri-
al size, a lower number of cristae and higher
membrane density [47, 48]. GPX4 is an impor-
tant antioxidant enzyme that detoxifies mem-
brane phospholipid hydroperoxides. GPX4 ac-
tivity is dependent on GSH availability. Inhibi-
tion of System Xc - a cystine/glutamate anti-
porter composed of SLC7A11 and SLC3A2 -
leads to depletion of GSH, which in turn inhi-
bits GPX4 activity and induces ferroptosis.
Enzymes involved in lipid metabolism, such as
ACSL4 and LPCAT3, facilitate the esterification
and incorporation of PUFAs into membrane
phospholipids, providing substrates for LPO.
Currently, their activity has been recognized as
a molecular marker of ferroptosis [49].

412

Multiple signaling pathways regulate ferropto-
sis. The activity of System Xc is diminished
upon repression of SLC7A11 via tumor sup-
pressor p53. On the other hand, NRF2 upregu-
lates genes such as GPX4 and FTH1 that
restore iron homeostasis. The MAPK, Hippo-
YAP, and HIF-1a pathways also play a critical
role in the regulation of lipid metabolism and
oxidative stress [49, 50]. Recent studies have
uncovered certain regulatory mechanisms in-
volved in ferroptosis. Salidroside (Sal) inhibits
the PIBK/AKT/mTOR pathway to downregulate
SCD1-mediated monounsaturated fatty acid
synthesis and further activates NCOA4-me-
diated ferritinophagy. As a result of these
actions, there is an accumulation of Fe?* and
formation of LPO, which dramatically enhances
the sensitivity of triple-negative breast cancer
(TNBC) cells to ferroptosis. Overexpression of
GPX4 or SCD1 or knockout of NCOA4 can
reverse the effect of Sal [47]. CircLRFN5 in glio-
mas promotes the degradation of PRRX2 pro-
tein, thus relieving its transcriptional activation
of the ferroptosis suppressor GCH1. Ferroptosis
caused by the drug in glioma stem-like cells
inhibits their growth [48]. The expression of
MTHFD2 is high and has a bad prognosis in
TNBC. By silencing MTHFD2, it downregulates
the SLC7A11/GPX4/NRF2 axis causing LPO
and ROS accumulation, inhibiting tumor prolif-
eration and migration [49]. In gastric cancer,
high GPX4 expression coupled with low levels
of 4-HNE (4-hydroxynonenal), indicates poor
prognosis, while patients with low FSP1 and
high 4-HNE expression have better prognosis.
In vitro studies prove that co-inhibition of GPX4
and FSP1 can synergistically induce non-apop-
totic ferroptosis, suggesting a new therapeutic
option for treatment-refractory gastric cancer
[50]. Standardization of Detection and Asse-
ssment Techniques of Ferroptosis is on the
Rise as Research Advances. Pharmacological
validation together with 4-HNE immunostain-
ing and TUNEL assay with Lip-1 has been used
to detect Ferroptosis in a renal I/R injury mode
[51]. Transcriptomic analysis in patients with
lupus nephritis (LN) identified multiple differen-
tially expressed genes relevant to ferroptosis
(e.g., CYBB up, GOS2 down). The expression of
CYBB was correlated with monocyte infiltration
as well as treatment response among them,
suggesting its potential as a ferroptosis bio-
marker in LN [52].
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In the I/R injury, several regulatory factors are
known to be key regulators of ferroptosis.
TMEM16A induces ferroptosis during liver isch-
emia/reperfusion injury through activating ubi-
quitin-dependent degradation of GPX4. The tis-
sue injury and LPO are substantially lessened
when either TMEM16A is removed from liver-
specific tissue, or its interaction with GPX4 is
impaired [53]. In mice with brain ischemia-
reperfusion injury, THBS-1 from macrophage-
derived exosomes induces ferroptosis in bra-
in microvascular endothelial cells. Salvianolic
Acid B (SAB) can reverse the changes in GPX4
expression and prevent the disruption of the
blood-brain barrier [54]. In AKI, ferroptosis is
increased by the F-box protein FBXW7 through
the degradation of GPX4. Increased FBXW?7 lev-
els exacerbate tissue damage in the presence
of erastin. Either FBXW7 knockdown or Fer-1
administration inhibit I/R-induced renal injury
[55].

The role and impact of mitochondria in fer-
roptosis

Mitochondria are essential for energy produc-
tion in the cell. They are also central to cellular
iron homeostasis and play a key role in regulat-
ing lipid peroxidation and oxidative stress scav-
enging. Growing evidence has identified multi-
ple mitochondrial structures and components
that regulate ferroptosis. The biosynthesis of
heme and iron-sulfur clusters, which are criti-
cal for oxidative phosphorylation, requires the
presence of intramitochondrial iron. Nonethe-
less, under stressful situations, free Fe?* may
generate *OH via the Fenton reaction that can
induce LPO of mitochondrial membrane trigger-
ing the ferroptotic cascade. According to the
morphology, ferroptosis displays obvious mito-
chondrial changes. These changes include a
reduced volume, distorted cristae and an in-
creased density of the membrane. These chan-
ges help us to differentiate between ferroptosis
and the other types of cell death like apoptosis
and necrosis [56]. Mitochondrial dysfunction
exacerbates ferroptosis in I/R injury. The mi-
tochondrial protein DbpA, which is associated
with Ybx3, is found in renal tubular mitochon-
dria. Knockdown of DbpA increases the mito-
chondrial membrane potential and oxygen con-
sumption rate, the antioxidant capacity deve-
lops, and I/R ferroptosis and kidney injury
decrease significantly [30]. Infertility has also
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been caused by abnormal cellular iron. Mu-
tations in the COX15 gene of mitochondria
impair its respiratory chain function. Involved
in heme A biosynthesis, this mutation leads to
the accumulation of Fe?* and the generation of
ROS. These two factors impair oocyte matura-
tion through ferroptosis, thus causing oocyte
maturation arrest. Treatment with Fer-1 can
restore this phenotype in vitro [57].

Strategies were identified by targeting sensitiv-
ity to ferroptosis in mitochondria. Through its
GTPase activity, OPA1 involves the accumula-
tion of lipid ROS and suppression of ATF4 to
enhance the susceptibility to ferroptosis, while
deficiency of OPA1 reverses this outcome [56].
Propafenone activates the JNK/JUN pathway to
upregulate mitochondrial HMOX1 to promote
Fe?* accumulation and ROS production to en-
hance the sensitivity of melanoma cells to fer-
roptosis inducers and immune checkpoint in-
hibitors [58]. In colorectal cancer, icariin can
thermodynamically induce ferroptosis by inter-
rupting the HMGA2/STAT3/HIF-1 system. This
is characterized by impaired mitochondrial ac-
tivity, increased lipid ROS and down-regulated
GPX4 expression, respectively, ultimately ame-
liorating immunotherapy efficacy [59]. In addi-
tion to that, regulation of ferroptosis requires
mechanisms maintaining mitochondrial home-
ostasis. NUDT16L1 is a mitochondrial mainte-
nance factor that binds NAD-capped RNAs to
regulate MALAT1 expression, and thus limit
mitochondrial DNA (mtDNA) leakage and fer-
roptosis sensitivity. Animal models and clinical
tissue showed the anti-tumor effect of the inhi-
bition [60]. Within corpus cavernosum smooth
muscle cells, more mitochondria-rich microves-
icles (MVs) donate functionally active mitochon-
dria to increase antioxidants and restore mem-
brane potential. This effect greatly reduces
neural-injury-induced erectile dysfunction and
is affected by mitochondrial activity [61].

In a glucocorticoid-induced model of femoral
head necrosis, isovitexin was shown to acti-
vates SIRT3 and by doing so, increases the
resistance of osteoblasts to ferroptosis while
inhibiting the mitophagy that occurs through
the use of BNIP3/NIX [62]. In hepatic I/R mod-
els under cholestatic conditions, it is microvas-
cular impairment and delayed recovery of mi-
tochondrial metabolism that play key roles in
damage to tissues as opposed to the use of
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conventional oxidative stress markers or GSH
depletion [63].

Strategies targeting the mitochondria to pro-
tect the organ are being explored. The addition
of trimetazidine (TMZ) to liver preservation so-
lutions in transplantation activates the AKT/
GSK3p signaling axis, stabilizes voltage-depen-
dent anion channel (VDAC) structure, and inhib-
its mitochondrial apoptosis, ER stress, and oxi-
dative damage at the same time. According to
this strategy, cold I/R injury during liver trans-
plantation is reduced [64]. It should be noted
that VDACs, which are located on the outer
mitochondrial membrane are important in
maintaining the mitochondrial integrity. Their
structural stability is crucial in modulating
ferroptosis.

The role of ferroptosis in IRI
Ferroptosis in cardiac IR

Ferroptosis is a novel regulated form of cell
death that is iron ion- and lipid peroxidation-
dependent. This form of cell death is implicated
in cardiac IRI. Through an ischemic phase the
impairment of GSH synthesis and GPX4 acti-
vity compromises the antioxidant defenses.
The surge of ROS on reperfusion, along with the
accumulation of intracellular iron, enhances
LPO and Fenton chemistry, leading ultimately to
ferroptosis. The upregulation of TfR1 with the
downregulation of ferritin heavy chain (FTH1)
also exacerbates overload of free iron, which
enhances oxidative stress. Mitochondria play a
key role in ferroptosis and undergo distinct
morphological changes during this process, in-
cluding a loss of membrane potential, rupture
of cristae, and rupture of the outer membrane.
Animal studies show that pro-ferroptotic mark-
ers like ACSL4 and COX-2 are significantly up-
regulated after IRI. In contrast, GPX4 expres-
sion decreases significantly. The use of iron
chelator DFO and ferroptosis inhibitor Fer-1
markedly reduces myocardial injury thus imply-
ing that ferroptosis is a reversible process and
provides a window for IRI treatment interven-
tion [65]. Ferroptosis is also implicated in radi-
ation-induced heart disease, where its inhibi-
tion represents a viable therapeutic strategy
[66].

More studies have revealed many important
regulators and signalling pathways in myocar-
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dial ferroptosis. Metformin (Met) is a biguanide
that can protect cardiomyocytes by activating
AMPKa signaling as well as suppressing NOX4
which leads to increased oxidative stress. Non-
heme iron accumulation may lead to the inhibi-
tion of GPX4 activity which will finally lead to
ferroptosis. Particularly, the cardioprotective
effects of met were completely abolished by
silencing of AMPKa, indicating that AMPKa-
NOX4 axis is critical for the cardioprotective
effect of met [65]. At the epigenetic level,
NAT10 facilitates Mybbpla stability via ac4C
RNA acetylation, which activates the p53 path-
way and downregulates SLC7A11 to impair
System Xc-mediated antioxidant defense and
promote ferroptosis. Both the NAT10 knockout
and pharmacological inhibition with Remode-
lin significantly reduces myocardial damage
caused by IRI. Notably, this protective effect is
even more significant than other anti-apoptotic
strategies. Because of this potential, clinical
translation is warranted [67]. Similarly, the
deubiquitinase USP38 stabilizes p53. Conse-
quently, SLC7A11 expression is suppressed.
Furthermore, LPO and iron overload are inten-
sified, worsening myocardial injury. In addition,
this intensified LPO and iron overload makes
the body more susceptible to ventricular arr-
hythmias. The knockout of cardiac-specific
USP38 will attenuate these pathological chan-
ges; hence, the USP38-p53-SLC7A11 axis is a
potential therapeutic target to regulate ferrop-
tosis in the heart [68]. Ferroptosis Regulation is
Also Achieved via Mitochondrial Mechanisms.
MPV17, a downstream target of Nrf2, pre-
vents destabilization of mitochondrial carrier
SLC25A10 to maintain mitochondrial GSH. Ex-
cess iron reduces MPV17, which leads to the
ubiquitination and degradation of SLC25A10
and the depletion of mitochondrial GSH (mt-
GSH), which can trigger ferroptosis. Adenovi-
ral overexpression of MPV17 reverses these
effects showing the cardioprotective effect of
the Nrf2-MPV17-SLC25A10/mtGSH pathway
[69]. Dexmedetomidine, a pharmacological
agent, activates SLC7A11/GPX4 axis, inhibits
ferroptosis, decreases myocardial infarct size,
enhances cardiac function, and reduces mito-
chondrial oxidative stress, exhibiting strong
cardioprotective efficacy [70]. Oxidized phos-
phatidylcholines (OxPCs) present in cardiomyo-
cytes inhibit GPX4 activity directly. This causes
intracellular calcium dysregulation, mitochon-
drial dysfunction, and cell death. Adding the
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EO6 monoclonal antibody or Fer-1 can success-
fully block these adverse effects [71]. In addi-
tion, exosomes from bone marrow mesenchy-
mal stem cells (BMSCs-Exo) can protect from
ferroptosis by delivering high levels of IncRNA
Mir9-3hg, which inhibits the RNA-binding pro-
tein Pum2. PRDX6 antioxidant path is activat-
ed in which molecular ferroptosis inhibition
occurs that greatly reduces IRI-induced cardiac
injury [72].

Advances in research on ferroptosis in cere-
bral ischemia-reperfusion injury (CIRI)

CIRI is among the key mechanisms that cause
secondary brain injury in stroke. The onset and
progression of the disease involves episodes of
ROS release, activation of inflammatory media-
tors, and multiple death pathways in distinct
types of cells, that together contribute to brain
tissue damage. In recent years, recognition of
ferroptosis, a distinctive form of programmed
cell death linked with iron-dependent LPO, has
garnered increasing recognition, with its signifi-
cant role in CIRI becoming increasingly appar-
ent. Research suggests that the accumulation
of free iron ions in brain tissues is significantly
enhanced by ischemia-reperfusion, which also
promotes the Fenton reaction. At the same
time, it causes GSH depletion and reduced
GPX4 activity, thus causing excessive accumu-
lation of lipid peroxides, which then leads to
neuronal ferroptosis.

The system Xc/GSH/GPX4 axis is considered
the core signaling pathway regulating ferropto-
sis at the molecular level. Under CIRI condi-
tions, the expression of the essential trans-
porter SLC7A11 is downregulated. This limits
cystine uptake and GSH synthesis. Thus, GPX4
cannot eliminate lipid peroxides. Nuclear factor
erythroid 2-related factor 2 (Nrf2), is an antio-
xidant transcription factor that can increase
resistance to ferroptosis. It can achieve this by
inducing the expression of SLC7A11 and GPX4.
N-butyl phthalide or dI-3-n-butylphthalide (NBP)
is a natural compound extracted from celery.
Previous studies found that NBP can activate
the Nrf2/GPX4 signaling pathway and inhibit
the LPO driver ACSL4 and iron transporter
TfR1. This can reduce levels of LPO products
like malondialdehyde (MDA) and 4-hydroxynon-
enal (4-HNE), leading to significant mitigation
of brain injury. Nrf2 inhibitors or genetic knock-
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out can reverse these protective effects, fur-
ther confirming the crucial Nrf2 pathway that
inhibits CIRI-related ferroptosis [73-76]. In addi-
tion to conventional antioxidant pathways, fer-
roptosis interacts with various cellular stress
signaling pathways. The pathway of HSP9O-
GCN2-ATF4 is an important mediator between
necroptosis and ferroptosis. According to stud-
ies, this compound NTF can preserve the blood-
brain barrier integrity and ease neuronal dam-
age by blocking this pathway and downregulat-
ing HSP9O expression [77]. Exosomal thrombo-
spondin-1 (THBS1) from macrophages is able
to bind to OTUD5, leading to GPX4 ubiquitina-
tion and degradation (which induces ferropto-
sis) in brain microvascular endothelial cells.
The disturbance of this molecular interaction
by SAB stabilizes the GPX4 protein and aids in
the repair of blood-brain barrier injury [54].
Non-coding RNAs also play an essential role
in regulating ferroptosis in CIRI. For instance,
the m6A demethylase FTO can suppress pri-
miR320 maturation to promote the decrease
of miR320-3p levels, which will relieve inhibi-
tion on SLC7A11. This enhances the antioxi-
dant capacity and mitigates ferroptosis during
CIRI [78]. Another study concluded that elec-
troacupuncture could downregulate p53 expre-
ssion. It relieves the suppression of SLC7A11,
restoring GPX4 levels, reducing LPO and iron
deposition, and improving neurological func-
tion [79].

Many natural compounds can also prevent fer-
roptosis. TQHX has been shown to reduce neu-
ronal injury by promoting the ubiquitination and
degradation of ACSL4 [80], as well as enhanc-
ing the efficacy of GPX4 along with better iron
sequestration via the iron-storage protein FTH1
to minimize ROS and iron accumulation [80].
Puerarin exerts neuroprotective effects simi-
lar to Ferroptosis inhibitor Fer-1 synergistically
inhibiting both ferroptosis and pyroptosis (cas-
pase-1/GSDMD-mediated) [81]. In addition,
the RNA-binding protein IGF2BP1 can aggra-
vate neuronal ferroptosis by upregulating Ke-
apl expression and suppressing Nrf2 signal-
ing. Knockout of IGF2BP1 promotes GPX4
expression, drives microglial polarization to-
ward the M2 phenotype, attenuates neuroin-
flammation, and improves neurological func-
tion, suggesting it as a potential therapeutic
target for ferroptosis modulation [82].
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The role of ferroptosis in ischemia-reperfusion
injury (IRI) of other organs

Ferroptosis, a form of programmed cell death
characterized by iron-dependent LPO, has been
extensively demonstrated to play a key patho-
genic role in IRl across multiple organs. Taking
myocardial IRl as an example, disturbances
in iron homeostasis synergize with oxidative
stress to markedly trigger ferroptosis, typically
manifested by elevated free iron concentration,
downregulated GPX4 expression, and massive
lipid peroxide accumulation. Research indi-
cates that inhibitors of ferroptosis Fer-1 and
Lip-1 can decrease the area of myocardial
infarction and improve heart function. In addi-
tion, activating the Nrf2/GPX4 pathway or tar-
geting ACSL4 and TfR1 has been confirmed to
confer cardioprotection.

Ferroptosis primarily takes place at the onset
of injury in hepatic IRI. Evidence indicates that
DAMPs like high mobility group box 1 (HMGB1)
and mtDNA can activate the cGAS pathway to
induce hepatocyte ferroptosis. In later stages,
the macrophages predominantly trigger death
in the forms of pyroptosis and necroptosis.
Using both ferroptosis inhibitors and pyroptosis
blockers is a strategy that can help in liver IR,
which is the application of the two [83]. Besid-
es, ticlopidine was shown to broadly inhibit fer-
roptosis, prevent the accumulation of hepatic
iron (shown with reduction of Prussian blue
staining), reduce LPO products (MDA, 4-HNE),
and lower the serum liver enzyme levels (ALT,
AST) with significant mitochondrial protective
effect, in both in vivo and in vitro models [84]. A
systematic review further summarized five cat-
egories of ferroptosis inhibitors including free
radical scavengers, iron chelators and antioxi-
dants, which have shown promising efficacy in
preclinical models of hepatic, renal and intesti-
nal IRIl. While there have been clinical transla-
tions, issues to be solved include optimizing
drug delivery, bioavailability and mechanisms
of action, and applications to pancreatic IRI
remain unfound [85].

The kidney is a very vulnerable organ that gets
affected by IRI. During the reperfusion of renal
tubules, picking up ferroptosis early on is a con-
sequence of it. The reason behind cell ferropto-
sis is due to the increased iron-loading of cells,
suppression of GPX4, and lipid peroxide accu-
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mulation. It has been mentioned that CK-666
can block ferroptosis independently of the
Arp2/3 complex by removing lipid peroxides
and reorganizing actin filaments and exhibits
strong antioxidant capacity, as demonstrated
in a DPPH assay [86]. In addition, due to their
surface functional groups, carbon dot nano-
zymes can chelate Fe?". They also scavenge
ROS and downregulate ACSL4 expression to
maintain iron homeostasis and significantly
alleviate oxidative stress injury in renal tissue
[87]. Using a renal transplantation IRl model,
we found that low dose of cyclosporine A (CsA)
in combination with DFO has a synergistic
effect on inhibiting ferroptosis. This synergy
arises because CsA inhibits mitochondrial ROS
generation, while DFO chelates free iron. In
addition, our treatment lowered blood urea
nitrogen (BUN) levels and reduced tubular
necrosis. More importantly, we found very
robust evidence of its translational potential
[88]. Also, the TGF-B1/a-SMA signaling path-
way causes the progression of renal IRl to
chronic kidney disease is mediated by the RNA-
binding protein eCIRP. The antagonist of eCIRP,
C23, can cause the upregulation of GPX4,
downregulation of LPO and iron accumulation
significantly improving renal function and GFR
[89]. The mechanism of Ferroptosis is also a
major player in Lung IRI. In a lung transplanta-
tion model, four ferroptosis-related genes--TN-
FAIP3, CXCL2, NEDD4L, and SESN2--were iden-
tified, among which SESN2 was validated via
Mendelian randomization as being significantly
protective for primary graft dysfunction (PGD),
thus representing a potential target for per-
sonalized immunomodulatory intervention [90].
Moreover, another mechanism has been iden-
tified wherein the up-regulation of the ALOX12-
12-HETE pathway promotes ferroptosis and
subsequent extracellular trap (NET) formation
in lung IRI [91]. Likewise, lipoxin A4 (LxA4) acts
on the FPR2 receptor on the type Il epithelial
cells of alveoli to activate the Nrf2 signaling
pathway leading to improved synthesis of GSH.
This counteracts LPO (lower MDA levels) while
oxygenation effectively improves (increased
Pa0,). The anti-oxidative effects were com-
pletely negated when FPR2 or Nrf2 were not
present [92]. Ferroptosis in intestinal IRl con-
tributes to the pathological process at multi-
ple levels by perforating mucosal barriers and
aggravating inflammation. Baicalin activates
Nrf2-GPX4 pathway to inhibit ferroptosis and
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Figure 2. Molecular mechanisms and regulatory networks of ferroptosis in ischemia reperfusion injury across mul-
tiple organs. The figure depicts the major molecular pathways of ferroptosis in IRl across the heart, brain, liver,
kidneys, lungs, and intestines. It highlights key events such as iron overload, the Fenton reaction, ACSL4/ALOX-
mediated LPO, GPX4 inactivation, and ROS amplification, along with organ-specific regulators, non-coding RNAs,
transcription factors, and pharmacological inhibitors. This schematic integrates common mechanisms with organ-

specific features, indicating potential therapeutic targets.

reduce ROS levels and iron loading, and
enhancing the expression of tight junction pro-
teins Z0O-1 and occludin, thereby attenuating
mitochondrial damage and intestinal inflamma-
tion; its protective effects can be completely
abolished by Nrf2 inhibitors [93]. Sevoflurane
acts via the AMPK/Nrf2 signaling axis to up-
regulate iron-chelation-related protein FTL and
GSH synthesis genes (SLC7A11 and GCLM),
thereby lowering ferrous iron concentration,
reducing LPO stress, and suppressing intesti-
nal ferroptosis [94]. Moreover, NCOA4-media-
ted ferritinophagy promotes the release of free
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iron, induces ACSL4 expression, enhances LPO
reactions, and suppresses GPX4 and GSH
expression, thereby accelerating intestinal fer-
roptosis. The process can be efficiently blocked
by either the knockdown of NCOA4 or by the
application of autophagy inhibitors which high-
lights the therapeutic potential of targeting
intestinal IRI [95]. A systematic overview of the
shared and organ-specific regulatory mecha-
nisms of ferroptosis in IRl indicates that the key
molecular events, signaling pathways and ther-
apeutic targets of various organs are illustrat-
ed in an integrative schematic (Figure 2).
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Ferroptosis and oxidative stress interactions
Impact of oxidative stress on iron metabolism

A pathological correlation exists amongst dys-
regulated iron metabolism and oxidative stress
in IRI that is closely interwoven. During the early
reperfusion phase, ROS is produced in excess,
overloading the ability of the endogenous anti-
oxidant system to scavenge all the free radi-
cals. Various kinds of reactive oxygen species
(ROS) are continuously produced in human
cells because of mitochondrial respiration. Re-
search conducted to verify oxidative stress as
a key inducer of ferroptosis has indicated that
oxidative stress acts as the driving factor to
cause ferroptosis. Consequently, many investi-
gators consider it an upstream regulator of sev-
eral key nodes in the iron metabolism network.
A prime example is in MIRI, where oxidative
stress activates, with the NLRP3 inflamma-
some playing a key role, the inflammatory cell
death signalling pathway of pyroptosis [96]. The
self-amplifying mechanism between oxidative
stress and ferroptosis forms a positive feed-
back loop that exacerbates tissue and cellular
injury.

At the molecular level, oxidative stress pro-
motes hepcidin expression, which limits the
localization of the iron export protein FPN on
the cell membrane, causing intracellular iron
retention. The NOX system can also be activat-
ed by ROS as well as the expression of the pro-
oxidant enzymes inducible nitric oxide syntha-
se (iNOS) and LOX which further drive LPO.
When H,0, is present, Fe?* participates in the
Fenton reaction to produce the highly cytotoxic
*OH, which initiates chain LPO and ultimately
triggers the ferroptotic program. Cellular harm
can cause the autophagic degradation of ferri-
tin (ferritinophagy), which frees up the stored
iron. This can greatly increase the LIP. Further
diminishment of the antioxidants can boost
the risk for iron-dependent cell death [97-99].
As for iron uptake and transport, ROS can
upregulate TfR1 and divalent metal transporter
1 (DMT1), which promote the uptake of exter-
nal Fe3* and transmembrane transport of Fe?*
which creates a vicious cycle that amplifies oxi-
dative stress [74, 100]. For instance, in patients
suffering from B-thalassemia, LIP levels inside
erythrocytes are elevated and positively corre-
lated with ROS levels. LIP is consequently sug-
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gested to be a biomarker of choice for moni-
toring iron overload and evaluating the efficacy
of chelation therapy [100]. Additionally, prion
infection models indicate that regulating iron
homeostasis disruptions delays iron process-
ing and maintains ROS elevation. Furthermore,
increasing cellular susceptibility to iron toxicity
is likely because Fe(ll) drives oxidative stress
at low levels (few uM range) [101].

Oxidative stress can additionally inhibit the
Nrf2 signaling pathway, thereby reducing the
cellular ability to maintain iron homeostasis
and counteract oxidative stress. Inhibition of
the Nrf2 signaling pathway is associated with
reduced expression of key downstream antio-
xidant and iron-regulatory molecules of key
downstream antioxidant and iron-regulatory
molecules, such as SLC7A11, GPX4, ferritin,
and FPN. Decreased antioxidant activity, cou-
pled with impaired iron efflux, raises the sus-
ceptibility towards ferroptosis above the base-
line level [25, 74]. Studies on animals confirm-
ed Nrf2 signaling activation can inhibit ferrop-
totic injury. For example, isoglycyrrhizin pro-
motes Nrf2 nuclear translocation and upregu-
lates HO-1, SLC7A11, and GPX4, while inhibit-
ing the expression of ACSL4 and Drpl, thereby
significantly ameliorating myocardial IRI [25]. In
a diabetic nephropathy model, atorvastatin has
an anti-ferroptotic effect comparable to Fer-1
via upregulation of GPX4 and FTH expression
and inhibition of TfR1 [74]. Furthermore, oxida-
tive stress is closely involved in mitochondrial
dysfunction. OPA1 helps produce harmful mol-
ecules in mitochondria through its GTPase
activity ATF4-mediated stress responses, the-
reby facilitating ferroptosis; conversely, OPA1
deficiency significantly enhances cellular resis-
tance to ferroptosis [56]. In a polycystic ovary
syndrome (PCOS) model, elevated CISD2 ex-
pression inhibits mitophagy, leading to NOX2-
mediated ROS accumulation and GSH deple-
tion, which further amplifies oxidative stress
injury [102]. Meanwhile, CGI1746, by targeting
the o1 receptor, regulates Ca?* transfer within
mitochondria-associated membranes (MAMSs),
reducing mitochondrial ROS production and
PUFA-triglyceride (PUFA-TG) accumulation, the-
reby effectively alleviating cisplatin-induced
AKI and offering a new avenue for targeting
MAMs-associated ferroptosis [103].
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How ferroptosis exacerbates oxidative damage

Ferroptosis, a form of iron-dependent, lipid
peroxidation-induced cell death, represents a
major manifestation of oxidative stress in IRI.
In addition, it is a mechanism that mediates
oxidative damage through many other process-
es. Ferroptosis establishes a self-amplifying
positive feedback loop between iron and ROS
by enhancing Fe?*-mediated Fenton reactions,
compromising the cellular antioxidant capacity,
disrupting the homeostasis of mitochondria,
and promoting the release of oxidized DAMPs.
This loop significantly aggravates membrane
damage and leads to inflammatory cascades.
The oxidative amplification effect of ferroptosis
is evident in numerous disease models. As an
example, ZMYNDS8 could activate the NRF2
antioxidant pathway by two mechanisms: si-
lencing its inhibitor KEAP1, and boosting NRF2
binding to antioxidant gene promoters. Ferr-
optosis inhibition reduces the accumulation of
intracellular ROS and load of iron, while enhan-
cing cancer stem cell properties and tumori-
genic potential to form a tumor-promoting feed-
back loop [104]. Nanomedicine platforms have
been developed to synergistically induce fer-
roptosis and oxidative stress in anticancer ther-
apeutic strategies. The p53/Ce6@ZF-T nano-
drug synergistically induces apoptosis and
ferroptosis in tumor cells by enhancing the
Fenton reaction, promoting photo-oxidative
ROS production, and inactivating GPX4 via
p53, thereby abolishing lipid repair capacity
[105]. A folate-targeted upconversion nanosys-
tem, which converts near-infrared light into
ultraviolet radiation, is able to catalyze the
reduction of Fe®* to Fe?* causing ferroptosis,
and achieves synergistic TNBC therapy when
combined with cisplatin [106]. Another intensi-
fied oxidative strategy involves HBGL nanolipo-
somes that co-deliver heme, B-lapachone, and
glucose oxidase. This system generates endog-
enous H,0, to drive Fenton-derived *OH, while
depleting GSH and inhibiting GPX4, thereby
damaging mitochondria and the ER to induce
ferroptosis [107]. Likewise, ALOX15 catalyzes
LPO to produce 4-HNE and ROS, impairing
sperm acrosomal function and zona pellu-
cida binding; its inhibitor PD146176 effectively
mitigates such oxidative injury, providing a
potential therapeutic target for male infertility
[108].
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Mechanistic studies on ferroptosis also benefit
from advances in visualization tools. The 0G-3
dual-channel fluorescent probe enables real-
time imaging of ¢«OH and GSH, revealing dy-
namic changes in both exogenous (SLC7A11
downregulation) and endogenous (GPX4 inac-
tivation) ferroptosis pathways, thus offering a
novel platform for mechanistic exploration and
inhibitor screening [109]. In a sepsis-induced
acute lung injury model, UPP1-mediated uri-
dine metabolic dysregulation activated the
Nrf2 pathway, upregulating SLC7A11, GPX4,
and HO-1, suppressing LPO, and reducing ex-
pression of the ferroptosis marker ACSL4, the-
reby alleviating inflammation and tissue injury
[110].

Another critical factor is the metabolic regula-
tion of ferroptosis and oxidative stress, which
are mutually amplified. Overexpression of SOX8
suppresses adipogenesis, glycolysis, TCA cy-
cle, and pentose phosphate pathway (PPP),
resulting in limiting the synthesis of NADPH.
Additionally, it upregulates gene expression of
ferroptosis-related genes, which leads to pro-
duction of lethal lipid peroxides and mitochon-
drial damage, ultimately inhibiting the growth
of hepatocellular carcinoma [111]. Gallic acid
(GA) can exert a dual protective effect on exer-
cise-induced skeletal muscle injury: scaveng-
ing mitochondrial ROS, restoring membrane
potential, and replenishing ATP to relieve mito-
chondrial stress; and reducing Fe?*, MDA, and
COX2 levels while increasing GPX4 expression
to inhibit ferroptosis [112]. The susceptibility to
ferroptosis was influenced by glucose-6-phos-
phate dehydrogenase (G6PD), which controls
glutathione and NADPH levels. Increasing
G6PD levels produces more antioxidants in
pancreatic cancer cells and suppresses ferrop-
tosis cells. On the other hand, G6PD knock-
down activates the AMPK-mTOR pathway to
initiate autophagy-dependent ferroptosis. This
is reversible by inhibiting AMPK. The above in-
dicates the interplay of ferroptosis and energy
metabolism signalling [113]. In addition, using
Raman spectroscopy with microfluidics to mon-
itor the lipid -specific 1436 -cm™ peak in real-
time unveils a mechanism through which NA-
DPH, ferredoxin clusters, and ROS cooperative-
ly drive LPO, DNA damage, and mitochondrial
dysfunction. Quantum mechanical and mole-
cular docking simulations have validated the
above, resulting in new useful strategies for the
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proper diagnosis and targeted treatment of fer-
roptosis [114].

Interplay between oxidative stress and iron
metabolism: implications for therapeutic
strategies

During IRI, a tightly coupled pathological loop
forms between oxidative stress and ferroptosis
whose combined effect on iron homeostasis
exacerbates cellular damage significantly and
is one of the top mechanisms driving IRI. Oxi-
dative stress triggers the activation of NOX,
LOX, and iNOS, causing an overproduction of
ROS. Ferritin undergoes autophagic degrada-
tion (ferritinophagy), releasing stored iron which
then enlarges the LIP in this process. While
this is happening, oxidative stress causes an
increase of TfR1 and DMT1, which increases
Fe?* uptake that further promotes Fenton che-
mistry generating very toxic ¢OH. This leads to
a mutually reinforcing cycle involving oxidative
stress and iron overload [115, 116]. As this
feedback process continues, the key antioxi-
dant regulator Nrf2 becomes functionally com-
promised. Therefore, cells become even more
vulnerable to ferroptosis due to oxidative st-
ress. Using ROS to upregulate miR-126-3p/5p
can inhibit p853 and SETD5 to hyperactivate
PPP and induce ferroptosis in NRF2-wild-type
lung squamous cell carcinoma. On the other
hand, cells with NRF2 mutations counter this
regulatory particular, highlighting a potential
molecular therapeutic strategy [115]. Additi-
onally, the environmental pollutant 6PPD gen-
erates oxidative stress and ferroptosis and
damages the intestinal villus structure of ze-
brafish, with the antioxidant N-acetylcysteine
(NAC) effectively reversing these toxic effects,
further proving both the generalizability and
therapeutic manipulability of the oxidative st-
ress-iron metabolism relationship [116].

The oxidative stress-ferroptosis axis is also
promising for the treatment of neurological dis-
ease. In animal models of Alzheimer’s disease,
oleanolic acid (OA) has been shown to activate
the Nrf2/HO-1 pathway to down-regulate the
expression of amyloid precursor protein (APP),
reduce the production of ROS as well as modu-
late autophagy, ferroptosis and the functional-
ity of mitochondria and ER. This induces a
protective effect on neurons against the
AB-induced toxicity [117]. ISL alleviates oxida-
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tive stress and neuronal apoptosis in cerebral
IRl by dissociating Keapl, promoting Nrf2
nuclear translocation, and improving mitochon-
drial dynamics and autophagy. The Nrf2 inhibi-
tor brusatol completely abolishes its neuro-
protective effects, indicating Nrf2-dependence
[118]. In hepatic IRI models, the deubiquitinase
OTUD1 stabilizes Nrf2 via the Cys320 catalytic
site and the ETGE motif, significantly reducing
oxidative stress, apoptosis, and inflammation.
Notably, ETGE-containing short peptides can
mimic OTUD1-mediated Nrf2 activation, provid-
ing a novel targeted approach for IRl therapy
[119]. To facilitate a mechanistic understand-
ing of the bidirectional amplification and evi-
dence chain of the “oxidative stress-ferropto-
sis” axis in IRI, key events at the levels of
molecular pathways, organelle functions, and
biological effects are systematically summa-
rized (see Table 1).

Potential therapeutic strategies targeting fer-
roptosis

Development of ferroptosis inhibitors and their
clinical prospects

A contemporary cell death mechanism that is
related to the iron catalyzed lipoperoxidation
(LPO), ferroptosis has gained recognition for its
pathogenic role in IRl and different acute organ
injuries. Ferroptosis has emerged as a promis-
ing therapeutic target as its molecular basis
becomes better understood. Drug develop-
ment is ongoing for antioxidants, iron chelators,
LPO inhibitors, and core regulators such as
GPX4 and SLC7A11. Fer-1 and Lip-1 can inhibit
the peroxidation of phospholipids, which can
significantly reduce the neuronal apoptosis th-
at occurs in the cerebral IRI models and tubular
necrosis that occurs in the renal IRl models.
DFO prevents the generation of the hydroxyl
radicals by interfering in the Fenton reaction,
which prevents iron overload-induced oxidative
stress and provides extensive organ protection
[120]. From the mechanistic perspective, PrA is
a dual-target inhibitor whose first action is to
bind to ACSL4 to block its phosphorylated form
and thus prevent LPO. Its second action is to
bind to FTH1 to inhibit ferritin degradation and
release of free Fe?'. These acts work together
to help maintain mitochondrial function and
reduce doxorubicin-induced toxicity [120]. Mo-
reover, high-throughput screening assisted by
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Table 1. Mechanistic interactions between ferroptosis and oxidative stress in IRI

Key Events/Molecules in

Key Events/Molecules

Experimental Evidence and

Interaction level Ferroptosis in Oxidative Stress Mode of Interaction Biological Effect Regulatory Targets References
Molecular Pathway GPX4 Downregulation, Increased LPO and EI-  NAR Activates Attenuation of Myocardial NAR Upregulates GPX4; [151]
Level (Nrf2/xCT/GPX4 System xc Inhibition, and  evated Serum Oxidative Nrf2—Upregulates System xc/ Infarction, Cell Death, Erastin Reverses the Protec-
Axis) Iron Accumulation Stress Markers GPX4 —Inhibits Ferroptosis and Tissue Injury tive Effect
Association Between ACSL4 and Lipstatin-1 Protein and LPO Levels Sp1 Binds to the ACSL4 Pro- Inhibition of Ferroptosis ~ ROSI and siRNA Inhibit [152]
the Ischemic Phase and Inhibit Ferroptosis moter to Promote Its Transcrip- and Cell Death, and ACSL4, with Sp1 as a Regu-
Ferroptosis in Intestinal tion Amelioration of Intestinal latory Factor
I/R Injury I/R Injury
Association between 7-DHC and MSMO1 inhibi- Phospholipid auto-oxi-  7-DHC regulates ferroptosis by Inhibits tumor growth CRISPR-Cas9 screening [153]
Distal Cholesterol tion; DHCR7 activation dation and conjugated  inhibiting phospholipid auto- and metastasis; allevi- identifies EBP and other
Biosynthesis and Fer- diene formation oxidation ates renal IRI targets involved in 7-DHC
roptosis regulation
In vivo rat tMCAO/R ACSL4, TfR1, FTH1, GPX4, Levels of MDA and ROS, Binding of formononetin to Ameliorates cerebral Fer-1 control group, with [154]
and in vitro PC12 cell and iron accumulation and SOD activity ACSL4 inhibits its activity I/Rinjury and preserves ACSL4 as a key target
OGD/R models neurological function
Kinase signaling level LPO accumulation (inhib-  LPO (a key phenotypic Energy stress — AMPK activa- Inhibits ferroptosis and Loss of AMPK activity abol- [16]
(AMPK-ACC pathway) ited) marker) tion — ACC phosphorylation — alleviates renal IRI ishes the protective effect;
Inhibition of PUFA synthesis ACC phosphorylation serves
as a critical regulatory node
Protein modification Lipid peroxide accumula-  Lipid peroxide ac- USP11 stabilizes Beclinl — Impaired/improved USP11 knockdown/knock- [155]
level (USP11-mediated  tion (USP11-dependent) cumulation (a hallmark activates autophagy — pro- motor function recovery  out inhibits ferroptosis; au-
stabilization of Beclinl) phenotype) motes ferroptosis (dependent on USP11 tophagy blockade reverses
levels) the effect
Organelle level (mito- Hmox11 — free iron accu- Mitochondrial LPO (a Hmox1-mediated heme Cardiomyocyte death Protection by Fer-1/iron [156]
chondrial membrane mulation — mitochondrial core execution mecha-  degradation — iron release — and worsening of heart chelators; rescue by Mito-
damage) iron overload nism) mitochondrial LPO failure TEMPO
Cell-cell interaction level Iron overload-induced fer-  Ferroptosis-associated =~ METs release promotes fer- Increased hepatocyte Inhibition of METs, Fer-1, or [157]
(macrophage-hepato- roptosis in hepatocytes LPO roptosis in hepatocytes death and exacerbated DFO alleviates injury
cyte crosstalk) IRl injury
Enzyme-substrate regu- Increased ACSL4 expres-  Accumulation of oxi- gp78 overexpression — Aggravation/alleviation of Inhibition of ACSL4 or [158]
lation level (gp78-ACSL4 sion and disrupted PUFA  dized lipids (a specific upregulation of ACSL4 — liver injury (dependent on ferroptosis abrogates gp78-
pathway) metabolism — accumula- phenotype) PUFA metabolic imbalance —  gp78 levels) mediated injury
tion of oxidized lipids ferroptosis
Enzymatic activity inhibi- Increased ACSL4 enzy- LPO (a core execution AS binds to ACSL4-GIn464 —  Attenuates renal IRland  Nanoparticle-delivered AS is [159]
tion level (AS directly matic activity (inhibited phenotype) inhibits enzymatic activity — acute liver injury effective; ACSL4 serves as
binds to ACSL4) by AS) blocks LPO a specific target
Transcriptional regula-  Decreased GPX4 expres-  ROSt, MDA, and GSH/ Cur 1 HES1 — 1 GPX4 — Cell viability restoration;  HESZ1 shRNA blocks protec- [29]

tion level (HES1-GPX4
pathway)
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sion accompanied by in-
creased iron accumulation
(total iron/ferrous iron)

GSSG imbalance

inhibition of ferroptosis and
oxidative stress

LDH|, MDA], iron|

tion; Fer-1synergistically
enhances efficacy
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Signaling pathway level
(Nrf2-HO-1/GPX4 axis)

Transcriptional regula-
tion level (Nrf2-GPX4/
FTH/xCT axis)

Cell Death Pathways
(Independent of Necrop-
tosis)

Protein interaction level
(HSP9O-GCN2-ATF4
pathway)

Protein interaction level
(Keap1-Nrf2 binding
regulation)

Molecular/organelle
level (mitochondrial iron
transport)

Signaling pathway level
(nuclear translocation
of NRF2 activates HO-1
expression)

Membrane receptor-
transcription factor level
(GPR30-Nrf2 pathway)

Dual-pathway regula-
tory level (independent
targeting of ferroptosis
and pyroptosis)

Iron transport regulatory
level (transmembrane
and mitochondrial iron
pathways)

Organelle level (lyso-
some-mTOR pathway)
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GPX4], iron depositiont

GPX4], xCT], iron over-
loadt, LPOT

Ferroptosis; ferrostatins
(16-86, Fer-1)

GPX4|, Fe?*t, GSH| (di-
rect ferroptosis markers)

GPX4], iron accumula-
tion1 (direct detection
markers)

GPX4 degradation and
HO-1 upregulation lead
to mitochondrial iron
overload

Signaling pathway level
(NRF2 nuclear transloca-
tion activates HO-1)

Upregulation of GPX4,
reduced iron accumula-
tion, and decreased MDA
levels

1GPX4, tlipid peroxides,
tiron accumulation

1Total iron levels (1Zip14,
liron efflux, tmitochon-
drial iron)

tFerritinophagy — firon
release and {LPO

ROSf, iron depositiont,
neuroinflammationt

LPO(hallmark pheno-
type)

Iron-dependent LPO
(core execution mecha-
nism)

Decreased GSH and
increased Fe?* (key
evidence of redox
imbalance)

Ferroptosis-associated
oxidative damage

Organic oxidants (tBHP/
CHP) induce GSH
depletion and lipid ROS
accumulation

Elevated ROS and iron

accumulation (dual
oxidative injury)

MDA formation (LPO
marker)

Increased lipid per-
oxides (key detection
marker)

1Oxidative stress

Broad-spectrum ROS
accumulation (key
clearance target)

Ferroptosis in IRI

AA9 — Nrf2 activation —
GPX4/HO-11 — oxidative
stress & ferroptosis inhibition

Gal — Nrf2 activation —
1GPX4/FTH/XCT — |iron ac-
cumulation & LPO

Ferroptosis directly induces tu-
bular necrosis (non-secondary
event)

HSP901 — GCN2-ATF4 activa-
tion — dual induction of fer-
roptosis and necroptosis

Rg3 inhibits Keap1, activates
Nrf2, upregulates GPX4, and
suppresses iron deposition

Mitochondrial translocation of
HO-1 leads to iron accumula-
tion and increased LPO

BCP — NRF2 nuclear localiza-
tion — THO-1 — inhibition of
ROS and iron accumulation

GPR30 activation — Nrf21
— GPX41 — inhibition of iron
overload and MDA formation

Raffinose — GPX41 — |LPO &
liron accumulation

RRP|Zip14 — thepcidin/
iron transporters — {Cisd1 —
enhanced iron efflux

PMO — lysosomal enrichment
— ROS clearance, iron seques-
tration, mTOR activation

Reduced cerebral infarct
size; improved neurologi-
cal function; decreased
neuronal injury

1 Myofibril damage,
linfarct size, Tcardiac
function

Acute tubular necrosis
(IRI/oxalate crystal
model)

Exacerbated cerebral

infarction, blood-brain
barrier disruption, and
neuronal injury

Improved cardiac func-
tion and reduced myocar-
dial infarct size

Ferroptosis in cardio-
myocytes (distinct from
apoptosis and necrosis)

Improved neurological
scores, reduced cerebral
infarct size, and allevi-
ated histopathological
damage

Improved neurological
outcomes and reduced
cerebral infarct size

Improved cardiac func-
tion and reduced infarct
size

Attenuated liver injury
and reduced hepatocel-
lular death

Alleviation of drug-
induced and ischemic
acute liver injury

ML385-mediated Nrf2 inhi-
bition abolishes AA9 effect

Gal loses efficacy following
Nrf2 inhibition by Brusatol

Ferroptosis blockade by
16-86 provides robust
protection; co-treatment
yields enhanced therapeu-
tic benefits

NTF confers dose-depen-
dent protection; HSP90O
overexpression abrogates
the protective effect of NTF

Molecular docking confirms
Rg3-Keapl binding; Nrf2
pathway plays a central
regulatory role

FTMT/mCAT 1 — ferroptosis
suppression; Bachl | —
HO-1 induction

BCP loses efficacy upon
NRF2 inhibition by ML385;
HO-1 expression is upregu-
lated

Protective efficacy of G1
via GPR30 depends on
Nrf2; ML385 abolishes the
benefit

GPX4 upregulation con-
firmed; LPO and iron levels
decreased

siRNA-mediated hamp si-
lencing enhances the effect
of RRP; Cisd1 upregulation
is confirmed

Confirmed macrophage up-
take; lysosomal localization;
sustained mTOR activity

[160]

[161]

[162]

[77]

[163]

[149]

[164]

[165]

[166]

[167]
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Iron Metabolism/
Oxidative Damage Level
(Dual-Core Regulation)

Signaling/organelle
level (Nrf2/SLC7A11/
GPX4 axis)

Dual-pathway level (ROS
scavenging + ferroptosis
inhibition)

Transcriptional regula-
tion level (EGR1 as a
central target)

Preconditioning inter-
vention level (synergistic
effect of iron and IPC)

Transcriptional regula-
tion level (Nrf2 nuclear
translocation and
activation)

Inflammation-iron me-
tabolism regulation level
(IL-6/hepcidin axis)

Protein modification
level (ubiquitination and
methylation regulation)

Iron accumulation 1, LPO
1 (MDA, 4-HNE, PTGS2)

GPX4 |, SLC7A11 |, iron
accumulation f, mitochon-
drial damage

GPX4 activity |, GSH
depletion

Iron overload, GSH deple-
tion, and lipid peroxide
accumulation

GPX4 | (iron precondition-
ing promotes ferroptotic
effect)

Free iron 1, LPO 1, GPX4 |

DMT1 1, FPN1 |, TfR1 1
— neuronal iron overload

GPX4 |, SLC7A11 |, iron
ions 1, oxidative stress

LPO markers 1 (MDA,
4-HNE)

LPO accumulation
(hallmark of ferroptotic
execution)

Increased intracellular/
mitochondrial ROS (key
target)

Lipid peroxide ac-
cumulation (no other
oxidative markers men-
tioned)

Iron contributes to the
generation of ROS

ROS 1, LPO 1 (dual
damage)

LPO (inhibited by EE
to reduce iron-induced
ferroptosis)

Oxidative stress levels 1
(general indicator)

Ferroptosis in IRI

Ticlopidine| — iron accumula-
tion] — LPO| — ferroptosis
inhibition

Lip-1 intervention during cold
ischemia blocks ferroptosis
pathway activation

THC activates Nrf2 — elimi-
nates ROS; 1GSH activates
GPX4 — inhibits ferroptosis

Lip-1 | EGR1 — inhibits fer-
roptosis

IPC combined with iron inhibi-
tion mitigates adverse effects
— confers cardioprotection

Loureirin C — promotes Nrf2
nuclear translocation — 1
HO-1/NQO1/GPX4

EE|IL-6— | JAK2-
STAT3— | hepcidin—>DMT1]/
FPN11

USP7 | — TBK1 ubiquitina-
tion |/FMR1 methylation | —
inhibition of ferroptosis

Hepatic necrosis/fibrosis
|, ALT/AST |, inflamma-
tory infiltration alleviated

Improved lung pathol-
ogy, restored pulmonary
function, and reduced
inflammation

Improved cardiac func-
tion, reduced fibrosis,
and increased capillary
density

Reduced renal tubular
cell death, decreased
macrophage infiltration,
and alleviated inflam-
mation

Fe-PC alone is ineffec-
tive; Fe + IPC improves
LVDP recovery and
provides antiarrhythmic
effects

Alleviated brain injury
and inhibited neuronal
ferroptosis

Decreased neuronal
iron levels, mitigated
ferroptosis, and exerted
neuroprotective effects

Cell proliferation 1, renal
function improvement,
inhibition of ferroptosis

Prussian blue staining
foriron |; LPO markers |;
PTGS2 |

Validated in both human
lung biopsies and mouse
models; enhanced efficacy
with cold ischemia phase
intervention

Effective when adminis-
tered prior to reperfusion;
protective effect validated
in erastin/RSL3 models

EGR1 identified as a key
factor; Lip-1 suppresses
EGR1 expression

Fe-PC group: GPX4]; Fe+IPC
group: enhanced recovery
of contractile function?

Nrf2 knockdown attenuates
protection; dose-dependent
inhibition of ROS

IEE group: hepcidin |;
validation of altered iron
transporter expression

USP7 siRNA validation;
TBK1/FMR1 overexpression
reverses the effect

[84]

[168]

[169]

[170]

[171]

[172]

[173]

[174]
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machine learning has identified a plethora of
novel ALOX15 inhibitors, three FDA-approved
drugs, and seven structurally different com-
pounds with beneficial ADMET properties. This
adds to the pharmacological toolbox for LPO
chain targeting [121]. In addition, the necropto-
sis inhibitors KW-2449 and Necrostatin-1 have
been shown to block ULK1-mediated autopha-
gy, jointly suppressing both ferroptosis and
necroptosis, suggesting the presence of an
autophagy-centered regulatory hub between
the two and providing a rationale for multi-tar-
get combination strategies [122].

The harmful involvement of ferroptosis in
inflammation and tumor microenvironments
should not be overlooked. For instance, when
CTH is modulated positively by SENP3 it is sub-
ject to degradation owing to the removal of
SUMO modification activating ferroptosis and
enhancing the inflammation that drives AAA.
The pathology is significantly alleviated by
either SENP3 knockout or exogenous supp-
lementation with H2S donors, e.g., ATB346
[123]. Ferroptosis activators, e.g., dihydroarte-
misinin and JKE1674 induced Fe?* accumula-
tion and LPO in breast cancer models resistant
to FOXM1 inhibitors, leading to reversion of
resistance phenotypes and inhibition of tumor
cell migration and proliferation [124].

Interestingly, some clinically approved drugs
have suggested new possibilities in regulating
ferroptosis. The in vivo metabolism of seratro-
dast has led to the identification of a hydroqui-
none form that exhibits free radical scavenging
activity. This form of seratrodast has also been
shown to selectively inhibit ferroptosis without
affecting apoptosis or necrosis. Notably, serat-
rodast has demonstrated significant renopro-
tective effects in murine renal IRl models. Thus,
seratrodast serves as a model case for drug
repurposing [125]. Ryan et al., in models of
neurodegeneration, reported that microglia un-
der iron overload displayed signs of “iron sag-
ging” and were able to recover function by
application of ferroptosis inhibitors, represent-
ing a novel target for intervention of these dis-
orders [126]. In orthopedics, the natural sub-
stance cynarin could activate the GPX4/NRF2
signalling pathway to reduce TNF-a-induced fer-
roptosis in NP cells and maintain mitochondrial
cristae structure and redox homeostasis, effec-
tively slowing down intervertebral disc degen-
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eration [127]. Ubastatin A directly inhibits the
enzymatic activity of GPX4, through an HDACG6-
independent mechanism, counteracts radio-
therapy-induced anti-ferroptotic responses ulti-
mately improving radiosensitivity. Favorable
bioavailability and targeting potential [128]. In
addition to this, the PARP inhibitor olaparib
reduces SLC7A11 in a p53-dependent manner,
thereby limiting GSH synthesis and inducing
ferroptosis; this occurred in combination with
FIN-class agents that synergistically increased
the sensitivity of BRCA-wild-type ovarian cancer
cells offering a potential strategy to surmount
current therapeutic bottleneck [129].

Effects of novel antioxidants on IRI

Excess ROS production is considered to be an
important trigger of pathological processes like
LPO, mitochondrial injury, and ferroptosis dur-
ing IRI. Regular antioxidants are NAC and vita-
min E, which can scavenge free radicals. But
unfortunately, they have low bioavailability,
poor tissue penetration and lack target speci-
ficity. Thus, they are not suitable for the preci-
sion treatment of IRI. As a result, the develop-
ment of structurally novel, mechanistically
well-defined, and more target-specific antioxi-
dants has gained importance in mitigating IRI
damage and suppressing ferroptosis.

In recent years, natural products have proved
quite effective in this area. Amphioxus poly-
saccharide (APS) can significantly increase the
contents of GSH above the baseline. APS can
also lower the level of MDA, an important struc-
tural marker in myocardial IRI-related ferropto-
sis, which can further inhibit ferroptosis and
LPO production by upregulating GPX4 [130].
Furthermore, upregulating Nrf2 and HO-1 can
reduce intracellular labile iron and improve
myocardial IRI. It will involve reducing lipid per-
oxidation and MDA levels in the injured myocar-
dial cells. It can also restore iron homeostasis.
Either iron metabolism disorder or excess Fe2?*
can induce lipid toxicity. It may further partici-
pate in the cell dysfunction process. Overall,
APS may exert protective effects against fer-
roptosis via the Nrf2/GPX4 pathway, as evi-
denced by reduced Fe?* and MDA levels. How-
ever, specific research is still necessary to
confirm its validity [131]. Likewise, Eriobotrya
japonica polysaccharide (EJP) at myocardial IRI
model conditions significantly increased activi-

Am J Cardiovasc Dis 2025;15(6):405-441



Ferroptosis in IR

ties of SOD and glutathione peroxidase (GSH-
Px), and decreased MDA, IL-6 and TNF-« levels,
offered cardioprotective effects and probably
renalprotective effects [132]. Of synthetic an-
tioxidants, flavonoid derivative 13 displayed
remarkable free radical scavenging activity
which include higher iron-reducing capacity
along with efficient scavenging of ABTS and
DPPH radicals. The impact of this treatment on
myocardial pathology. In particular, this treat-
ment reduces markers of myocardial injury,
LDH, CK and LPO (MDA). Furthermore, it has
the effect of improving the structure and func-
tion of myocardial tissue. Overall, we see that
it has high potential for clinical application
[133]. Also, pre-conditioning a short-term trans-
verse aortic constriction (TAC) can lessen myo-
cardial IRI-induced tissue injury by promoting
SIRT3-mediated deacetylation of SOD2. So,
this will maintain autophagic flux and prevent
the aberrant activation of autophagy. Moreover,
mimicking this protective mechanism can help
with SIRT3 overexpression or Beclinl knock-
down [134].

Considerable advancements have also taken
place in the development of antioxidants aim-
ed at mitochondria to combat those mitochon-
drial ROS. SkQ1 and MitoQ can selectively
build up in the mitochondrial inner membrane,
stabilize mitochondrial membrane potential,
and markedly inhibit ROS generation, thereby
blocking upstream ferroptosis signaling in mul-
tiple IRl animal models involving the brain,
heart, and liver. The free radical scavenger eda-
ravone, which is already in clinical use for acute
cerebral infarction, has been shown to alleviate
neuronal death in a cerebral ischemic model by
upregulating GPX4 expression and inhibiting
lipid oxidation chain reactions that are closely
related to ferroptosis [120]. In addition, the cre-
ation of many nanotech-based antioxidant plat-
forms with promising anti-ferroptosis thera-
peutic benefits has occurred. An example of an
innovative nanomaterial with a unique design
is transferrin-mineralized iridium oxide nanoag-
gregates (Tf-IrO, NAs), which exhibit dual mim-
icking activities of SOD, CAT, and GPX and
possess the capacity to scavenge ¢OH. This
system uses TPF-mediated targeting to pass
the blood-brain barrier, eliminate ROS storms,
mitigate local inflammation, and exert strong
neuroprotective effects in cerebral IRI models
[135].
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Regulation of iron metabolism in personalized
therapeutic strategies

Dysregulated iron metabolism and aberrant
activation of ferroptosis are recognized as the
main mechanisms underlying cellular structural
damage and organ dysfunction in IRI. Studies
show significant differences among individuals
in their ability to regulate iron homeostasis.
This variability can limit the efficacy of broad-
spectrum therapeutic strategies targeting oxi-
dation or apoptosis. As precision medicine ad-
vances, a major focus of intervention resear-
ch on IRl has become the integration of iron
metabolism regulation into individualized treat-
ment systems.

The regulatory network of iron metabolism in-
cludes iron uptake (TfR1, DMT1), storage (ferri-
tin), export (FPN), regulatory factors (hepcidin),
and recycling by ferritinophagy. The expression
of these molecules differs widely between indi-
viduals, tissue types and disease contexts. In
MASH, a mechanism in which NOX subunit
NCF1 expressed in macrophages activates he-
patocyte hepcidin secretion through the oxi-
dized phospholipid-TLR4 pathway, induces iron
accumulation in Kupffer cells which in turn,
leads to ferroptosis, thereby enhancing inflam-
mation. Impact on signaling pathway by hypo-
functional NCF1 p.90H. The hypofunctional
NCF1 p.90H variant disrupts signaling pathway
in liver. As a result, it is potential novel thera-
peutic target for MASH [136]. The down regula-
tion of GPX4 expression due to combined effect
of IRl and bile salt fatality through liver rather
than bile duct obstruction in liver transplanta-
tion, inducing LPO and ferroptosis in cholangio-
cytes; administration of the ferroptosis inhibitor
Lip-1 can effectively alleviate bile duct injury. In
addition, bile salts have been observed to wors-
en iron homeostasis disturbance owing to their
ferritinophagy-promoting activity in cholangio-
cytes, indicating that this pathway also consti-
tutes a crucial target for postoperative inter-
vention [137].

Iron homeostasis regulation is determined by
genetic background of an organism. One exam-
ple, deletion of genes such as HJV, SLC40A1
and PKLR, of pathogenic variant (not HFE)
occurs in hereditary spherocytosis (HS). Iron
overload is not transfusion-dependent in this
case. This suggests a polygenic basis for abnor-
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mal iron metabolism which also underscores
the importance of larger cohorts to build
improved predictions [138]. In endometriosis,
studies have shown that creatine can bind to
prion protein (PrP) and inhibit the conversion of
Fe3* to Fe?'. This process then reduces iron
uptake and LPO level which improve the resis-
tance of ectopic endometrial cells to ferropto-
sis. The DART trial provided further support for
the creatine-PrP axis as a novel target for the
regulation of ferroptosis [139]. In addition, for
the formation of calcium oxalate kidney stones,
ER stress activates the ATF4/CHAC1 signalling
pathway, leading to GSH depletion, iron accu-
mulation, and increased LPO, driving ferropto-
sis. Renal injury and crystal deposition can be
efficiently relieved by interventions with 4-phen-
ylbutyric acid (4-PBA) or deletion of CHACZ, fur-
ther implicating the therapeutic potential of
this pathway in iron homeostasis modulation
[140]. Collectively, and based on the current
evidence, ferroptosis-targeted therapeutic st-
rategies can be broadly classified into the fol-
lowing dimensions: inhibition of LPO/stabiliza-
tion of GPX4 - iron modulation and chelation -
mitochondrial and autophagy axis - inflamma-
tion/immune regulation - genetic and delivery
platforms. Table 2 presents a summary of the
key targets, typical agents/approaches, types
of evidence and research progress.

Discussion

Ferroptosis, a process of cell death driven by
iron-dependent lipid peroxidation (LPO) that is
dependent on iron, has gained more attention
owing to its role in IRI. According to the evi-
dence accumulating, with regard to IRI-induced
damage in metabolically active organs like the
heart, brain, liver and kidneys, the defined fer-
roptosis-related signalling pathways involving
inhibition of GPX4, upregulation of TfR1 and
activation of ACSL4 consistently show a pat-
tern of alteration. This alteration indicates a
common pathogenesis across various organs
[141]. Nevertheless, despite these shared fea-
tures, the regulatory mechanisms of ferroptosis
exhibit marked organ-specific differences. In
the myocardium, AMPK-NOX4-GPX4 axis plays
a major role in governing ROS clearance as well
as antioxidative regulation, brain regulation of
ferroptosis relies more on Nrf2/GPX4 pathway
and non-coding RNA mediated mechanisms
[142]. Inflammatory microenvironment, meta-
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bolic status and cell type together determine
organ-specific sensitivity to ferroptosis [143].
Clarifying these tissue-specific mechanisms is
crucial for formulating more effective drug
strategies. In a molecular context, oxidative
stress is a main upstream trigger for ferropto-
sis. During the early phase of reperfusion,
excessive generation of ROS results in the
depolarization of mitochondrial membrane po-
tential (MMP), LPO and ferritinophagy. The in-
crease in the expression of TFfR1/DMT1 and the
downregulation of FPN result in rapid intracel-
lular labile iron accumulation. As a result, Fen-
ton chemistry and oxidative chain reactions
intensify. The central driver of ferroptosis pro-
gression is the feedback loop involving “oxida-
tive stress-iron metabolism dysregulation-LPO”
[144], Nrf2 agonists, GPX4 stabilizers, and iron
chelators have been shown to provide strong
tissue-protective effects [145], suggesting that
interrupting this positive feedback loop is of
therapeutic value.

Notably, ferroptosis does not take place on its
own but is linked to other types of programm-
ed cell death such as apoptosis, autophagy,
and pyroptosis. For instance, Gpx4 inactivation
can synergistically trigger caspase-1-mediated
pyroptosis, and NCOA4-mediated ferritinopha-
gy is closely related to regulation of autophagic
flux [146]. Studies have also shown that these
death pathways do cross-talk and there are
compensatory mechanisms, such as how inhi-
bition of apoptosis leads to enhanced ferropto-
sis in some models. This shows that it could be
beneficial to design interventions from a sys-
tem’s biology perspective that target multiple
pathways.

Though many molecules involved in regulating
ferroptosis have been found, targeted agents
are still challenging in terms of clinical transla-
tion. The most well-known ferroptosis inhibi-
tors, for instance Fer-1 and Lip-1 [147], have
been shown to be effective in animal models;
however, their stability, tissue specificity and
safety still need more assessment. Additionally,
a lack of highly sensitive, non-invasive biomark-
ers, as well as tools for real-time monitoring,
limits clinical application of ferroptosis in diag-
nosis and therapeutic assessment. Research
in the future can focus on the ongoing develop-
ment of detection and drug delivery systems
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Table 2. Potential therapeutic strategies for ferroptosis in IRl and research progress

Intervention category/ Specific drugs/ Main mechanisms of action Exp erimental model/ Effect/protective effect Research stage/remarks References
target methods evidence source
Key proteins in the Experimental inducers Clearance of damaged Various AKI models (e.g.,  Alleviate renal injury, In the basic research stage, [175]
mitochondrial autophagy (e.g., CCCP) or genetic mitochondria, reduction of  IRI, CI-AKI, LPS, FA) improve cell survival and with complex mechanisms
pathway (e.g., PINK1, manipulation methods oxidative stress, and attenu- function and unclear interactions
PRKN, BNIP3, etc.) ation of cell death
OTUD5-GPX4 stabiliza- AAV-mediated OTUDS5  OTUDS stabilizes GPX4; Kidney I/R model; spatial OTUD5 deletion exacer- Mechanistic research stage, [176]
tion axis (deubiquitinase gene delivery; OTUD5  mTORC1-mediated au- transcriptomics localiza-  bates ferroptosis and renal with AAV delivery suggest-
and core ferroptosis gene knockout tophagic degradation of tion; renal tubular cell injury; AAV-OTUD5 allevi- ing potential gene therapy
protein) OTUDS triggers a reduction  study ates injury and promotes  approaches
in GPX4 recovery

Targeted inhibition of Ferroptosis inhibitors Block ferroptosis, allevi- Mouse retinal I/R model;  Reduce retinal cell loss Basic mechanistic research [177]
ferroptosis, involving iron (specific drugs not ate inflammation, immune  single-cell RNA sequenc-  and improve retinal gan- stage, with single-cell atlas
metabolism and other specified) response, and neuronal ing analysis glion cell survival rate revealing the key role of fer-
pathways damage roptosis
IREB2 ferroptosis target HO-1/BMMSCs Exosome delivery of Fatty degeneration liver Alleviate fatty liver injury, Mechanistic research stage, [178]
and miR-29a-3p regula- exosomes (containing miR-29a-3p targets and IRI model; hepatocyte H/R suppress ferroptosis, and  exosome-mediated miRNA-
tory axis miR-29a-3p) transplan- inhibits IREB2 to suppress  model; IREB2 knockdown mitochondrial dysfunction targeted therapy as a new

tation ferroptosis validation strategy
Nrf2 signaling pathway  Caffeic acid (2 mgkg  Activate the Nrf2 pathway Rat pMCAO model; SK- Reduce infarct size, Preclinical research stage, [179]
(regulating TfR1/ACSL4/ *d?, oral/injection) to inhibit oxidative stress/  N-SH cell OGD/R model; improve neurological with a potential therapeutic
antioxidant genes) inflammation/ferroptosis ML385 reverse validation  function, and alleviate window of 2 hours after

(downregulate TfR1/ACSL4) neuroinflammation pMCAO treatment

HUWEZ ubiquitin E3 Genetic inhibition HUWEZ ubiquitination-me-  Huwel knockout mouse Alleviate liver injury, Basic research stage with [180]
ligase and TfR1 methods such as gene diated degradation of TFR1  primary hepatocyte and reduce ferroptosis, and potential clinical guidance

knockout and chemical regulates iron metabolism embryonic fibroblast cell protect liver function significance

inhibition techniques and inhibits ferroptosis model
Iron-dependent ferrop- Deferoxamine and Inhibit iron overload, LPO, Culture of cardiomyocytes Reduce infarct size and Preclinical research with [181]
tosis and mitochondrial  CsA, alone or in com- ferroptosis, and mitochon-  and mouse I/R injury improve cardiac remodel-  potential clinical application
permeability transition-  bination drial necrosis model ing synergistically value
induced necrosis
The Role of Actin Fila- CK-666 and CK-636 Direct Elimination of LPO to Renal IRI Model Improving Renal Injury and Research on Potential Thera- [182]
ments in Ferroptosis Inhibitors Alleviate Ferroptosis Reducing Ferroptosis peutic Effects
Ferroptosis, GPx4 Down- Targeting Ferroptosis GPx4 Downregulation and In Vivo Phenotype and In  Reducing Infarct Size Research on Potential Thera- [183]
regulation, and HO-1 with Drugs and Cyclo-  Iron Overload Induce Fer- Vitro Mechanism Study and Improving Cardiac peutic Strategies
Upregulation Targets sporin A Combination  roptosis Remodeling
ACSL4-Mediated Fer- Traditional Chinese Regulating ACSL4/ Rat Myocardial I/R Model Improving Cardiac Func- Mechanism Study of Tradi- [184]
roptosis Pathway Medicine Formula Ferroptosis-Related Protein  and H9c2 Cell OGD/R tion, Reducing Infarct Size, tional Chinese Medicine in

HJ11 Decoction Expression Model and Inhibiting Ferroptosis  Treating Myocardial I/R Injury
Ferroptosis Pathway and Natural Product Gos- Chelating Iron Content, Rat Myocardial I/R Model, Reducing Infarct Size, Mechanism of Cellular [185]

LPO Targets
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sypol Acetate (GAA)

Downregulating Ptgs2, and
Upregulating GPX4 Protein

Neonatal Rat Cardiomyo-
cytes, and H9c2 Cells

Inhibiting LPO, and Fer-
roptosis

Protection in the Preclinical
Research Stage
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Ferroptosis and the
PKCe-Nrf2 Signaling
Pathway

Ferroptosis and the

AMPKa2-GPX4 Pathway

Iron Deposition and FtMt

Retinal Ganglion Cell
Death (Ferroptosis/
Apoptosis/Necroptosis)

Epigenetic Regulatory
Targets (PRMT1/TAF15
AXxis)

Key Genes in Iron
Deposition Pathway:
SLC7A11, PSAT1, ASNS

FtMt Target

OGFOD1 Gene Target

Mitochondrial Protein
mitoNEET Target

CPB-Induced Ferropto-
sis-Related Genes

Iron Chelation Targets/
Ferroptosis Pathway

Circulating Endothelial
Cell Ferroptosis Gene
Markers
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y-Glutamylcysteine
(v-GC)

Ferulic Acid (FA) Treat-
ment

Gene Knockdown
and Overexpression
Methods

Fer-1, z-VAD-FMK, and
Necrostatin-1 Combi-
nation

PRMT1 Inhibitor or
TAF15 Overexpression

No Specific Drugs De-
veloped Yet, Providing
Potential Targets

FtMt Overexpression,
Iron Chelator DFO

OGFOD1 Gene Knock-
out

MitoNEET Ligand NL-1
(10 mg/kg Intraperito-
neal Injection)

Focus on Mechanism
Exploration

Platelet Membrane-
Mimetic Liposome
Platesome-DFO
Construction of a Ran-
dom Forest Diagnostic
Model

Ferroptosis in IRI

Activating the PKCe-Nrf2
Pathway to Increase GSH
Synthesis

Upregulating AMPKa2 to
Inhibit Ferroptosis and
Improve Oxidative Stress

Regulating Iron Homeo-
stasis to Reduce Iron Ac-
cumulation and Inhibit Iron
Deposition

Inhibiting Iron Deposition/
LPO to Alleviate Pro-
grammed Cell Death

Inhibiting TAF15 Methyla-
tion — Activating GPX4/
NRF2 Pathway — Inhibiting
Ferroptosis

Regulating Iron-Dependent
PUFA Oxidation and Degra-
dation

Inhibiting Iron Dysregula-
tion and ROS Accumulation,
Protecting Tight Junctions

Resistance to Diet-Induced
Obesity and Insulin Resis-
tance

Inhibition of Hydrogen
Peroxide Production and
Regulation of Cellular Bio-
energetics

Regulation of Myocar-
dial LPO Inflammatory
Response and

Targeted Reduction of
Lesional Iron Content to
Inhibit Ferroptosis
Ferroptosis Genes as Di-

agnostic Markers for Acute
Myocardial Infarction

Rat Cerebral I/R Model

Rat Myocardial Ischemia/
Reperfusion Injury Model

Mouse Cerebral I/R Model

Mouse Retinal I/R Model
and Primary RGC Cultures

Blood from AMI Patients,
Mouse AMI Model, and
HL-1 Cardiomyocytes

GEO Database Analysis *
Mouse Heart Transplanta-
tion Model of I/R

Brain I/R Model, OGD/R
Injury in bEnd.3 Cells

OGFOD1 Knockout Mice
Fed a High-Fat Diet

Mouse Transient Middle
Cerebral Artery Occlusion
(t-MCAO) Model

Atrial Biopsy Before and

After CPB Surgery in ToF
Patients

Mouse Model of Cerebral
I/R Injury

GEO Database CECs
Data and Clinical Sample
Validation

Alleviating Brain Injury
Symptoms and Inhibiting
LPO

Reducing Infarct Size, Im-
proving Cardiac Function,
and Inhibiting LPO

Alleviating Brain Injury and
Neurological Dysfunction

Optimal RGC Protection
by Alleviating Immune
Response and ROS Ac-
cumulation

Fe?*|, MDA|, GSH?, Im-
proved Cardiac Function,
Reduced Infarct Size

High Expression of Targets
Associated with Increased
Iron Deposition and I/R
Injury

Alleviating Blood-Brain
Barrier Disruption, Cell
Apoptosis, and Tight Junc-
tion Loss

Prevention of Obesity,
Insulin Resistance, and Im-
paired Glucose Tolerance

Reduction of 43% in
Infarct Volume and 68% in
Brain Edema

Confirmation of CPB-In-
duced Cardiac Ferroptosis

Reversal of Neurological
Deficits; Reduction of Iron
Deposition and Ferroptosis
The Diagnostic Model
Achieved an AUC of
0.8550 (Validation Set)
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Research on Potential Neuro-
protective Therapies

Mechanism Study with Car-
diac Protection Potential

Providing New Potential
Therapeutic Targets

Unveiling the Death Cascade
Mechanism to Guide Future
Therapies

Preclinical (Animal/Cell
Validation)

Mechanism Exploration and
Target Discovery Stage, with
Animal Model Validation

Mechanism Exploration
Stage, with Animal and Cell
Model Validation

Mechanism Exploration
Phase: Validation Using Gene
Knockout Animal Models

Animal Model Validation
Phase: Effective Only in
Reperfusion Injury

Preclinical Mechanism Dis-
covery Phase: Target Group
Identification

Preclinical Study: Nanotar-
geted Delivery System

Biomarker Discovery Phase:
Clinical Diagnostic Applica-
tion Potential

[186]

[187]

[188]

[189]

[190]

[191]

[178]

[192]

[193]

[194]

[195]

[196]



Oxidized Albumin (ox-
Alb) Induces Ferroptosis

Target of RNA Demethyl-
ase Alkbh5

miRNA-541-5p Target/
Ferroptosis Pathway

Mitochondrial Fe?* Che-
lation Detection Target

Ferroptosis Regula-
tion Database (FerlG)
Resource Platform

Gender-Specific Targets:
p53/Nrf2 Pathway

Ferroptosis-Related Sub-
type Markers (BECN1/
NF2 Gene Cluster)

Iron Chelator DFO and
Ferroptosis Inhibitor
Lip-1

Overexpression of
Alkbh5 Gene

Iron Chelator DFO;
miRNA Inhibition

Novel Fluorescent
Probe MFF (Detection
Tool)

Inclusion of 445
Ferroptosis-Related
Drugs/Molecules

Focus on Mechanism
Exploration

Construction of a Six-
Gene DGF Prediction
Model

Ferroptosis in IRI

Triggering Downregulation
of GPX4/xCT and Upregula-
tion of ACSL4/LPO
Reduction of m6A Methyla-
tion Promotes Fthl Transla-
tion and Inhibits Ferroptosis

Vitamin C/Copper Model,
I/R, and Doxorubicin Ne-
phropathy Mouse Model

H9C2 Cell H/R Model +
Rat Myocardial I/R Model

Regulation of the Expres-
sion of Ferroptosis Markers
such as GPX4 and ACSL4

Electrophoretic Accumula-
tion + Covalent Binding

to Mitochondrial Proteins,
Specific Indicator of Fe?*
Integration of Xc-/GPX4
Axis, LPO and Iron Metabo-
lism Data

Rat Myocardial I/R Model
+ HI9C2 Cell H/R Model

Hepatocyte and Multi-Cell
Line AW m Model

Constructed Based on
Literature Data Mining

Psychological Stress-
Induced Enhanced Cardiac
Oxidative Stress and Fer-
roptosis in Women

Sex-specific C57BL/6
Mice Under Combined
Restraint Stress and I/R

Metabolic Exhaustion Clinical Dataset of Renal
Subtype Associated with IRI

High DGF Risk and Immune

Infiltration

ox-Alb Aggravates Renal
Injury; DFO/Lip-1 Inhibit
Ferroptosis

Inhibition of Ferroptosis
Markers; Alleviation of
Myocardial Injury

DFO Reverses Oxidative
Stress and Ferroptosis
Injury Markers

AW m Loss Retained,
Fe2*-Specific Fluorescence
Quenching Rate 80%

Provides 51 Targets, 718
Regulatory Factors Dis-
ease Association Data

Significant Increase in
Superoxide/LPO/Ptgs2 in
Females

Prediction Model for Dis-

tinguishing DGF Risk and
Guiding Patient Stratifica-
tion

Mechanism Exploration
Stage: Unveiling the Patho-
genic Role of ox-Alb

Mechanism Exploration
Stage: Targeting the m6A
Methylation Pathway

Marker Discovery Stage, miR-
NA-541-5p as a Diagnostic
Target

Tool Development Stage,
New Technology for Live Cell
Mitochondrial Iron Detection

Database Tool Stage

Mechanism Discovery Phase:
First-time Identification of the
Association Between Gender
Differences and Ferroptosis
Clinical Prediction Model

Phase: DGF Risk Assessment
Based on FRGs
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[198]

[199]

[200]

[201]

[202]

[203]
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that will integrate nanoprobes, advanced bio-
imaging, and multi-omics technologies.

From a wider pathological view, ferroptosis
does not only contribute to IRI, it also plays
dual regulatory roles in a wide array of condi-
tions like cancer and neurodegenerative dis-
eases and metabolic disorders. This duality
implies that ferroptosis not only executes tis-
sue damage but also serves as a critical node
in preserving cellular homeostasis, creating a
good scope for therapeutics.

In the last couple of years, the strategies for
suppressing and curing iron-dependent cell
death (ferroptosis) that happen due to IRI
have... Research has shown that antioxidant,
iron homeostasis, and metabolic reprogram-
ming have been three main strategies to inhibit
ferroptosis. Nrf2/GPX4 pathway activators can
greatly reduce damage caused by ischemia-
reperfusion injury by increasing antioxidant
ability. One natural compound whose capacity
to inhibit the NRF2-KEAP1 protein interaction
has been validated is tiliroside. Direct activa-
tion of the NRF2/GPX4 pathway by tiliroside
effectively suppresses ferroptosis and offers
renal protective effects in cisplatin and IRI-
induced acute kidney injury models, providing
a novel drug candidate and direct evidence for
this strategy [7]. Iron chelators (deferoxamine)
and blocking NCOA4-mediated ferritinophagy
can effectively reduce free iron load and block
the chain reaction for amplifying the Fenton
reaction. This strategy has been critically vali-
dated in a human ex vivo liver IRl model; stud-
ies confirmed that the iron chelator deferox-
amine reduced intrahepatic iron content and
downregulated HO-1 and HIFc, thereby decre-
asing liver injury. At the same time, activation
of energy-sensing pathways including AMPK,
SIRT3, and mTOR can restore metabolic ho-
meostasis and reduce lipid peroxidation, while
interventions targeting the inflammation-fer-
roptosis positive feedback loop (inhibition of
NLRP3 or TNF-a) can also alleviate immune
cell-mediated secondary damage [148]. Future
integrated strategies of nanocarrier e.g. target-
ed drug delivery and multi-target small mole-
cule combination therapy together with an indi-
vidualized iron metabolism profiles monitoring
could lead to precise ferroptosis blockade in IRI
and long-lasting functional protection. This the-
oretical foundation not only aids in clinical pre-
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vention and treatment but also provides a
basis for future drug development along these
new directions.

Informed by existing studies, we propose that
ferroptosis contributing to IRl is not a simple
cell death mechanism, but a hub event arising
from different energy and metabolic stressors.
The defining characteristic of iron homeostasis
imbalance is that oxidative stress and mito-
chondrial dysfunction amplify each other, re-
sulting in the establishment of a metabolism-
immunity-death coupling loop. Evidence sup-
porting this theory has emerged from studies
using cardiomyocytes, showing that organic
oxidant-induced oxidative stress promotes cy-
tosolic and mitochondrial iron overload throu-
gh functional activation of the Bachl/HO-1
axis, which combined with GPX4 degradation,
unleashes the hallmark ferroptosis rather than
other forms of cell death. Importantly, the find-
ings revealed that moving HO-1 to the mito-
chondria acts as the “trigger point” for mito-
chondrial iron overload and lipid peroxidation,
thus demonstrating that dysregulation of iron
metabolism is coupled to mitochondrial dys-
function at the sub-organelle level. Additionally,
in models of ischemia-reperfusion injury and
doxorubicin cardiotoxicity, targeting either mito-
chondrial iron (driven by FTMT overexpression)
or mitochondrial ROS (driven by mCAT overex-
pression) inhibited this process. The discovery
validates mitochondria as the main executor of
metabolic stress while identifying specific mo-
lecular targets to break this vicious cycle [149].
Further validation of this could pave way for the
development of effective clinical strategies for
the treatment of ferroptosis. Present research
has lent important information in that direction.
For example, in the skeletal system, spermidine
(SPD) could specifically reverse excess iron-
induced metabolic imbalance and differentia-
tion inhibition in osteoblasts (MC3T3-E1) and
osteoclasts (RAW264.7) via SIRT1/SOD2 acti-
vation, reducing the bone loss of aged rats.
SIRT4, a pivotal metabolic sensor, plays a cen-
tral nodal role in bone tissue iron metabolism
disorder can be effectively intervened. Build-
ing on this, by systematically deciphering its
upstream (e.g., non-coding RNAs) and down-
stream (immune-inflammatory factors) regula-
tory networks using integrated multi-omics
technologies, and correlating these with indi-
vidualized aging and iron overload metabolic

Am J Cardiovasc Dis 2025;15(6):405-441



Ferroptosis in IR

profiles, we can aspire to achieve precise iden-
tification and targeted intervention of ferropto-
sis in conditions such as senile osteoporosis.
This offers a new theoretical foundation and
methodological basis for clinical translation
[150].

In summary, ferroptosis is an important link in
the process of IRl which is regulated through
oxidation stress, iron metabolism, autophagy,
and immune signaling. Discovering tissue-spe-
cific signaling pathways, clarifying its crosstalk
with other death pathways and formulating ef-
fective targeted interventions may open up ave-
nues for prevention and treatment of ischemic
diseases.
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