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Abstract: Mitochondrial function is paramount to energy homeostasis, metabolism, signaling, and apoptosis in 
cells. Mitochondrial complex V (ATP synthase), a molecular motor, is the ultimate ATP generator and a key deter-
minant of mitochondrial function. ATP synthase catalyzes the final coupling step of oxidative phosphorylation to 
supply energy in the form of ATP. Alterations at this step will crucially impact mitochondrial respiration and hence 
cardiac performance. It is well established that cardiac contractility is strongly dependent on the mitochondria, and 
that myocardial ATP depletion is a key feature of heart failure. ATP synthase dysfunction can cause and exacerbate 
human diseases, such as cardiomyopathy and heart failure. While ATP synthase has been extensively studied, es-
sential questions related to how the regulation of ATP synthase determines energy metabolism in the heart linger 
and therapies targeting this important mechanism remain scarce. This review will visit the main findings, identify 
unsolved issues and provide insights into potential future perspectives related to the regulation of ATP synthase and 
cardiac pathophysiology. 
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Introduction

Mitochondrial complex V or ATP synthase is an 
enzyme complex that works as a molecular 
machine to generate and hydrolyze ATP in cells 
in the last step of the mitochondrial respiratory 
process. Therefore, ATP synthase plays pivotal 
roles not only in maintaining the cellular energy 
state, but also in determining mitochondrial 
respiratory function. Cardiac contraction and 
relaxation are energy demanding processes 
that depend on mitochondrial function and effi-
cient ATP production/reservation. Dysregulation 
of ATP synthase activity should have major 
impacts on mitochondrial respiration and hen- 
ce cardiac performance. Mitochondrial energy 
disturbances are involved in cardiac pathologi-
cal development [1]. For example, myocardial 
ATP depletion is a key issue of heart failure 
[1-3]. Therefore, further research on the regula-
tion of the mitochondrial ATP synthase in the 
heart may help discover novel therapeutic 
strategies for the treatment of cardiac disor-
ders. This review will discuss the current knowl-
edge of ATP synthase regulation in the heart, 
the potential challenges in the field, and the 

potential perspectives on the translational po- 
tential of the related research. 

ATP synthase: a molecular machine that 
makes ATP

ATP synthase, also known as F1F0-ATP synthase 
or complex V, is the key energy generator for 
most life forms on earth. This large, mitochon-
drial protein complex is bound to the inner mito-
chondrial membrane along with the other respi-
ratory chain complexes I-IV. The enzyme func-
tions through a reversible rotary complex, wh- 
ereby the direction of its rotation determines 
the synthesis or hydrolysis of ATP. In order to 
generate ATP from ADP and Pi, ATP synthase 
rotates using the driving force of an electro-
chemical potential built up in the intermem-
brane space by the I-IV respiratory chain com-
plexes (see review [4, 5]. Conversely, ATP syn-
thase can spin in the reverse direction and 
hydrolyze ATP to pump protons back to the 
intermembrane space to maintain membrane 
potential. ATP synthase consists of two distinct 
subcomplexes with complementary functions. 
The Fo complex contains transmembrane sub-
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units that transport protons from the intermem-
brane space and the F1 is a peripheral complex 
in the matrix, which catalyzes nucleotide bind-
ing for ATP synthesis [6-9]. Fo and F1 are con-
nected through two stalk-like subunits: a cen-
tral rotor shaft and a peripheral stator [6]. In 
the mammalian mitochondrial enzyme, F1 is 
composed of three copies each of subunits α 
and β, and one each of subunits γ, δ and ε. Fo 
consists of a subunit c ring (comprising 12 cop-
ies) and one copy each of subunits a, b, d, h (F6) 
and the O subunit or oligomycin sensitivity con-
ferring protein (OSCP). A number of additional 
subunits (e, f, g, i/j, k and A6L) are associated 
with Fo, although their precise locations within 
the complex remain unknown [10-13]. Protons 
accumulated in the intermembrane space are 
driven through a channel in Fo, which causes 
rotation of the c-ring along with the attached 
central stalk. Subsequently, rotation of subunit 
γ, within the F1-α3β3 hexamer provides energy 
for ATP synthesis at the catalytic sites (located 
in each of the three β subunits, at the interface 

with an adjacent α subunit) [14]. The rotation of 
the F1 hexamer (α3β3) may enable the Inte- 
rconversion of the states relative to the γ- 
subunit [6]. 

Despite the accumulation of this detailed 
knowledge of ATP synthase constituents in the 
past two decades, the roles of ATP synthase 
associated proteins in this crucial enzyme com-
plex remain understudied, especially in the in 
vivo context. So far, most of the genetic investi-
gations related to in the vitro function of ATP 
synthase have been conducted on either cul-
tured cells or yeast. The exciting development 
in molecular genetics that enable genetic 
manipulations to be done with relative ease will 
open new doors for the further in vivo study of 
the function and regulation of this most impor-
tant enzyme complex in our body. 

The regulation of ATP synthase activity 

The in-depth understanding of how the ATP syn-
thase works to generate and hydrolyze ATP is 

Figure 1. Summary of ATP synthase activity regulation. The steady state of mitochondrial ATP synthase activity is 
regulated at the transcriptional, post-transcriptional and protein assembly levels and the dynamic state of mito-
chondrial ATP synthase activity is regulated by calcium transient, post-translational modifications and interacting 
proteins.  

Figure 2. The roles of ATP synthase in mitochondrial function. The mitochondrial ATP synthase activity plays a key 
role in mitochondrial function and cardiac function in determining membrane potential, mitochondrial cristae and 
the opening of the mitochondrial permeability transition pore (mPTP). 
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well known, but the underlying mechanism of 
how ATP synthase is regulated remains obscure. 
Current literatures propose multi-levels of regu-
lating mechanisms for ATP synthase activity, 
which primarily rely on elements directly in- 
volved in its operation. Among these elements 
are ADP, Mg2+, Pi, ATP, and others, such as 
anions [15-17]. The heart is known to be an 
energy-demanding organ for contraction/relax-
ation and ion transport [18], but the mecha-
nisms that enable it to alter rapidly the ATP 
level to meet the fluctuating demand remain 
unclear. In general, the mitochondrial ATP syn-
thase is regulated to maintain its steady and 
dynamic states of capacity. 

Steady state regulation

Given that the ATP synthase plays such a piv-
otal role in cellular function, it is essential for 
maintaining the constitutive expression of key 
components of this enzyme complex. Based on 
current literatures, it appears that transcrip-
tional, post-transcriptional, and protein assem-
bling regulations determine the steady state of 
the ATP synthase activity (Figure 1). 

Transcriptional regulation: Transcriptional regu-
lation of metabolisms is essential in controlling 
the rate of metabolism in response to various 
physiological and pathological cues. Transcri- 
ption factors, such as many nuclear receptors, 
are among the key transcriptional regulators of 
metabolic pathways [19]. Because genes for 
enzymes of oxidative phosphorylation are th- 
ought to be housekeeping genes that are tran-
scribed constitutively [20], the transcriptional 
regulation of the component proteins of ATP 
synthase has been limited. In general, changes 
of ATP synthase content or activity appear to 
occur preferentially at the protein levels. Ho- 
wever, mutations that mostly lead to the defi-
ciency of the enzyme have been identified on 
genes encoding ATP synthase component pro-
teins. Clinical cases with nuclear genetic de- 
fects of mitochondrial ATP synthase, such as 
the mitochondrial DNA ATP6 and the nuclear 
ATP12 genes [21, 22], have been reported. 
They are characterized by early onset, lactic 
acidosis, 3-methylglutaconic aciduria, hyper-
trophic cardiomyopathy, and encephalopathy, 
followed by premature death [23]. On the other 
hand, it appears that the transcripts of ATP syn-
thase components could be regulated by com-
mon transcription factors, such as peroxisome 

proliferator activator receptor δ (PPARδ) [24, 
25] and estrogen related receptors (ERRs) [26]. 
Such regulation could lead to the co-activation 
of peroxisome proliferator activator receptor γ 
[26] as part of the overall metabolic responses 
under different circumstances. Intuitively, ATP 
synthase transcripts are expressed at different 
tissue-specific levels with higher levels found in 
skeletal muscle and heart and lower levels in 
other tissues [27]. Specifically, in vitro studies 
have demonstrated that the transcriptional 
expression of ATP synthase components is con-
trolled by various transcriptional regulation fac-
tors. For example, ATP factor 1 (ATPF1), which is 
present in human HeLa nuclei, plays a critical 
role in transcriptional activation of the α sub-
unit of the ATP synthase [28]. The same group 
further illustrated that upstream stimulatory 
factor 2 (USF2) [29-31] and the transcription 
factor Yin Yang 1 (YY1) promotes transcription 
expression of the α subunit [32]. To further 
exemplify, it has been shown that hypoxia sup-
presses the transcript expression of the sub-
unit e of ATP synthase. Therefore, ATP synthase 
could also be regulated at the transcriptional 
level by oxygen availability [33].

Because of the general lack of in vivo informa-
tion, the significance of transcriptional regula-
tion of the mitochondrial ATP synthase on the 
development of myocardial pathophysiology is 
not clear. However, the human cases of ATP 
synthase deficiency have clearly manifested 
how crucial it is to maintain an optimal level of 
ATP synthase in the body, especially for pre-
serving the normal function of the heart. 

Post-transcriptional regulation: The ATP syn-
thase is also regulated at the post-transcrip-
tional level by controlling translation of the 
enzyme complex. For instance, the expression 
of its catalytic subunit (β subunit) is stringently 
controlled at post-transcriptional levels. Micro-
RNA plays an important role in regulating the 
translation of the β subunit. Willers IM et al 
showed that miR-127-5p represses the β sub-
unit translation by inhibiting the 3’UTR of the β 
subunit mRNA of human ATP synthase [34]. 

The regulation of protein assembly: The assem-
bly of F1 hexamer structure requires two spe-
cialized chaperones, Atp11p and Atp12p in 
yeast [35], which bind transiently to the α and β 
subunits. In the absence of Atp11p and Atp12p, 
the hexamer is not formed, and the α and β 
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subunits precipitate as large insoluble aggre-
gates [35-38]. This appears to be the case in 
humans too [39]. Mutants lacking the α and β 
subunits of F (1), or the Atp11p and Atp12p 
chaperones that promote F (1) assembly, have 
normal levels of the bicistronic ATP8/ATP6 
mRNAs, but fail to synthesize Atp6p and Atp8p 
[40]. Another recent study showed that the INA 
complex facilitates assembly of the peripheral 
stalk of the mitochondrial F1Fo-ATP synthase 
[41]. Additionally, it has been shown that OSCP 
plays a key role in the biogenesis of ATP syn-
thase [42]. It is likely that p53 interacts with 
OSCP to facilitate the assembly and stabiliza-
tion the ATP synthase complex [43].

Dynamic regulation 

Because changes in cellular energy demand 
occur instantly and fluctuate rapidly, flux thr- 
ough mitochondrial ATP synthase must also 
change to maintain cellular ATP levels. Direct 
regulations at the level of ATP synthase appear 
to occur in mitochondria of these cells. ATP syn-
thase activity increases in rat cardiomyocytes 
subjected to high-energy demand (beating, 
positive inotropic substances) and decreases 
in anoxic cells [44-46]. Several dynamic regula-
tory elements have been shown to act at the 
level of the ATP synthase (Figure 1). 

Regulation of ATP synthase activity by mito-
chondrial calcium (Ca2+): Mitochondrial Ca2+ 
transients occur during the contractile/relax-
ation cycle and are translated into overall rise 
in mitochondrial ATP production to keep pace 
with the functional demand [47]. Therefore, 
mitochondrial Ca2+ plays crucial roles in the 
regulation of the ATP synthase activity. However, 
the molecular mechanisms underpinning the 
direct regulation of calcium on the ATP syn-
thase remain obscure. Early studies based on 
purified protein showed Ca2+ might regulate the 
ATP synthase via a protein named calcium bind-
ing ATPase inhibitor (CaBI) [15, 16, 24]. CaBI is 
reported to be a 6.3 kD protein, which interacts 
with ATP synthase in a Ca2+ dependent manner 
[48, 49]. In vitro protein treatment of purified 
CaBI on extracted ATP synthase promotes ATP 
synthesis and inhibits ATP hydrolysis [49]. 
Neverthless, as of today, very little is known as 
no specific gene that encodes for this elusive 
protein has been identified. Recently, a report 
showed that the β subunit of the ATP synthase 
binds Ca2+, but with unknown effects [50]. In 
addition, Protein kinase Cδ, which is a Ca2+ sig-

naling protein, can regulate ATP synthase by 
binding to the d subunit of the Fo sector [51, 
52]. It has also been reported that S100A1 is 
an F1 interacting protein in the mitochondria 
and promotes ATP synthesis in a Ca2+ -depen-
dent manner [53]. Despite these advance-
ments, our understanding of how mitochondrial 
Ca2+ directly regulates the ATP synthase activity 
remain poor, due partly to the technical difficul-
ties involved in measuring acute alteration of 
ATP contents in different cellular compart-
ments, especially in the mitochondria. Recent 
developments using fluorescent markers for 
the real time measurement of mitochondrial 
Ca2+ in cultured cells [54] provide new tools for 
the field to gain better insight toward solving at 
least part of the puzzle. 

Regulation of ATP synthase activity by post-
translational modifications: Not surprisingly, 
posttranslational modifications (PTM) of ATP 
synthase play important roles in the regulation 
of ATP synthase activity. Evidence of direct reg-
ulations by post-translational modifications on 
key subunits of ATP synthase has been surpris-
ingly limited [55-58]. However, more research 
has been emerging, including reports on sev-
eral post-translational modifications on various 
subunits of the ATP synthase complex (see 
review [59]). Human ATP synthase β is phos-
phorylated at multiple sites and shows abnor-
mal phosphorylation at specific sites in insulin-
resistant muscle [57]. Further, the β-subunit of 
the ATP synthase is phosphorylated following 
myocardial preconditioning in rabbit myocytes 
[60]. In a study using a 32P γ subunit labeling 
strategy, Hopper et al observed that the γ sub-
unit of ATP synthase subunit was phosphory-
lated [61]. Additionally, Ko et al employed Ph- 
ospho-tyrosine antibodies to confirm that the 
platelet-derived growth factor (PDGF) induced 
phosphorylation of the δ subunit [62]. This 
group also used 32P labeling to show that the δ 
subunit could be differentially phosphorylated 
in vitro by mitochondrial extracts that had been 
isolated from either untreated NIH3T3 cells or 
from PDGF-treated NIH3T3 cells. However, fur-
ther studies are required to understand how 
phosphorylation of a specific subunit of ATP 
synthase alters its function.

Using a proteomic approach, Wang et al uncov-
ered several oxidative stress-related protein 
modifications occurring on ATP synthase in fail-
ing dyssynchronous hearts, which can be cor-
rected by the cardiac resynchronization therapy 
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(CRT), a clinically effective treatment for failing 
dyssynchronous hearts [63]. Multiple oxidative 
posttranslational modifications occur at a 
selective Cysteine in ATP synthase α subunit, 
which may act as a redox sensor modulating 
ATP synthase function [63]. The role of oxida-
tive posttranslational modifications in the regu-
lation of the ATP synthase complex is most fre-
quently discussed in the context of heart failure 
and its possible clinical treatment [64]. Most 
recently, epigenetic regulation of ATP synthase 
has also been uncovered. Several subunits of 
the ATP synthase complex contain lysine modi-
fications, including methylation and acetyla-
tion. For example, SIRT3 deacetylates ATP syn-
thase F1 complex proteins in response to nutri-
ent- and exercise-induced stress [65]. However, 
it remains unknown if these posttranslational 
modifications also occur in cardiomyocytes and 
the in vivo context. Further investigations are 
needed to explore the translational potential of 
targeting the post-translational modification of 
ATP synthase. 

Regulation of ATP synthase activity by its inter-
acting proteins: Some proteins that are associ-
ated with ATP synthase, but not considered to 
be subunits, are also often involved in the regu-
lation of mitochondrial ATP synthase. Table 1 
has summarized the ATP synthase interacting 
proteins in the literatures and their potential 
function in controlling the enzyme’s activity.

About six decades ago, inhibitor factor 1 (IF1) 
was identified to be the first nuclear-encoded 
ATP-synthase interacting protein [66-68]. IF1 is 
an evolutionarily well conserved mitochondrial 
protein that interacts with the F1 sector of ATP 
synthase and is not considered a subunit of the 
mitochondrial ATP synthase [69, 70]. Numerous 

studies confirmed that IF1 inhibits the ATP 
hydrolysis activity of the mitochondrial ATP-
synthase [66, 69-71]. Interestingly, IF1 is acti-
vated under acidic conditions, such as in myo-
cardial ischemia [72, 73]. ATP hydrolysis occurs 
when the electrochemical proton gradient ac- 
ross the mitochondrial inner membrance is lost 
(e.g., during hypoxic/ischemic conditions), and 
the enzyme reverses in an attempt to restore 
mitochondrial membrane potential [74, 75]. 
Therefore, IF1 is a potential drug target for 
enhancing ATP reserves in the heart [69, 70]. In 
fact, preclinical assessments on IF-1 mimetic 
compounds have shown promising results in 
animal studies [73, 76]. 

Most of the early knowledge of IF1 is based on 
studies on bovine heart mitochondria and has 
shown that IF1 can respond rapidly to the ener-
gy state of the mitochondrial membrane [18, 
77]. IF1 interacts with the ATP synthase in mito-
chondria of many species, including the rat, 
even though its inhibitory function on ATP 
hydrolysis at least in the heart seems less 
effective in small animals than in large animals 
[78-80]. This conclusion appears to reduce the 
enthusiasm for studying IF1 in genetically 
manipulated mouse models. This view may 
hold some true at least in terms of IF1’s cardiac 
role. A recent study on an IF1 knockout mouse 
model showed no basal phenotype, although 
ATP hydrolysis was elevated at least in mito-
chondrial samples extracted from liver [81]. 
Whether ATPase activity is affected in the IF1 
knockout heart remains unknown. As stated 
previously, IF1 is activated under acidic condi-
tions, so further studies are warranted to test if 
the loss of IF1 in mice under myocardial isch-
emia would lose the capacity to prevent accel-
erated ATP depletion. 

Table 1. Interacting proteins of the mitochondrial ATP Synthase
Interactions Functions Citations

IF1 F1α, F1β ATP synthase dimer formation [100, 117]
Cyclophilin D OSCP, subunit d, and subunit b mPTP [88, 118, 119]
Bcl-xL F1α, F1β Membrane potential, mPTP and apoptosis [91, 120]
p53 OSCP Apoptosis, mPTP [43, 121, 122]
S100A1 F1α, F1β Increase of ATP synthase activity [53]
Factor B F1α, OSCP Component for ATP synthase complex formation [82, 123]
Strap F1β Modulator for cellular energy metabolism [124]
PKCδ subunit d Inhibited ATP synthase activity [86, 87]
Shown is a list of well-characterized interacting proteins of the mitochondrial ATP synthase along with information of the cor-
responding interacting subunits of ATP synthase and the related functions.
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Other ATP synthase interacting proteins have 
been identified: factor B [82-85], which is 
essential for ATP synthesis and involved in the 
regulation of ATP synthase oligomerization; 
CaBI [48], which may upregulate the enzyme 
activity in response to higher levels of cytoplas-
mic Ca2+, and finally S100A1 [53], which 
improves catalytic efficiency in cardiac muscle. 
In recent years, a few more proteins have been 
shown to interact with and regulate ATP syn-
thase. Nguyen et al showed that Protein kinase 
Cδ interacts with the d subunit of the Fo sector 
and inhibits ATPase activity [52, 86, 87]. It has 
also been reported that cyclophilin D, a mem-
ber of the cyclophilin family of chaperones, can 
constitutively bind ATP synthase, thus slowing 
ATP synthesis and hydrolysis rates through 
interaction with the lateral stalk [88-90]. Ad- 
ditionally, recent studies have shown that the 
Bcl II family member, Bcl-xL, interacts with ATP 
synthase to inhibit ATPase activity in neurons 
[91]. Surprisingly, it was discovered that the 
tumor suppressor protein p53 is localized to 
the mitochondria and interacts with ATP syn-
thase by binding to OSCP [43]. Furthermore, 
Stress-responsive activator of p300 (Strap), a 
p53 cofactor, interacts with the β subunit of 
ATP synthase to inhibit ATP synthase activity 
with similar potency as oligomycin and to 
induce apoptosis [92]. 

It has long been suggested that IF1 is the only 
naturally occurring, endogenous protein that 
interacts with the mitochondrial ATP synthase. 
However, it becomes clear that many more 
endogenous proteins must be involved in the 
regulation of mitochondrial ATP synthase. Fur- 
ther in-depth investigations are necessary to 
explore the significance of these newly emerg-
ing interacting proteins in regulating the enzyme 
activity of ATP synthase in vivo. 

The role of ATP synthase in mitochondrial 
function 

The mitochondrial ATP synthase certainly does 
not serve its sole function as an energy genera-
tor. By reversing ATP hydrolysis activity, ATP syn-
thase plays a vital role in maintaining mitochon-
drial membrane potential [93] (Figure 2). IF1 is 
the first identified natural protein that prevents 
excess hydrolysis of ATP [69, 70]. It has also 
been reported that ATP synthase is involved in 
mitochondrial protein import [94] and the mobi-
lization of cytochrome c during apoptosis [95]. 
Further evidence implicates that ATP synthase 

dimerization, which is facilitated by IF1, plays 
an important role in forming mitochondrial cris-
tae and the Fo c-ring itself or the dimerized ATP 
synthase may form the permeability transition 
pore (mPTP) (Figure 2). All of these should be 
crucial in maintaining mitochondrial function.

ATP synthase is suggested to have a role in 
crista morphogenesis. A recent study suggests 
that ATP synthase contributes to the optimal 
supramolecular organization of the respiratory 
chain [96], and even the density of cristae str- 
ucture [97, 98]. ATP synthase occupancy rises 
correspondingly with the cellular demand for 
OXPHOS. Mitochondrial ATP synthases cluster 
as discrete domains that reorganize with the 
cellular demand for oxidative phosphorylation 
[99] and play a key role in cristae morphogen-
esis [98]. Other than inhibiting ATPase activity, 
IF1 may also regulate the oligomeric state of 
ATP synthase by facilitating the dimerization of 
ATP synthase via a molecular link between two 
F1 domains [100]. IF1 limits the apoptotic-sig-
nalling cascade by preventing mitochondrial 
remodeling and preserves cristae structure to 
limit apoptotic cell death signaling [101]. 

However, the role of IF1 in promoting the dimer-
ization of ATP synthase and mitochondrial 
remodeling is still under debate. Studies on 
mitochondrial extracted from bovine heart 
showed that the ATP synthase dimer is a stable 
inactive structure and its formation is not medi-
ated by IF1 binding [102]. A cell culture study in 
human HeLa cells could not confirm that IF1 
overexpression facilitates mitochondrial cris-
tae formation [103]. Similarly, the same group 
reported that in vivo IF1 knockout did not alter 
the morphology of mitochondrial cristae in vari-
ous tissues of the IF1 knockout mice under 
basal condition [81]. It would be intriguing to 
further examine whether IF1 could help main-
tain mitochondrial morphology under hypoxic/
ischemia conditions because of the acidic con-
ditions required for IF1 activation. Therefore, 
further investigations that subject animals to 
IF1 overexpression and knockout under differ-
ent pathological conditions may help resolve 
the above inconsistent observations. 

The mitochondrial permeability transition, or 
MPT, refers to the increase in the permeability 
of the mitochondrial membranes to molecules 
of less than 1.5 KD, which results from the 
opening of a mitochondrial permeability transi-
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tion pore (mPTP). The mPTP is a protein pore 
located at the inner membrane of the mito-
chondria under certain pathological conditions 
such as myocardial ischemia. The opening of 
mPTP leads to mitochondrial swelling and cell 
death of apoptosis or necrosis. Under physio-
logical conditions, oxidative phosphorylation is 
responsible for ATP production with relatively 
low ROS production. In contrast, when mPTP is 
open, the mitochondria not only produces ex- 
cessive reactive oxygen species (ROS), but also 
consumes ATP in a futile cycle of efforts to 
restore the membrane potential, thereby exac-
erbating cellular damage. However, the exact 
components of mPTP remain unknown. While 
cyclophilin D is thought to be an important reg-
ulatory protein in determining the opening of 
mPTP, other earlier identification of mPTP com-
ponents based mostly on in vitro biophysical 
and biochemical investigations failed to prove 
their necessity for the proper function of mPTP, 
at least in various single gene knockout mouse 
models (see review [104]). In cyclophilin D 
knockout mice with myocardial ischemia/reper-
fusion injury, the extracted mitochondria show 
reduced mPTP opening and therefore show 
myocardial protective effects [105, 106]. 

Even though it has long been speculated that 
ATP synthase may play a key role in mitochon-
drial permeability transition [107], direct experi-
mental proof has emerged only recently. Based 
on findings that the c subunit of the ATP syn-
thase is required for MPT-driven mitochondrial 

fragmentation and cell death triggered by Ca2+ 
overload and oxidative stress, Bonora et al 
proved that the c subunit of the ATP synthase 
constitutes a critical component of the mPTP 
[108]. Another group further provided evidence 
that cyclosporine A binds to the OSCP and 
β-subunits of the ATP synthase, indirectly inhib-
iting the c-subunit (mPTP) pore by inducing a 
conformational change in ATP synthase that 
places F1 over the pore and its conductance 
[109]. Bcl-xL can be found within the c-subunit 
of the ATP synthase and is similar to mPTP [91]. 
The F1 prevents mPTP opening by being placed 
over the pore of a leak conductance within the 
c-subunit ring [91, 109]. This model predicts 
that cyclophilin D, which is known to bind to 
OSCP [88], acts on the pore by facilitating the 
removal of the F1 from the c-subunit in a CsA-
sensitive manner during pore opening [109]. 
On the other hand, Giorgio et al have shown 
that the binding of cyclophilin D to OSCP facili-
tates ATP synthase dimerization, which in turn 
becomes a conductance channel responsible 
for the opening of mPTP [110]. Apparently, 
these two models (Figure 3) may be interrelat-
ed, eg., the formation of ATP synthase dimer 
may eventually alter the c-subunit conductan- 
ce. However, further investigations are needed 
to determine if the c-subunit conductance is 
dimer dependent. It is also likely that changes 
in ATP synthase activity are sufficient to alter 
the formation of ATP synthase related mPTP 
opening and the detailed correlations should 
be rigorously investigated. 

Figure 3. The schematic models of ATP synthase serving as the mitochondrial permeability transition (mPTP). The 
main mPTP regulator cyclophilin D (CypD) in mitochondrial matrix is a necessary mPTP component responding to 
stimuli to initiate mPTP opening upon its binding to ATP synthase. The c-ring of the ATP synthase Fo domain acts as 
the pore of the mPTP. Alternatively, the mitochondrial ATPase inhibitory factor 1 (IF1) dimer binds to the interface 
between α- and β-subunits of the ATP synthase F1 domain, inducing the dimerization of the F1FO-ATP synthase and 
forming a pore. 
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In general, emerging evidence supports a last-
ing speculation that ATP synthase acts as the 
key component of mPTP. However, it is appar-
ent that the molecular and structural details 
remain scant. Further investigations are requ- 
ired to answer many unresolved questions. For 
instance, what conformational changes will 
enable the ATP synthase to act as an mPTP? 
What is the role of F1 in regulating the mPTP 
opening? Does the dimerization of ATP syn-
thase consist of the mPTP or is it merely a 
required condition for the C-ring channel to 
work as one? Moreover, in vivo evidence is also 
needed to confirm the in vitro findings. Pre- 
clinical animal models that illustrate the role of 
ATP synthase serving as the key components of 
mPTP will be highly valuable for further devel-
opment of therapeutic strategies targeting ATP 
synthase.

Targeting ATP synthase regulation as a thera-
peutic target for cardiac disorders 

Diminished energy supply is a key factor con-
tributing to both the initiation and progressive 
transition of congestive heart failure (CHF) [2, 
111]. The activity of electron transport-chain 
complexes and ATP synthase capacity are 
reduced in failing hearts [112-114]. The inc- 
reased opening of mPTP is one main feature of 
hearts under ischemia/reperfusion. This im- 
pairment in ATP generation and mPTP opening 
further augments the release of ROS, which 
exacerbates damages of mitochondria and 
other important cellular structures. ATP deple-
tion and dysfunctional mitochondria are crucial 
components of not only impaired contractile 
function, but also programmed cell death, lead-
ing to a remarkable net loss of functional myo-
cardium. Therefore, the mitochondrial function 
or the energetics of the heart are integrally 
linked with the causes and phenotype of heart 
failure. There is a common consensus that 
improving the myocardial energetic state and 
preventing excessive mPTP opening should be 
a therapeutic goal in treating CHF. 

Inhibiting the hydrolytic activity of ATP synthase 
during ischemia without interfering with the 
synthesis of ATP during normoxic condition is 
proposed to be therapeutic. Treatment with 
aurovertin and oligomycin, both inhibit similarly 
bi-direction of ATP synthase activity showed 
myocardial protective effects [115]. Similarly, 
IF-1 is a potential drug target because it is acti-
vated under acidic conditions, such as in myo-

cardial ischemia, to enhance ATP reserves in 
the heart [69, 70]. Preclinical assessments on 
IF-1 mimetic compounds did show promising 
results in animal studies [76, 116]. Novel thera-
pies targeting other ATP synthase interacting 
proteins are also possible to improve myocar-
dial energetics and prevent mPTP opening and 
mitochondrial dysfunction. 

Summary and conclusions

ATP synthase is a fascinating protein complex 
with an essential role in maintaining life. Its piv-
otal role is even more obvious in the most ener-
gy consuming heart. Several mechanisms are 
involved in maintaining the steady state activity 
of ATP synthase, thus determining mitochon-
drial function via its role in controlling cellular 
energetics, mitochondrial remodeling and mP- 
TP opening (Figure 3). Novel therapies that can 
correct ATP synthase deficiency, energy deple-
tion and mPTP opening in CHF are highly de- 
sired, but these must be first tested in animal 
models. Given that a majority of the current 
knowledge about the mitochondrial ATP syn-
thase is based on protein biology, cellular bio-
chemistry and in vivo yeast biology, it is highly 
desirable to gain insights into how this system 
works in animals and in humans. Studies on 
preclinical animal models will yield insights into 
the development of novel therapies targeting 
the mitochondrial ATP synthase. 
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