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Abstract: Coronary artery disease and associated ischemic heart disease are prevalent disorders worldwide. Further, 
systemic hypertension is common and markedly increases the risk for heart disease. A common denominator of 
systemic hypertension of various etiologies is increased myocardial load/mechanical stress. Thus, it is likely that 
high pressure/mechanical stress attenuates the contribution of cardioprotective but accentuates the contribution 
of cardiotoxic pathways thereby exacerbating the outcome of an ischemia reperfusion insult to the heart. Critical 
events which contribute to cardiomyocyte injury in the ischemic-reperfused heart include cellular calcium overload 
and generation of reactive oxygen/nitrogen species which, in turn, promote the opening of the mitochondrial perme-
ability transition pore, an important event in cell death. Increasing evidence also indicates that the myocardium is 
capable of mounting a robust inflammatory response which contributes importantly to tissue injury. On the other 
hand, cardioprotective maneuvers of ischemic preconditioning and postconditioning have led to identification of 
complex web of signaling pathways (e.g., reperfusion injury salvage kinase) which ultimately converge on the mito-
chondria to exert cytoprotection. The present review is intended to briefly describe mechanisms of cardiac ischemia 
reperfusion injury followed by a discussion of our work focused on how pressure/mechanical stress modulates 
endogenous cardiotoxic and cardioprotective mechanisms to ultimately exacerbate ischemia reperfusion injury.
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Introduction

Systemic hypertension is a common disorder 
with global prevalence estimates of 1 billion 
individuals. It accounts for an estimated 7.6 
million deaths each year and for 13.5% of total 
mortalities, more than any other single risk fac-
tor [1-4]. In the United States, the data from 
2007-2010 indicate that 33% of adults 20 
years or older have hypertension which repre-
sents about 78 million American adults; the 
prevalence is nearly equal between men and 
women although African-Americans are among 
those with highest prevalence of hypertension 
(44%) in the world [5]. Of interest is the fact that 
the population of the United States continues 
to increase and the Census Bureau projects it 
to almost reach 440 million by the year 2050 
(an increase of about 130 million from 2010) 
[6, 7]. Importantly, the proportion of patients 

greater than 65 years of age is increasing at a 
greater rate than the total population. This is 
reflected by the data indicating that while the 
total population increased by 9.7% between 
2000 and 2010, those older than 65 years 
increased by 15.1%. Further, the greatest pro-
portional increases over this 10-year period 
occurred in the oldest age groups, with a 29.9% 
increase in those 85-94 years of age and a 25% 
increase in those greater than 95 years of age 
[6, 8]. Population projection data spanning 
2010-2050 also support the general conclu-
sion that greater proportional increase occurs 
in those 65 years or older and that among them 
those older than 85 years of age show the 
greatest increase [7]. Since the prevalence of 
hypertension increases with age and hyperten-
sion represents an accumulation of years of 
pressure overload on target organs, hyperten-
sion-related clinical sequels (e.g., ischemic 

http://www.AJCD.us


Pressure overload and cardiac ischemic injury

181	 Am J Cardiovasc Dis 2013;3(4):180-196

heart disease and myocardial infarction) will 
become even more pressing challenges for the 
health care system.

The propensity of the hypertensive heart to 
ischemic events is multifactorial including a) 
epicardial coronary stenosis (e.g., due to ath-
erosclerosis) and b) cardiac microvascular dis-
ease and endothelial dysfunction, accompa-
nied with ultrastructural remodeling of cardiac 
microvessels, that can result in progressive 
impairment of flow-mediated vasodilation. Oth- 
er factors can be arterial stiffness with long 
standing hypertension and accompanying inc- 
reased left ventricular afterload and central 
pulse pressure; the concomitant fall in central 
diastolic pressure reduces coronary perfusion, 
further exacerbating myocardial ischemia [9- 
14]. Importantly, alterations in energy metabo-
lism of the hypertensive heart also increase 
susceptibility to ischemia. This notion is sup-
ported by the findings that patients with hyper-
tension have measurably lower phosphocre-
atine to adenosine triphosphate ratios during 
stress compared to healthy controls [15]. 

As discussed above, atherosclerosis is the pre-
dominant underlying cause of coronary heart 
disease which can result in myocardial infarc-
tion with ischemic death of cardiomyocytes [16, 
17]. Reperfusion of the acutely or chronically 
ischemic myocardium (e.g., via thrombolysis, 
percutaneous coronary angioplasty and/or cor-
onary bypass) is essential in order to salvage 
the myocardium [17, 18]; yet, injury to the endo-
thelium and cardiomyocytes occurs upon rep- 
erfusion [19, 20]. Reperfusion-induced injury is 
also a significant clinical problem in cardiac 
transplantation or during open heart surgery 
when the myocardium is subjected to global 
ischemic cardioplegic arrest [21, 22]. The fol-
lowing section provides an overview of some 
key events in myocardial ischemia reperfusion 
injury prior to discussion of how pressure over-
load modulates these mechanisms to exacer-
bate the outcome of an ischemia reperfusion 
insult to the heart. 

Mechanisms of myocardial ischemia reperfu-
sion injury

Hallmark features of myocardial ischemia 
reperfusion (IR) injury include marked oxida-
tive/nitrosative stress and intracellular calcium 
([Ca2+]i) overload (Figure 1). During ischemia, a 

reduction in mitochondrial energy production 
ensues that is accompanied by decreased 
intracellular pH (pHi) due to increased lactic 
acid production consequent to anaerobic gly-
colysis. The reduction in pHi, in turn, causes 
disruption of ionic homeostasis and subse-
quent [Ca2+]i overload. This occurs because 
during ischemia, activation of sarcolemmal 
Na+/H+ exchanger occurs as the cell attempts 
to restore its pHi. However, the Na+ that enters 
the cell on the Na+/H+ exchanger is not pumped 
out efficiently because a fall in ATP and an 
increase in phosphate (Pi) inhibit the Na+/
K+-ATPase. As a result, the Na+/Ca2+ exchanger, 
that normally extrudes Ca2+ from the cell, is 
inhibited or even reversed thereby raising  
[Ca2+]i. However, it is upon reperfusion that a 
much greater rise in [Ca2+]i occurs which con-
tributes to the genesis of ventricular arrhythmia 
and myocardial stunning [20, 23-27] (Figure 1). 
Although the rise in [Ca2+]i is attributed primar-
ily to reversal of the Na+/Ca2+ exchanger and 
the L-type Ca2+ channel [24-27], T-type Ca2+ 
channels have also been implicated in this phe-
nomenon [28]. Further, resumption of ATP syn-
thesis upon reperfusion may activate sarco-
plasmic reticulum Ca2+ cycling resulting in cyto-
solic Ca2+ oscillations and propagation of Ca2+ 

waves [29]. Consequences of [Ca2+]i overload 
include activation of degradative enzymes inc- 
luding proteases, phospholipases and nucle-
ases that can cause irreversible tissue injury 
[27]. 

Reactive oxygen species (ROS), on the other 
hand, are generated primarily through mito-
chondrial respiratory chain, NAD(P)H oxidase 
and xanthine oxidase during myocardial IR inju-
ry [25-27]. Detrimental consequences of ROS 
which contribute to tissue injury include: a) 
impairment of respiratory chain activity (e.g., 
complex I), b) plasma membrane damage with 
subsequent impairment of ion pumps thereby 
exacerbating the effects of ATP deprivation on 
cellular ionic homeostasis and c) peroxidation 
of unsaturated fatty acid components of the 
membrane phospholipids; this will render them 
more susceptible to attack by phospholipase A2 
whose activity may already be elevated by 
[Ca2+]i overload [25-28, 30, 31]. 

The large burst of ROS and [Ca2+]i overload 
upon reperfusion of the ischemic heart are 
major triggers for the mitochondrial permeabil-
ity transition (MPT) pore [25, 27, 30, 31]. The 



Pressure overload and cardiac ischemic injury

182	 Am J Cardiovasc Dis 2013;3(4):180-196

MPT pore is a non-specific conduit that is 
formed at the site of contact between mito-
chondrial inner and outer membranes which 
allows for solute flux of less than about 1.5 kDa 
size. The exact molecular composition of the 
MPT pore remains controversial although use 
of genetically modified mice suggest an impor-
tant regulatory role for cyclophilin D; loss of 
cyclophilin D reduces the sensitivity of MPT 
pore to activation by calcium or during ischemia 
and reperfusion [32, 33]. Induction of MPT pore 
by [Ca2+]i overload and ROS is facilitated by 
decreased mitochondrial membrane potential 
and increased Pi levels, conditions that are 
present during myocardial IR injury. In addition, 
restoration of pHi at reperfusion also triggers 
MPT pore induction [20, 23, 27, 34-37]. Ope- 
ning of the MPT pore allows solutes and water 
to enter the mitochondria thereby increasing 
matrix volume. As a result, mitochondrial outer 
membrane ruptures facilitating release of cyto-
chrome c which, in turn, promotes apoptosis. In 
addition, MPT pore induction uncouples the 
mitochondria, leading to inhibition of ATP syn-
thesis and hydrolysis of the ATP that is derived 

from glycogen breakdown eventually causing 
cell death by necrosis [25, 34, 36-39]. Thus, 
both necrotic and apoptotic cell death occur 
during IR injury. The pivotal roles of these pro-
cesses, in mediating myocardial IR injury, are 
underlined by numerous studies indicating that 
cardioprotections of both ischemic precondi-
tioning and postconditioning are associated 
with reductions in generation of ROS, calcium 
overload and MPT pore opening [26, 31, 37, 
39-44]; ischemic preconditioning describes the 
phenomenon whereby several brief bouts of 
ischemia and reperfusion prior to a more pro-
longed ischemic phase (i.e., index ischemia) 
confers significant protection to the ischemic-
reperfused heart while postconditioning refers 
to cardioprotection conferred by restoration of 
coronary circulation to the ischemic myocardi-
um in a stuttering fashion [31, 40-51] (Figure 
2). While considerable attention has focused 
on cardioprotection of ischemic precondition-
ing and postconditioning maneuvers [31, 40- 
51], a novel and intriguing paradigm has eme- 
rged which advocates that targeted modulation 
of autophagy could exert beneficial effects in 

Figure 1. Diagram depicts critical events in cardiac ischemia reperfusion injury [27]. 
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stressful conditions such as IR injury; autopha-
gy is a highly-regulated cellular “housekeeping” 
process for the degradation and disposal of 
protein aggregates and dysfunctional/dam-
aged organelles (e.g., mitochondria in a pro-
cess referred to as mitophagy). Indeed, recog-
nition of the dichotomous “life-or-death” patho 
(physiological) role of autophagy has led to con-
siderable research focused on harnessing its 
cardioprotective potential [52]. In support of 
this notion, upregulation of autophagy has 
been suggested to play a causal role in infarct-
sparring effect of both ischemic-precondition-
ing and postconditioning [53-55]. 

The earlier discovery of ischemic precondition-
ing led to a surge of interest in unraveling car-

dioprotective mechanisms [37, 45-49]; this 
well-studied phenomenon is also referred to as 
early or classical preconditioning to distinguish 
it from the delayed phase or second window of 
protection [23]. Also the more recently discov-
ered phenomenon of postconditioning has gen-
erated much interest in understanding of its 
underlying mechanisms because it is a more 
clinically relevant and amenable maneuver 
than ischemic preconditioning [50-52]. While 
the exact mechanism(s) of either ischemic pre-
conditioning or postconditioning remains elu-
sive, considerable progress has been made 
towards a better understanding of the signal 
transduction pathways that convey the extra-
cellular signal generated by these cardioprotec-
tive maneuvers to intracellular targets [30]. As 

Figure 2. Diagram shows that cardioprotection of ischemic preconditioning (e.g. 3 bouts of ischemia (I) and reperfu-
sion (R), each for 5 min, before a prolonged ischemia phase) and postconditioning (e.g., 6 cycles of I and R, each 
for 30 sec, at reperfusion) is associated with activation of the reperfusion injury salvage kinase (RISK) pathway. 
An important outcome relates to upregulation of phosphatidylinositol-3 kinase (PI3K)/Akt pathway which, in turn, 
leads to phosphorylation and inactivation of glycogen synthase kinase-3β (GSK-3β) culminating in inhibition of the 
mitochondrial permeability transition (MPT) pore. Also, shown is mitochondrial (mito.) KATP channels whose activa-
tion confers cardioprotection, likely through inhibition of MPT pore induction.
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a result, it is now known that cardioprotection 
involves activation of a diverse array of prosur-
vival signaling pathways collectively referred to 
as the reperfusion injury salvage kinase (RISK) 
pathway [19, 30] (Figure 2). Components of 
RISK include protein kinases C, G, and A, mem-
bers of the mitogen activated protein kinase 
family (e.g., extracellular-regulated kinase 1/2, 
P38, c-jun-N terminal kinase) and the phospha-
tidylinositol-3 kinase-protein kinase B/Akt 
(PI3K-PKB/Akt) cascade [30]. While the contri-
bution of individual protein kinases is often the 
subject of intense debate, it is increasingly rec-
ognized that certain survival protein kinases 
(e.g., PI3K-Akt) are shared by both ischemic 
preconditioning and postconditioning protocols 
[19, 30], likely accounting for the observation 
that combination of both protocols does not 
further reduce infarct size than either maneu-
ver alone [51]. Tyrosine kinase is a well-recog-
nized upstream activator of the PI3K-Akt cas-
cade [30]. In turn, many of the downstream 
targets phosphorylated by Akt activate various 
anti-apoptotic pathways (e.g., epsilon isoform 
of protein kinase C and nitric oxide synthase to 
generate nitric oxide) [30]. The involvement of 
these prosurvival pathways is further substan-
tiated by the demonstration that several endog-
enous cardioprotective agents, such as ade-
nosine, mimic ischemic preconditioning by acti-
vating a pathway that is modulated by certain 
isozymes (e.g., epsilon) of protein kinase C in 
rabbit or rat heart [47, 56-59]. Indeed, genera-
tion of adenosine during postconditioning also 
causes eventual activation of PI3K-Akt and 
subsequent downstream activation of protein 
kinase C epsilon [30]. However, debate prevails 
regarding the nature of the “end effector” of 
the signaling pathway, with some investigators 
suggesting the mitochondrial ATP-sensitive K+ 
(mito. KATP) channels while others further indi-
cate that the opening of mito. KATP channels 
leads to mild oxidative stress, activating one or 
more protein kinases that stimulate an “uniden-
tified” end effector [19, 30, 45-48]. Activation 
of mito. KATP channels is believed to result in a 
number of effects including reduction in mito-
chondrial Ca2+ accumulation and prevention of 
cytochrome C loss from the intermembrane 
space [42, 43, 49]. The importance of this cas-
cade of events is illustrated by the effective-
ness of mito. KATP channel inhibitors (e.g., glib-
enclamide) in blocking the beneficial effects of 
a wide range of cardioprotective agents and 

protocols (e.g., adenosine, opioids, ischemic 
preconditioning and postconditioning) [28, 47, 
48, 51]. On the other hand, mito. KATP channel 
openers (e.g., diazoxide) mimic the effect of 
preconditioning [47-49, 60, 61]. Further, stud-
ies utilizing isolated mitochondria indicate that 
pharmacological activation of protein kinase C 
protects against MPT pore opening under the 
same conditions in which diazoxide is protec-
tive [49]. While the targets of ischemic (or phar-
macologic) preconditioning and postcondition-
ing are likely to be multiple (e.g., protein kinase 
C/mito. KATP channels), the key signaling path-
ways ultimately must converge to prevent MPT 
pore induction (e.g., during reperfusion) to 
reduce infarct size [19, 20, 27, 30, 42-46, 
62-64].

Given the pivotal role of the MPT pore in myo-
cardial IR injury, intense research has focused 
on mechanisms regulating the MPT pore; these 
studies have identified glycogen synthase 
kinase-3β (GSK-3β) as a critical regulator of the 
MPT pore (Figure 2). GSK-3β is a serine-threo-
nine kinase which is best known for its regula-
tion of glycogen metabolism. However, GSK-3β 
is now recognized as a multifunctional kinase 
responsible for phosphorylation of more than 
20 substrates. GSK-3β is primarily localized in 
the cytosol and is constitutively active. However, 
multiple kinases (e.g., Akt/protein kinase B) 
can phosphorylate it at serine 9 residue, ren-
dering it inactive. Indeed, phosphorylation of 
GSK-3β by multiple signaling pathways (e.g., 
components of RISK) is believed to increase 
the activation threshold of MPT pore thereby 
conferring cardioprotection [63]. For example, 
Juhaszova and colleagues [64] showed that the 
threshold for ROS-induced MPT pore opening 
was elevated by GSK-3β inactivation or by its 
knockdown using siRNA in isolated cardiomyo-
cytes. Further, Gomez et al. [65] showed that 
MPT pore opening by [Ca2+]i overload was sup-
pressed in mitochondria isolated from postcon-
ditioned wild type mice but not those from mice 
expressing a mutated form (i.e., GSK-S9A) 
which is insensitive to phosphorylation at ser-
ine 9. Additional evidence in support of pho- 
sphoGSK-3β-mediated inhibition of MPT pore 
opening in response to ROS and calcium over-
load comes from numerous studies including a) 
those using pharmacological inhibitors of GSK-
3β (e.g., LiCl, SB216763, SB415286), b) those 
utilizing δ-opioid receptor agonists, adenosine 
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A2b receptor agonists or erythropoietin and c) 
studies using cardioprotective maneuvers of 
ischemic preconditioning or postconditioning, 
among others [63]. Although the role of GSK-3β 
in regulation of MPT pore is indisputable, it is 
not yet clear how its inactivation causes MPT 
pore inhibition. Nonetheless, a number of pos-
sibilities have been proposed including mito-
chondrial translocation of phosphoGSK-3β and 
complex formation with cyclophilin D ultimately 
leading to cardioprotection [66]. Importantly, 
gene targeting studies indicate that cyclophilin 
D is a component of the MPT pore [67] and 
cyclosporine A-induced inhibition of cyclophilin 
D or genetic deletion of cyclophilin D signifi-
cantly limits infarct size [34, 37, 63, 68].

With that background in mind, the following 
section describes our studies focused on the 
impact of pressure overload on myocardial IR 
injury and the underlying mechanisms.

Impact of myocardial load on the outcome of 
myocardial IR insult

As mentioned earlier, systemic hypertension is 
an established risk factor for coronary heart 
disease and it also adversely affects the out-
come of acute myocardial infarction. The latter 
is corroborated by reports indicating that acute 
elevation in blood pressure increases while 
acute reduction in blood pressure reduces sus-

ceptibility to IR injury [69-76]. 
Nonetheless, the interpretation 
of these studies is confounded 
by neurohumoral adaptations 
that accompany changes in 
blood pressure, some of which 
are known to impact the out-
come of IR injury independent 
of the blood pressure [77-79]. 
For our studies focused on 
pressure-related effects on car-
diac IR injury, we have used the 
isolated heart preparation in 
order to avoid the confounding 
influences of neurohumoral 
changes that accompany chron-
ic or acute elevation of blood 
pressure. These studies were 
based on the premise that 
increase in myocardial load is a 
common denominator of sys-
temic hypertension of various 

Figure 3. Diagram summarizes our working hypothesis that pressure over-
load accentuates cardiotoxic but attenuates cardioprotective mechanisms 
thereby causing exacerbation of myocardial ischemia-reperfusion injury.

etiologies. It is noteworthy that for determina-
tion of pressure-related effects on the outcome 
of IR injury we have adjusted the pressure-head 
of the Langendorff-perfused heart (e.g., 80 or 
160 cmH2O). This maneuver significantly 
increases both the coronary flow and the con-
tractile parameters of the heart. In order to 
decipher the impact of the increase in coronary 
flow rate, per se, we carried out additional 
experiments using the constant flow perfusion 
protocol as detailed previously [80]. Comparison 
of data from experiments whereby the pres-
sure-head is adjusted against the heart with 
those whereby coronary flow rate is adjusted 
indicates that the primary determinant of the 
outcome of an IR insult, in our studies, relates 
to the pressure and associated mechanical 
stress/load on the myocardium [80]. 

Our initial studies, using 36-week-old hyperten-
sive and glucose intolerant rats, revealed that 
isolated hearts subjected to a high pressure 
(i.e., 160 cmH2O or about 118 mmHg) display a 
significant increase in infarct size in response 
to an IR insult compared to those subjected to 
a low pressure (i.e., 80 cmH2O or about 59 
mmHg) [81]. We reasoned that the disease 
states in the aging rat and pre-existing cardio-
myopathy, per se, may have rendered the heart 
susceptible to the impact of elevated pressure. 
In order to prevent the confounding influences 
of disease states and aging, we carried out 
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subsequent IR protocols using healthy adult 
rats (9-11 weeks of age). Accordingly, we estab-
lished that pressure overload significantly 
increases infarct size in association with poorer 
functional recovery following an IR insult [82]. 
Subsequent studies explored potential contrib-
uting mechanisms to the adverse impact of 
high pressure on the ischemic-reperfused 
heart. Thus, we tested the hypothesis that ele-
vated pressure, and associated mechanical 
stress, accentuates the contribution of cyto-
toxic pathways (e.g., calcium overload, oxida-
tive stress/nitrosative stress, etc.) and/or 
attenuates the contribution of cardioprotective 
pathways (e.g., mito. KATP channels, PI3K-Akt 
signaling pathway); the net effect of these 
changes would be increased MPT pore opening 
and consequent cell death (Figure 3). The 
details of these studies are presented below. 

Effect of myocardial load on calcium overload

As described earlier, a hallmark feature of car-
diac IR injury is [Ca2+]i overload which exerts 
multiple effects including induction of MPT 
pore thereby contributing to cell death [82]. 
One consequence of increased myocardial load 
is activation of the angiotensin II type 1 recep-
tor and nonspecific cation channels with subse-
quent Ca2+ accumulation via the Na+/H+-Na+/
Ca2+ exchanger combination and the T-type or 
L-type Ca2+ channels. Since [Ca2+]i overload is 
cytotoxic, in part, by inducing the MPT pore, we 
also explored the effect of cyclosporine 
A-induced inhibition of MPT pore in pressure 
overloaded hearts. Accordingly, the effect of 
candesartan (angiotensin II type 1 receptor 
antagonist), cariporide (inhibitor of the Na+/H+ 
exchanger), mibefradil (T-type Ca2+ channel 
blocker), diltiazem (L-type Ca2+ channel block-
er), and cyclosporine A (inhibitor of MPT pore) 
were examined. The elevation in perfusion 
pressure, from 80 to 160 cmH2O, increased 
baseline myocardial performance but caused 
larger infarcts and further reduced recovery of 
mechanical function after ischemia reperfu-
sion. Whereas mibefradil abrogated the effect 
of high pressure on infarct size, the other 
agents reduced infarct size at both perfusion 
pressures. Hearts exposed to mibefradil, diltia-
zem, or cariporide displayed greater functional 
recovery than those exposed to candesartan or 
cyclosporine A, revealing that an uncoupling 
exists between reduced cell death and recov-
ery of mechanical function of the viable por-

tions of the myocardium. Collectively, the data 
suggested an important link between pressure-
mediated worsening of infarct size and exacer-
bation of [Ca2+]i overload (e.g., via T type chan-
nels). Nonetheless, it is noteworthy that the 
contribution of sarcoplasmic reticulum to  
[Ca2+]i overload in the ischemic-reperfused 
heart is now established [29]. Accordingly, 
resumption of ATP synthesis upon reperfusion 
activates sarcoplasmic reticulum Ca2+ cycling. 
Sarcoplasmic reticulum Ca2+ cycling is promot-
ed by cytosolic Ca2+ overload and consequent 
Ca2+ uptake through the sarco(endo)plasmic 
reticulum Ca2+-ATPase followed by Ca2+ release 
through the ryanodine receptors when the Ca2+ 
storage capacity of the organelle is exhausted. 
These changes cause Ca2+ oscillations that 
propagate as Ca2+ waves and are believed to 
facilitate partial mitochondrial permeabiliza-
tion due to close anatomic proximity between 
the two organelles thereby favoring hypercon-
tracture and cell death [29]. In light of the pro-
found impact of pressure overload on the isch-
emic-reperfused heart, potential pressure-
related regulation of sarcoplasmic reticulum 
Ca2+ cycling should be established.

Effect of myocardial load on oxidative/nitrosa-
tive stress

Excessive ROS generation is a critical event in 
myocardial IR injury. During ischemia, low lev-
els of ROS are generated which can damage 
the electron transport chain thereby causing 
inefficient transfer of electrons with conse-
quent increase in ROS generation. With avail-
ability of oxygen during early reperfusion, a 
large burst of ROS occurs which plays a pivotal 
role in the genesis of reperfusion-induced inju-
ry. Important cardiac sources of ROS (e.g., 
superoxide) include the mitochondrial respira-
tory chain distal to complex I (NADH dehydroge-
nase), xanthine oxidase and NAD(P)H oxidase 
[26, 27, 31, 83]. While the myocardium pos-
sesses endogenous antioxidant defenses, 
such as the superoxide dismutase (SOD) and 
catalase, these mechanisms can be over-
whelmed following ischemia and reperfusion. 
In turn, these conditions are conducive to the 
interaction of superoxide with nitric oxide to 
produce peroxynitrite, a potent oxidant. Conse- 
quently, exacerbated oxidative/nitrosative str- 
ess serves as a major trigger for the MPT pore 
opening and subsequent cell death [25, 83]. 
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In light of the pivotal role of oxidative/nitrosa-
tive stress in cardiac IR injury, we sought to 
determine whether pressure overload exacer-
bates oxidative/nitrosative stress due to 
increased generation of reactive substances or 
reduced ability to scavenge ROS thereby pro-
moting greater MPT pore opening with conse-
quent exacerbation of cell death via necrosis 
and/or apoptosis. Pressure overload decreased 
the level of reduced glutathione but increased 
that of nitrotyrosine (a stable footprint of per-
oxynitrite) level in ischemic-reperfused hearts. 
Further, pressure overload increased DNA inju-
ry as demonstrated by increased 8-hydroxy-
deoxyguanosine (an index of oxidative DNA 
damage) and γH2AX (a sensitive marker of dou-
ble strand DNA breaks, the most severe form of 
DNA injury) [80, 83]. The activity of catalase, 
but not SOD, was lower in ischemic-reperfused 
hearts perfused at higher pressure. Mitoch- 
ondria isolated from ischemic-reperfused 
hearts subjected to higher perfusion pressure 
displayed significantly greater [³H]-2-deoxygl- 
ucose-6-Pi entrapment suggestive of greater 
MPT pore opening and this was consistent with 
greater necrosis and apoptosis as determined 
by flow cytometry. Tempol (SOD mimetic) 
reduced infarct size in hearts subjected to low 
or high perfusion pressure but it remained 
greater in the higher pressure group. By con-
trast, uric acid (peroxynitrite scavenger) mark-
edly reduced infarct size at higher pressure, 
effectively eliminating the differential between 
the two groups. Inhibition of xanthine oxidase, 
with allopurinol, reduced infarct size but did not 
eliminate the differential between the low and 
high pressure groups. However, amobarbital 
(inhibitor of mitochondrial complex I) or apocy-
nin (inhibitor of NAD(P)H oxidase) reduced 
infarct size at both pressures and also abrogat-
ed the differential between the two groups. 
Consistent with the effect of apocynin, pres-
sure-overloaded hearts displayed significantly 
higher NAD(P)H oxidase activity. Furthermore, 
pressure-overloaded hearts displayed increa- 
sed nitric oxide synthase activity which, along 
with increased propensity to superoxide gener-
ation, may underlie uric acid-induced cardio-
protection. Collectively, these observations 
indicate that increased oxidative/nitrosative 
stress, coupled with lack of augmented SOD 
and catalase activities, contributes importantly 
to the exacerbating impact of pressure over-
load on MPT pore opening and cell death in 
ischemic-reperfused hearts [83].

As alluded to above, exacerbated oxidative/
nitrosative stress in pressure overloaded isch-
emic-reperfused heart augments DNA injury. In 
turn, DNA injury leads to activation of poly (ADP-
ribose) polymermase-1 (PARP) in order to facili-
tate DNA repair in a process which consumes 
NAD+ [84]. Importantly, however, hyperactiva-
tion of PARP has been linked to mitochondria-
mediated necrosis although the precise mech-
anism remains elusive. Nonetheless, a recent 
study proposes that oxidative stress, MPT pore 
and PARP activity contribute to a single death 
pathway in the ischemic-reperfused heart. 
Accordingly, a provocative mechanism has 
been proposed whereby PARP-mediated pro-
longation of mitochondrial depolarization con-
tributes significantly to cell death via an energy 
crisis (e.g., consequent to depletion of NAD+ 
thereby limiting ATP generation) rather than by 
mitochondrial outer membrane rupture. In 
addition, PARP activity could directly inhibit 
mitochondrial transport of adenine nucleo-
tides, preventing cytosolic ATP access to the 
matrix where it could facilitate repolarization. 
Consequently, ATP depletion would result in 
sustained depolarization ultimately causing 
mitochondrial failure and plasma membrane 
rupture without affecting the integrity of the 
outer membrane of the mitochondria. In sup-
port of the important contribution of PARP 
hyperactivation to cell death, its inhibition has 
been shown to exert significant cardioprotec-
tion [85-87]. In light of exacerbated DNA injury 
in pressure overloaded ischemic-reperfused 
hearts, in a pilot study, we tested the hypothe-
sis that inhibition of PARP would confer greater 
protection under the high pressure condition. 
Interestingly, however, our initial observations 
suggest that while treatment with 4-hydorxy-
quanozoline (a PARP inhibitor) significantly 
reduces infarct size of the ischemic-reperfused 
heart subjected to the low pressure, the treat-
ment seemingly does not confer significant pro-
tection under the high pressure condition 
(unpublished data); the dose-related possibility 
for this observation is under investigation. 
Thus, establishing pressure-related regulation 
of PARP in the ischemic-reperfused heart and 
its relation to MPT pore status is a fertile ground 
for exploration. 

Effects of myocardial load on cardioprotective 
mechanisms

The MPT pore may serve as the end-effector of 
cardioprotective mechanisms, namely the mito- 
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chondrial KATP channels and GSK-3β [19, 20, 
30, 60, 61, 63-66, 68]. Therefore, in light of our 
demonstration that augmented MPT pore 
induction contributes to pressure overload-
induced exacerbation of infarct size [82, 83], 
we sought to determine whether elevation in 
perfusion pressure attenuates cardioprotec-
tion associated with activation of mitochondrial 
KATP channels or inhibition of GSK-3β. Further, 
we also determined whether perfusion pres-
sure modulates the regulation of the MPT pore 
by mitochondrial KATP channels and/or GSK-3β. 
These studies used diazoxide (a mitochondrial 
KATP channel opener), glibenclamide (inhibitor 
of KATP channels), lithium chloride (LiCl, a non-
selective inhibitor of GSK-3β), SB-216763 (a 
selective inhibitor of GSK-3β), cyclosporine A 
(inhibitor of MPT pore induction) and the combi-
nation of cyclosporine A and glibenclamide or 
the combination of glibenclamide and LiCl. As 
expected, the increase in perfusion pressure in 
the absence of a drug caused larger infarcts, 
an effect associated with poorer recovery of 
function following ischemia reperfusion. Treat- 
ment with either diazoxide or cyclosporine A 
reduced infarct size at both perfusion pres-
sures but cyclosporine A was more protective, 
than diazoxide, at the higher pressure. On the 
other hand, LiCl and SB-216763 reduced 
infarct size at both pressures, with the effect 
more marked at the higher perfusion pressure. 
Glibenclamide did not affect infarct size but 
eliminated the cardioprotective effect of cyclo-
sporine A while having no effect on LiCl-induced 

cardioprotection [68]. Collectively, the results 
indicate that perfusion pressure primarily aff- 
ects GSK-3β-mediated regulation of MPT pore 
formation in the ischemic reperfused heart. 

As mentioned earlier, GSK-3β is downstream of 
the PI3K/protein kinase B (Akt) pathway. Ind- 
eed, the cardioprotection of postconditioning 
and insulin relates to activation of the PI3K/Akt 
pathway [88]. Thus, we conjectured that pres-
sure overload attenuates postconditioning- and 
insulin-induced cardioprotection, an effect cau- 
sed by reduced PI3K-Akt signaling. The contri-
bution of PI3K/Akt pathway was assessed in 
the context of determining the levels of relevant 
proteins and their phosphorylation status in- 
cluding the 3’-phosphoinositide dependent kin- 
ase 1 (PDK-1) and phosphatase and tensin ho- 
molog on chromosome ten (PTEN); PDK-1 and 
PTEN are positive and negative regulators of 
the PI3K/Akt signaling pathway, respectively. 
To further establish the role of myocardial load, 
we also determined whether pressure unload-
ing (i.e., switchover from high to low pressure 
immediately upon reperfusion of the ischemic 
heart) confers cardioprotection comparable to 
either postconditioning or insulin treatment 
[88].

Pressure overload increased infarct size in 
association with changes in protein levels con-
sistent with reduced PI3K-Akt signaling (i.e., 
ischemic reperfused vs. normoxic hearts). 
Postconditioning and insulin treatment reduced 
infarct size but it was greater in hearts per-
fused at the higher, than the lower, pressure. 
Wortmannin (a PI3K inhibitor) partially reversed 
postconditioning-induced cardioprotection, wi- 
th infarct size being greater in the high-pres-
sure group. Pressure unloading during reperfu-
sion caused the most marked reduction in 
infarct size whereas pressure loading abolished 
postconditioning-induced cardioprotection. No- 
netheless, the phospho-Akt/total Akt ratio and 
phospho-GSK-3beta levels were unaffected by 
perfusion pressure in insulin-treated or post-
conditioned hearts. Moreover, protein levels 
were similar in pressure-unloaded and pres-
sure-loaded hearts. Collectively, these obser-
vations indicate that pressure overload reduc-
es PI3K-Akt signaling following IR. However, a 
differential in PI3K-Akt signaling was not 
observed in ischemia-reperfused, insulin-treat-
ed, and postconditioned hearts, suggesting 
involvement of pathways other than PI3K-Akt 

Figure 4. Panel shows a dot matrix from flow cytome-
try-based assessment of cardiac cells from ischemic-
reperfused hearts that co-express IL-17 and IL-23 
(upper right quadrant; indicated by asterisk). 
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for the effect of pressure on infarct size under 
these conditions. Potential players include 
members of mitogen-activated protein kinases 
which remain to be explored. Importantly, how-
ever, these studies also revealed that pressure 
unloading at reperfusion represents a novel 
and effective cardioprotective maneuver [88]. 

Effect of myocardial load on inflammation and 
the role of GSK-3β

The contribution of systemic immune and 
inflammatory mechanisms to the outcome of 
myocardial IR injury is well-established [89-94]. 
Importantly, however, it is increasingly recog-
nized that the myocardium can mount a robust 
inflammatory response to an IR insult [95, 96]. 
The growth arrest- and DNA-damage inducible 
protein 153 (GADD153) regulates both apopto-
sis and inflammatory response [97, 98]. Im- 
portantly, GSK-3β may provide a mechanistic 
link for cellular expression of GADD153, inflam-
matory response and cell death [99, 100]. In 
light of our demonstration that pressure over-
load exacerbates myocardial IR injury associat-

ed with significant reduction in phosphorylated 
(inactive) GSK-3β level, we conjectured that 
pressure overload, through a GSK-3β-depen- 
dent mechanism, increases GADD153 expres-
sion, thereby upregulating inflammatory cyto-
kine production and contributing to worsening 
of myocardial IR injury [80]. In the ischemic-
reperfused hearts, pressure overload reduced 
the anti-inflammatory cytokine, interleukin (IL)-
10, but increased pro-inflammatory cytokine, 
IL-17 without affecting IL-23 (a pro-inflammato-
ry cytokine). Subsequent immunofluorescent 
labeling studies showed colocalization of IL-17 
immunostaining with the brain natriuretic pep-
tide indicating that the cardiomyocyte is a 
major source of IL-17. Subsequently, using flow 
cytometry, we have shown co-expression of 
IL-17 and IL-23 suggestive of cardiomyocyte 
generation of IL-23 too (Figure 4). These obser-
vations substantiate the robust ability of endog-
enous cardiac mechanisms to mount an inflam-
matory response following an IR insult. Other 
effects of the pressure overload in the isch-
emic-reperfused heart included increased 
expression of GADD153, decreased JC-1 aggre-

Figure 5. Scatter plots depict early apoptotic (green), late apoptotic (blue) and necrotic (red) cell death in cardiac cell 
preparations of ischemic-reperfused hearts that were subjected to either 80 or 160 cmH2O. Immediately before the 
ischemic phase, hearts were transplanted (through the coronary arteries) with Sca1+ cells.
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gates but increased JC-1 monomers (sugges-
tive of reduced mitochondrial membrane 
potential (ψm)) in association with increased 
annexin V immunostaining as well as apoptotic 
and necrotic cell death. Importantly, treatment 
with LiCl (an inhibitor of GSK-3β) caused a 
robust increase in IL-10, preserved ψm and 
markedly decreased other parameters (e.g., 
IL-17 and GADD153) with the effect being most 
prominent for hearts perfused at the high pres-
sure. Collectively, these observations indicate 
that pressure overload, via a GSK-3β-depen- 
dent mechanism, exacerbates cell death in the 
isolated ischemic-reperfused heart involving 
regulation of GADD153 expression and inflam-
matory response [80]. It is noteworthy that 
while both an IR insult and pressure overload 
regulate cardiac cytokine production, the link 
and mechanisms between cytokine production 
and cell death remain to be established. How- 
ever, of interest is a recent report suggesting 

synergistic interaction between IL-17 ad tumor 
necrosis factor-α (TNF-α) in augmenting oxida-
tive stress and apoptosis of oligodendrocytes 
[101]. TNF-α generation also increases in the 
isolated ischemic-reperfused heart [102]. The- 
refore, further studies should explore pressure-
related regulation of mitochondrial death path-
way by pro-inflammatory cytokines in the isch-
emic-reperfused heart.

Effect of bone marrow-derived stem cells on 
the outcome of IR injury

The heart is now known to have resident stem 
cells; yet, the endogenous reparative capacity 
of the myocardium seems unable to replenish 
marked loss of cardiomyocytes which occur fol-
lowing acute myocardial infarction [103, 104]. 
Consequently, in view of the prevailing ethical 
considerations about use of embryonic stem 
cells, attention has focused on the potential 

Figure 6. Schematic diagram showing major relevant pathways involved in the effect of pressure overload on the 
ischemic reperfused heart. An ischemia reperfusion insult exerts multiple and diverse effects including a) increased 
oxidative/nitrosative stress, b) intracellular calcium overload, c) downregulation of cardioprotection of PI3K-Akt/
GSK-3β pathway and d) enhanced inflammatory responses, in part, through a GSK-3β-dependent mechanism in-
volving increased GADD153 expression. Consequently, dysregulation of mitochondrial membrane potential leads 
to induction of the MPT pore. These changes are augmented by pressure overload, culminating in exacerbation of 
cell death/infarct size.
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usefulness of adult stem cells particularly given 
the demonstration that bone marrow-derived 
stem cells (BMDSCs) can be recruited into the 
heart and transdifferentiate into cardiomyo-
cytes and cells of vascular lineage [105-110]. 
Indeed, the therapeutic usefulness of BMDSCs 
in the setting of acute myocardial infarction is 
now well-established. Nonetheless, it is incr- 
easingly recognized that the principal mecha-
nism underlying the beneficial effects of 
BMDSCs does not relate to their ability to trans-
differentiate to cardiomyocytes, smooth mus-
cle and endothelial cells. Rather, BMDSCs 
release a whole host of cytokines, chemokines 
and growth factors which then exert their 
effects via paracrine fashion [106, 109, 110]. 
As a result, they promote a local microenviron-
ment and cytokine milieu conducive to reduc-
ing initial damage to the injurious stimulus (i.e., 
ischemia and/or reperfusion insult) and also 
promote repair and recovery of the damaged 
tissue.

In light of the above, we have carried out pilot 
studies to determine whether administration of 
BMDSCs would confer protection to the pres-
sure-overloaded ischemic-reperfused heart. 
We utilized a protocol which has been exten-
sively used by Meldrum and colleagues where-
by Langendorff-perfused rat heart is trans-
planted via intracoronary administration of 
stem cells prior to induction of global ischemia 
[111-114]. As expected, pressure overload 
increased cell death in vehicle-treated isch-
emic-reperfused hearts. Treatment with Sca1+ 
cells reduced cell death with the effect more 
prominent for hearts subjected to high, than 
low, perfusion pressure (Figure 5). Thus, our 
ongoing studies are focused on establishing 
the impact of BMDSCs on pressure-related car-
diac cytokine production along with assess-
ment of mitochondrial status and cell death. In 
this context, it is of interest to establish wheth-
er empowering BMDSCs (through up- or down-
regulation of relevant genes) would abrogate 
the adverse impact of pressure overload on the 
ischemic-reperfused heart. 

Conclusion

Systemic hypertension is a very common disor-
der worldwide. Further, since the prevalence of 
systemic hypertension increases with age, it 
represents an accumulation of years of pres-
sure overload on target organs. Thus, hyperten-

sion-related clinical sequels, such as ischemic 
heart disease and myocardial infarction, will 
continue to present pressing challenges. While 
the myocardium can develop adaptive mecha-
nisms to cope with stress, such mechanisms 
usually fail in the long-term thereby increasing 
its venerability to insults including ischemic 
events. Surprisingly, however, the vast majority 
of studies focusing on mechanisms of ischemia 
reperfusion injury have not taken into consider-
ation the impact of myocardial load/mechani-
cal stress. Our studies over the last decade 
indicate critical dependency of key components 
of endogenous cardiac mechanisms on myo-
cardial load. Accordingly, reduced contribution 
of cardioprotective pathways coupled with aug-
mented activity of cardiotoxic pathways predis-
pose the pressure overloaded heart to exacer-
bated ischemia reperfusion injury (Figure 6). 
Further elucidation of mechanisms that are dif-
ferentially regulated by myocardial load should 
lead to identification of novel therapeutic 
target(s). 
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