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Abstract: Beyond helping the cell survive from energy starvation via self-eating a portion of cytoplasm, macroau-
tophagy is also capable of targeted removal of defective organelles or cytoplasmic aberrant protein aggregates, 
thereby playing an important role in quality control in the cell. Impaired or suppressed macroautophagy activity is 
associated with the progression from a large subset of heart diseases to heart failure and with the development of 
the vast majority of, if not all, neurodegenerative diseases, the leading causes of death and disability in humans. 
Hence, a better understanding of the impact of existing and upcoming pharmacotherapies on macroautophagy in 
the heart and brain will undoubtedly benefit the search for safer and more effective treatment to improve human 
health. Neddylation is a recently recognized posttranslational modification process that modifies a subset of cellular 
proteins and is, by virtue of regulating Cullin-RING ligases, essential to ~20% ubiquitin-proteasome system (UPS)-
mediated protein degradation. MLN4924 (Pevonedistat), a specific inhibitor of neddylation that promises to become 
a new anti-malignancy agent, is capable of inhibiting UPS-mediated progression of the cell cycle and activating mac-
roautophagy in cancer cells. However, no reported study has tested the impact of systemic inhibition of neddylation 
on autophagic activity in a post-mitotic organ such as the heart and brain. This study was conducted to fill this 
gap. Sixteen GFP-LC3 transgenic mice of mixed sexes were divided equally into either MLN4924-treated or vehicle-
treated groups and were treated respectively with MLN4924 (30 mg/kg, s.c., twice a day × 3 days) or equal volume 
of solvent. The resultant changes in myocardial levels of neddylated cullin 1 as well as autophagic flux in cardiac and 
brain tissues were assessed. The effectiveness of the MLN4924 regime was verified by myocardial accumulation 
of neddylated cullin 1. Myocardial LC3-II flux and free GFP levels were comparable between the MLN4924 and the 
vehicle groups whereas the protein level of p62, a bona fide substrate of macroautophagy, in the brain was signifi-
cantly decreased by the MLN4924 treatment. Our data suggest that systemic inhibition of neddylation by a 3-day 
MLN4924 treatment regime does not suppress macroautophagy activities in the heart and brain. 
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Introduction

Posttranslational modifications and targeted 
protein degradation represent two major molec-
ular mechanisms that regulate the function and 
fate of cellular proteins and thereby cell func-
tion and survival, touching virtually every corner 
of the cell. This is arguably best exemplified by 
the ubiquitin-proteasome system (UPS) which 
encompasses ubiquitination and proteasome-
mediated protein degradation [1]. Ubiquitina- 
tion is covalent attachment of the carboxyl ter-

minus of a small protein ubiquitin (Ub) to the 
e-amino group of the side chain of a lysine (K) 
residue on the target protein molecule through 
an isopeptidyl bond. For poly-ubiquitination, 
subsequent rounds of this reaction similarly 
attach additional Ub to the preceding Ub to 
form a poly-Ub chain [1]. Both mono-ubiquitina-
tion and poly-ubiquitination can serve as post-
translational modifications to alter the non- 
proteolytic fate of the ubiquitinated protein; 
however, poly-ubiquitinated proteins, especially 
K48-linked, are often targeted for degradation 
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by the proteasome [2]. UPS-mediated proteoly-
sis is responsible for targeted degradation of 
the vast majority of cellular proteins. The UPS-
mediated degradation of normal proteins that 
are no longer needed is regarded as regulatory 
degradation, pivotal to regulation of virtually all 
cellular processes, such as cell cycle control 
[3], DNA damage responses and DNA repair [4], 
cell signal transduction [5], and cell death pa- 
thways [6]. Meanwhile, targeted degradation of 
abnormal/misfolded proteins, representing the 
last resort of protein quality control, relies pri-
marily on the UPS; thus, the UPS plays an indis-
pensable role in protein quality control as well 
[2]. The latter functions to minimize the level 
and toxicity of misfolded proteins in the cell  
and is accomplished by intricate collaboration 
between molecular chaperones and targeted 
protein degradation pathways [7].  

When misfolded proteins have failed to be re- 
paired by chaperones and escaped from UPS-
mediated degradation, they tend to form ag- 
gregates via hydrophobic interaction [7]. The 
removal of these aberrant protein aggregates 
appears to rely on macroautophagy [7]. Ma- 
croautophagy is the most studied form of au- 
tophagy, involving segregation of a portion of 
cytoplasm (e.g., defective organelles, protein 
aggregates, and lipid droplets) via formation  
of a double-membraned vacuole known as an 
autophagosome which delivers its cargo to ly- 
sosomes by fusion with the lysosomes where 
the autophagic cargoes are degraded by lyso-
somal enzymes and resultant small biomole-
cules (e.g., amino acids, fatty acids, etc.) are 
recycled [8]. Hence, macroautophagy (referred 
to as autophagy hereafter) plays an important 
role in the quality control of both organelles and 
cytoplasmic proteins, in addition to provision of 
fuel during starvation by self-digestion of a  
portion of the cytoplasm [8]. The interplay be- 
tween the UPS and the autophagic-lysosomal 
pathway has attracted increasing attention 
from the protein quality control research com-
munity [9]. Proteasome inhibition has been 
shown to activate autophagy while defective 
autophagy may hinder UPS performance [10, 
11]. 

Heart failure is the final common pathway for 
most, if not all, cardiovascular diseases [12, 
13]; it remains the leading cause of death and 
disability for humans despite recent advances 
in pharmacological and surgical interventions 

[14, 15]. Meanwhile, neural degenerative dis-
eases such as Alzheimer’s disease, Parkin- 
son’s disease, multiple sclerosis, amyotrophic 
lateral sclerosis, and Huntington’s disease rep-
resent another category of debilitating diseas-
es constituting another leading cause of hum- 
an mortality and morbidity. Increasing eviden- 
ce suggests that proteotoxic stress (character-
ized by elevated levels and toxicity of misfold- 
ed proteins and aberrant protein aggregation) 
and inadequate protein quality control are as- 
sociated with the progression from a large sub-
set of cardiovascular diseases to heart failure 
[16, 17], as well as with neurodegeneration 
[18]. Hence, a better understanding of the 
impact of existing and upcoming therapies on 
the ability of cells to handle misfolded prote- 
ins would benefit the prevention and/or better 
treatment of human diseases. 

Ubiquitination occurs through enzymatic reac-
tions sequentially catalyzed by Ub activating 
enzyme (E1), Ub conjugating enzymes (E2), and 
Ub ligases (E3). Once the target is poly-ubiqui- 
tinated, selective degradation occurs [1, 19- 
21]. Since Ub E3s determine substrate speci- 
ficity of ubiquitination, they are some of the 
most intensively studied targets in the UPS 
[19]. The largest family of Ub E3 ligases is  
cullin-RING ligases (CRLs) which were shown to 
be responsible for 20% of Ub-dependent pro-
tein degradation in cells [22, 23]. There is evi-
dence that CRLs regulate autophagy and that 
CRL abnormalities are linked to a variety of 
developmental, neurological, and cardiac dis-
eases [20]. 

The activity of CRLs is closely regulated by ned-
dylation, a posttranslational modification simi-
lar to ubiquitination that attaches an Ub-like 
protein, NEDD8, to target proteins. The process 
of NEDD8 attachment involves an NEDD8 ac- 
tivating enzyme (NAE) (E1), NEDD8 conjugating 
enzyme (E2), and NEDD8 ligases (E3) [20, 24, 
25]. NEDD8 and Ub share high sequence simi-
larity (76%) [26], and high identity (58%) [25], 
suggesting cooperativity between ubiquitina-
tion and neddylation. This certainly is the case 
as various Ub E3 ligases have been shown to 
facilitate NEDD8 attachment [27, 28] and as 
NEDD8 is frequently incorporated into Ub 
chains [25]. It is well-proven that neddylation  
of cullins is required for CRLs to efficiently ubi- 
quitinate their targets [23, 25, 29, 30]. Me- 
anwhile, NEDD8 removal via a process known 
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as deneddylation is also essential to the pro- 
per functioning of CRLs [23, 25]. Cullin den- 
eddylation is primarily performed by the CO- 
P9 signalosome (CSN), a zinc metalloprotease 
containing 8 subunits: COPS1 through COPS8 
[25]. 

MLN4924 (Pevonedistat) is an adenosine sul- 
famate derivative and inhibitor of neddylation. 
It acts by irreversibly forming a NEDD8-ML- 
N4924 adduct at the ATP-binding site of NE- 
DD8, disrupting NEDD8-NAE conjugation [31]. 
Since many cell cycle regulators are degraded 
by CRLs-mediated ubiquitination [32], MLN- 
4924 has shown great potential in cancer che-
motherapy [33-35], with multiple Phase I/II 
clinical trials ongoing to test its effects on va- 
rious malignancies [36, 37]. MLN4924 treat-
ment has been shown to activate autophagy in 
cancer cells and tumor tissues. However, can-
cer cells are generally in a proliferating state,  
in sharp contrast to terminally differentiated 
cells such as cardiomyocytes and neurons. Th- 
us, neddylation inhibition may impact on the- 
se cells differently. For this reason, it becomes 
important to study the effects of MLN4924-
mediated neddylation inhibition on terminally 
differentiated cells. Cops8 deficiency, which 
disrupts CSN formation and thereby disables 
deneddylation of cullins, impairs autophagic 
flux in mouse hearts [38, 39]. As stated, both 
neddylation and CSN-mediated deneddylation 
are required for proper CRLs functioning; hen- 
ce both CSN deficiency and neddylation inhibi-
tion impairs CRLs. However, no previous stud-
ies yet examined the effect of neddylation in- 
hibition on autophagic flux in cardiac muscle. 
Thus, the present study was conducted to test 
the hypothesis that like Cops8 deficiency, ned-
dylation inhibition impairs cardiac autophagic 
flux and may similarly affect the brain. 

By examining the effect of systemic adminis- 
tration of MLN4924 on myocardial LC3-II flux 
and brain tissue p62 protein levels in mice in 
the present study, we have unveiled for the first 
time that neddylation inhibition by MLN4924 
for three consecutive days does not decrease 
autophagic flux in the heart and brain, two vital 
post-mitotic organs in the body. 

Material and methods

Animals and MLN4924 treatment

Transgenic (tg) mice with ubiquitous expression 
of a green fluorescence protein fused microtu-

bule associated protein light chain 3 (GFP- 
LC3), which were originally created and de- 
scribed by Dr. Noboru Mizushima and colleague 
and has been extensively employed as a au- 
tophagosome reporter model [40], were used 
in the present study. The tg line was maintained 
in the FVB/N inbred background. DNA from toe 
clips was used for Polymerase Chain Reaction 
(PCR) to determine mouse genotypes. Mice 
heterozygous for tg GFP-LC3 were obtained 
and used for the experiment. The protocol for 
the care and use of animals in the present 
study had been approved by The Institutional 
Animal Care and Use Committee of the Uni- 
versity of South Dakota.

Sixteen adult GFP-LC3 tg mice of mixed sexes 
were randomly divided into two groups (n = 8 
each): an MLN4924 group and a vehicle con- 
trol group. The MLN4924 group was treated 
with MLN4924 (obtained from ActiveBiochem.
com) (30 mg/kg, s.c.) dissolved in 10% 2- 
hydroxypropyl-β-cyclodextrin (HPBCD) twice a 
day (with an interval of 12 hours) for 3 conse- 
cutive days, totaling 6 injections for each 
mouse. This dosage and regime was based on 
a recent hepatic cancer study which showed 
that MLN4924 caused apoptosis and increas- 
ed autophagy in proliferating hepatic cells [41]. 
The vehicle control group received an equiva-
lent volume of 10% HPBCD (vehicle) in the 
same manner and at the same time as the 
MLN4924 group. 

Autophagic flux assay

At 10 hours after last injection of MLN4924  
or HPBCD, each group was randomly split into 
two subgroups: a BFA-treated subgroup and a 
DMSO-treated subgroup. The subgroups recei- 
ved two intraperitoneal injections of bafilomy-
cin A1 (BFA, 3 µmol/kg) or DMSO (vehicle con-
trol), respectively, at the 10th and 11th hour 
after the final injection of MLN4924 or HPBCD. 
BFA was used as a vacuole proton-ATPase 
inhibitor to inhibit lysosomes and block the 
fusion between the autophagosome and the 
lysosome [42]. The use of BFA here was to 
block lysosomal degradation of autophago-
somes, allowing the rate of autophagosome 
removal by the lysosome to be assessed when 
compared with the DMSO subgroup. 

On the 12th hour after the last injection of 
MLN4924 or HPBCD (i.e. 1 hour after the sec-
ond BFA injection), each mouse was weighed 
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and sacrificed by CO2 inhalation. The heart, 
ventricular, lung, kidney, and liver weights were 
measured after organ collection, and are sum-
marized in Table 1. After the organs were 
weighed and collected, they were snap-frozen 
in liquid nitrogen before transferred to and 
stored in a -80°C freezer until they were used 
for subsequent western blot analyses for the 
protein levels of LC3, p62, free GFP, GAPDH, 
and α-actinin. 

The level of LC3-II in a tissue or cells reflects 
the abundance of autophagosomes. The dif- 
ference of LC3-II protein levels in each group 
between BFA-treated and non-BFA-treated sub-
groups is referred to as LC3-II flux and widely 
used as an indicator of autophagic flux (Refs). 
The LC3-II flux presented here refers to the  
net amount of LC3-II accumulated by the BFA-
mediated lysosomal inhibition. Mathematically, 
it is calculated by subtracting the α-actinin  
normalized LC3-II level of a BFA-treated sam- 
ple with the mean value of the α-actinin nor- 
malized LC3-II levels of the DMSO treated  
samples of the same group. 

The protein levels of p62, which is a substrate 
of autophagy [43], are used by many studies  
as an inverse indicator of autophagic activity. In 
GFP-LC3 expressing cells, GFP-LC3-II is incor-
porated into the autophagosome membrane  
as the autophagosomes are formed, thereby 
marking them. When fused with lysosomes, 
autophagosomes undergo degradation, during 
which a fraction of GFP-LC3 is first cleaved by 
lysosomal enzymes to form free GFP; hence, 
the level of free GFP proteins (shorter than 
GFP-LC3) is also regarded as an indicator of 
autophagic flux [44].

Western blot analysis

Snap-frozen tissues were individually and sepa-
rately crushed to a powder form by smashing 

them in their frozen state, covered in tin foil, 
with a sterilized wrench. The powder was then 
aliquoted: one such aliquot of each tissue sam-
ple was placed into a tube containing 200 μL 1 
× loading buffer; the remaining aliquots were 
stored at -80°C for future analysis. This pro-
cess was replicated for each tissue. Samples 
were then sonicated 4 times for 2 seconds 
each, and cooled on ice (repeated twice). 
Following this process, the protein concentra-
tion of each sample was analyzed using bicin-
choninic acid (BCA) assays, in which graded 
bovine serum albumin (BSA) concentrations 
were used as a control. Samples were then 
diluted as necessary to achieve uniform con-
centrations per sample set. Total protein 
extracts from the collected tissue samples 
were then fractionated via SDS-polyacrylimide 
gel electrophoresis (PAGE), transferred to PVDF 
membrane, and probed with antibodies against 
specific proteins: LC3, p62, and free GFP. Either 
glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) or α-Actinin was probed as a loading 
control. Also, to test the efficacy of MLN4924, 
western blot analysis of Cullin-1 (Cul1) and  
neddylated Cul1 was performed. Cul1 is a  
well-known target of neddylation [20, 43], thus 
we expected a decrease in neddylated Cullin-1 
following MLN4924 treatment. 

Statistical methods 

All continuous variables are presented as me- 
an ± SEM unless indicated otherwise. Dif- 
ferences between two groups were evaluated 
for statistical significance with a 2-tailed un- 
paired t-test. When appropriate, Welch’s cor- 
rection was employed for small sample size. 
When the difference among ≥3 groups was 
evaluated, 1-way ANOVA or, when appropriate, 
2-way ANOVA followed by the Tukey test for  
pairwise comparisons was performed. A p value 
<0.05 is considered statistically significant. 

Table 1. Gravimetric characterization of mice used in this study

Groups n (sex ratio) BW (g) HW/BW 
(mg/g)

VW/BW 
(mg/g)

LuW/BW 
(mg/g)

KW/BW 
(mg/g)

LiW/BW 
(mg/g)

HPBCD+DMSO 4 (1 m/3 f) 21.6±3.3 4.98±0.20 4.20±0.15 7.0±0.30 15.3±1.0 43.0±1.2
HPBCD+BFA 4 (2 m/2 f) 20.1±2.1 4.97±0.17 4.12±0.18 6.8±0.45 14.7±0.4 44.6±0.7
MLN4924+DMSO 4 (2 m/2 f) 19.3±1.9 5.07±0.27 4.33±0.24 6.7±0.45 14.9±0.4 45.3±1.0
MLN4924+BFA 4 (2 m/2 f) 23.2±3.4 5.32±0.15 4.12±0.12 6.5±0.45 15.7±0.7 46.2±1.3
Shown are mean ± SEM; difference in each parameter among the 4 groups is not statistically significant as tested with one 
way ANOVA. m, male; f, female;  BW, body weight; HW, heart weight; VW, ventricular weight; LuW, lung  weight; KW, kidney 
weight; LiW, liver weight.
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GraphPad Prism Version 6.04 (GraphPad Sof- 
tware, Inc., La Jolla, CA) was used for the analy-
ses and making the graphs. 

Results

Effect of MLN4924 treatment on mouse gravi-
metric characteristics  

To test whether or not MLN4924 and BFA tre- 
atment had an effect on body weight (BW) and 
on the weight of major organs, we collected 
BW, heart weight (HW), cardiac ventricular 
weight (VW), lung weight (LuW), kidney weight 
(KW), and liver weight (LiW) of each mouse at 
the time of mouse sacrifice 12 hours after the 
last MLN4924 or vehicle control injections (i.e. 
1 hour after second BFA or control injections). 
These gravimetric measurements and deriv- 

the vehicle control groups (p = 0.2512, Figure 
1A, 1B) whereas neddylated Cul1 relative to 
native Cul1 were significantly lower in the 
MLN4924 treated group compared to the ve- 
hicle control group (p = 0.0025, Figure 1A, 1C). 
These results indicate that MLN4924 treat-
ment regime had effectively inhibited neddy- 
lation in the heart. Although these results are 
specific to the heart, our MLN4924 treatment 
likely had yielded similar effects on other tis-
sues and can be assumed to have led to sys-
temic inhibition of neddylation. This assump-
tion is supported by the fact that in order for 
the subcutaneously injected MLN4924 to have 
reached the heart muscle, the drug first need-
ed to travel through the cardiovascular system 
which connects to all organs including the 
brain; MLN4924 would not have been hindered 

Figure 1. Western blot analysis for myocardial native and neddylated forms 
of cullin1 (Cul1) in mice treated with MLN4924 or vehicle control. Total pro-
tein extracts from mouse myocardium were fractionated via SDS-PAGE and 
transferred to a PVDF membrane before immuno-probing for Cul1. A non-
specific band at the molecular weight of approximately 100 kDa is includ-
ed as a loading control. A myocardial sample from a Cops8 hypomorphic 
mouse, which is known to have increased neddylated Cul1 [52], was in-
cluded as a positive control (the far right lane of A) to identify neddylated 
Cul1. Each lane represents a mouse. A shorter exposure (middle image 
of A) was used for the densitometry of the native Cul1 to avoid saturation 
that might have occurred in the longer exposure required to detect the ned-
dylated Cul1. (A) Representative western blot images. (B) A summary of 
native Cul1 densitometry data. (C) A summary of the pooled data of the 
neddylated Cul1 to native Cul1 ratios. AU, arbitrary unit, with the mean of 
the ratios from the vehicle control group set as 1. Mean ± SEM are shown, 
n = 4 mice/group; the p values shown are derived from unpaired t-test with 
Welch’s correction.

ed parameters including HW/
BW, VW/BW, LuW/BW, LuW/
BW, KW/BW, and LiW/BW ra- 
tios, are summarized in Table 
1. Statistical analyses reveal- 
ed no significant difference in 
any of the parameters among 
any of the groups, suggesting 
that the treatment did not in- 
duce cardiac hypertrophy or at- 
rophy and that the treatment 
did not cause significant func-
tional impairment to the left or 
right heart, as functional insuf-
ficiency of the left heart would 
lead to an increase in the LuW/
BW ratio and right heart failure 
would increase both the KW/
BW and LiW/BW ratios. 

Effect of MLN4924 treatment 
on myocardial Cul1 ned-
dylation 

To test whether the MLN4924 
treatment regime was effecti- 
ve or not in terms of inhibit- 
ing neddylation, we performed 
western blot analyses for de- 
tection of the level of neddylat-
ed form of Cul1 in myocardial 
tissues collected at end of the 
treatment. As expected, our 
results show that the myocar-
dial native Cul1 protein levels 
were not discernibly different 
between the MLN4924 and 
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Figure 2. Myocardial autophagic flux assays in mice 
treated with MLN4924 or vehicle control. GFP-LC3 
transgenic mice were treated with MLN4924 or 
vehicle control as described in the main text. Total 
protein extracts from mouse myocardium were frac-
tionated via SDS-PAGE and transferred to a PVDF 
membrane before immuno-probing for LC3, free GFP, 
and α-actinin. α-Actinin was probed as a loading con-
trol. (A) Representative images of western blot analy-
ses for the indicated proteins. (B and C) A summary 
of LC3-II densitometry data (B) and the LC3-II flux 
(C) derived from the data presented in panel B. The 
LC3-II flux is the net amount of LC3-II accumulated by 
BFA treatment and calculated as described in Meth-
ods. (D) A summary of free GFP densitometry data. 
*p<0.05 vs. the respective DMSO treated subgroup, 
two way ANOVA followed by Tukey’s multiple compari-
son test. n = 4 mice for each subgroup.

by the blood brain barrier [45]. Thus, although 
these results are specific to myocardium, they 
can be assumed to have effected in a similar 
manner as described in the aforementioned 
hepatic cancer model [41].

Effect of MLN4924 treatment on myocardial 
autophagic flux

Microtubule associated protein 1 light chain 3 
(LC3) is a mammalian homolog of yeast Atg8 
and plays an important role in autophagosome 

formation. With the help of ATG4, native LC3 is 
processed to LC3-I which is diffusely distribut-
ed in the cytosol. Through an ubiquitination-like 
process, LC3-I is conjugated with phosphatidyl-
ethanolamine. The resultant lipidated form of 
LC3-I is referred to as LC3-II. The lipidation 
allows LC3-II to incorporate into the phago-
phore during the elongation phase of autopha-
gosome formation so that LC3-II stays in the 
autophagosome membrane throughout the life-
time of an autophagosome. The LC3-II in the 
inner membrane of autophagosomes is degrad-
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ed along with the membrane and cargos [46]. 
Therefore, the protein level of LC3-II in a cell 
reflects generally the abundance of autophago-
somes in the cell and the rate of LC3-II degra-
dation by lysosomes (i.e., LC3-II flux) serves as 
an excellent indicator of the rate of autophago-
some degradation by lysosomes (i.e., autopha-
gic flux) [47]. In reduced denatured polyacryl-
amide gel electrophoresis (SDS-PAGE), LC3-II 
runs faster than LC3-I, making it easy to differ-
entiate LC3-II from LC3-I. 

To test whether or not MLN4924 treatment 
alters autophagic flux in mouse hearts, we per-
formed western blot analyses for detection of 

examined myocardial steady state free GFP 
protein levels in the animals subject to mani- 
pulation of lysosomal function. The free GFP 
levels were comparable between the MLN- 
4924+DMSO and the Vehicle Control+DMSO 
subgroups (Figure 2D, p>0.05), consistent with 
the finding from the LC3-II flux assay (Figure 
2C) that myocardial autophagic flux is not 
altered by MLN4924-mediated neddylation in- 
hibition. A significant increase in free GFP in 
both BFA subgroups relative to their respec- 
tive DMSO subgroups also indicates that BFA 
did inhibit lysosomal degradation, as expected. 
However, the GFP differential between the 
MLN4924 and vehicle control groups was in- 

Figure 3. Changes in brain p62 in mice treated with MLN4924. Total pro-
tein extracts from mouse brain tissues were fractionated via SDS-PAGE 
and transferred to a PVDF membrane before immunoprobing for p62 and 
GAPDH. GAPDH was probed as a loading control. (A) Western blot images  
for the indicated proteins. (B) Pooled densitometry data of the western 
blot images shown in (A). The p values shown were derived from multiple 
t-tests corrected for multiple comparisons using the Holm-Sidak method. 
(C and D) Pooled densitometry data of the western blot images shown in 
(A) specifically comparing the DMSO treated MLN4924 subgroup with the 
DMSO treated vehicle control subgroup (C) and comparing the combined 
MLN4924 subgroups with the combined vehicle control subgroups (D). The 
p values shown in (C and D) were derived from unpaired t-test with Welch’s 
correction.

myocardial levels of LC3-II and 
free GFP protein in mice sub-
ject to the BFA-mediated lyso-
somal inhibition or DMSO con-
trol treatment during the final 
two hours before sample col-
lection (Figure 2). The densi-
tometry data of LC3-II and free 
GFP were adjusted for poten-
tial loading variation by divid-
ing LC3-II and GFP band den- 
sities by that of the in-lane 
loading control (α-actinin). The 
mean value of the vehicle con-
trol without lysosomal inhibi-
tion subgroup (i.e., Vehicle Co- 
ntrol+DMSO) is designated as 
1 arbitrary unit (AU). As sh- 
own in Figure 2A and 2B, sig-
nificant increases in LC3-II in 
both BFA subgroups compar- 
ed to their respective DMSO 
subgroups were observed (p 
<0.05), indicating that BFA did 
inhibit autophagosome remov-
al as expected. However, the 
LC3-II differential (i.e., LC3-II 
flux) between the MLN4924 
and vehicle control groups was 
not statistically significant (p = 
0.7812, Figure 2C), suggesting 
that the MLN4924 treatment 
produced no significant change 
in autophagic flux in mouse 
myocardium. 

In GFP-LC3 expressing cells, 
the free GFP protein levels are 
used by some to reflect auto- 
phagic flux [44]; hence, we also 
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significant (Figure 2D), which also indicates 
that MLN4924 produced no significant change 
in autophagic flux in mouse myocardium. Thus 
results from detection of baseline free GFP pro-
tein levels and from the GFP flux assay corrobo-
rate very well those from myocardial LC3-II 
measurements. 

Effect of MLN4924 treatment on p62 protein 
levels in mouse brains

To test whether or not MLN4924 treatment 
alters autophagic activity in mouse brains, we 
performed western blot analyses for p62, a 
known substrate of autophagy. We found that 
brain p62 protein levels in both MLN4924-
treated and the vehicle control-treated mice 
tended to be increased at 2 hours after intra-
peritoneal injections of BFA but the increase  
is not statistically significant (p>0.05, Figure 
3A, 3B). This could be either because the rate 
of p62 degradation by autophagy was too slow 
for a short duration of lysosomal inhibition to 
discernibly accumulate p62 in the brain or be- 
cause the BFA treatment regime was insuffi-
cient to inhibit lysosomes in the brain. Previou- 
sly it was observed that autophagic inhibition 
could not cause a discernible increase of p62 
proteins in cultured cardiomyocytes until 6 
hours after initiation of the inhibition [11]. And 
it has also been suggested that BFA may have 
very limited ability to pass across the blood-
brain barrier [48]. Regardless of the underlying 
cause, the p62 protein analyses allowed us to 
compare p62 levels between the DMSO sub-
groups (Figure 3C) and between the combined 
MLN4924 group and the combined vehicle  
control group (Figure 3D). Both means of com-
parison reveal a striking reduction of brain p62 
protein levels by MLN4924 treatment (p< 
0.001), suggesting that neddylation inhibition 
by MLN4924 might have increased autophagy 
in mouse brains as p62 is primarily degraded 
by autophagy. 

Discussion

Since impaired quality control at either the pro-
tein or the organelle level can cause not only 
dysfunction of the cell but ultimately cell death 
as well, adequate quality control in the cell is 
essential to the wellbeing of organs, especially 
those (e.g., hearts and brains) composed pri-
marily of post-mitotic cells (e.g., cardiomyo-
cytes and neurons). This is because these 

organs have very limited, if any, regenerative 
capacity to deal with the loss of their primary 
cells [49]. Autophagic impairment has been 
implicated in the genesis or progression of 
common heart diseases and most neurode- 
generative diseases. MLN4924, the first-in-
class inhibitor of neddylation, has been shown 
to induce autophagy in tumor cells [34]; how-
ever, the present study demonstrates for the 
first time that there are no suppressive effects 
of MLN4924-mediated neddylation inhibition 
on the autophagic flux in the heart and brain, 
which suggests that a finite term of neddylation 
inhibition may not impair autophagy in the 
heart and brain, alleviating the concern that 
neddylation inhibition therapy would compro-
mise autophagy-mediated intracellular quality 
control in these vital organs. 

Cullin neddylation is required for the activa- 
tion of CRLs, a family of Ub ligases crucial for 
propelling cell division through regulatory deg-
radation of key cell cycle regulators, which is 
taken advantage of by tumor cells through 
increasing their neddylation activity [50, 51]; 
hence, the use of neddylation inhibition as a 
strategy to suppress tumor growth is to target 
the vital role of cullin neddylation in cell prolif-
eration. However, recent studies have shown 
that CRLs also participate in UPS-mediated 
degradation of misfolded proteins whereas 
atypical neddylation hinders UPS-degradation 
of misfolded proteins in at least cardiomyo-
cytes [52, 53], suggesting that neddylation in- 
hibition may yield significant effects on protein 
quality control which, as discussed earlier, is 
more concerning to the terminally differen- 
tiated cells or post-mitotic organs such as the 
heart and brain. Hence, from the protein quality 
control point of view, neddylation inhibition 
might be a double-edged sword: on one hand,  
it may impair UPS-mediated degradation of 
misfolded proteins via inactivating CRLs; on  
the other hand, it might reduce atypical ned-
dylation and thereby allow the UPS to more effi-
ciently degrade misfolded proteins. However, 
the latter possibility actually depends on how 
neddylation is inhibited. For example, protea-
somal degradation of misfolded proteins was 
promoted when atypical neddylation was in- 
hibited by reduction of NEDD8 via overexpres-
sion of NEDD8 ultimate buster-1 long (NUB1L) 
[53]; however, neddylation inhibition by MLN- 
4924, which specifically targets the NAE [20], 
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may not yield the same effect because the 
atypical neddylation does not seem to require 
NAE [54]. Therefore, the proper functioning of 
autophagy becomes more important to pro- 
tein quality control during MLN4924 treat- 
ment because the UPS-mediated degradation 
of misfolded proteins will likely be suppressed 
as the result of the suppression of CRLs by 
MLN4924, underscoring the significance of 
findings reported here.  

MLN4924 administration does not overtly 
impair myocardial autophagic flux and cardiac 
function

It is well demonstrated that both neddylation 
and deneddylation are required for proper func-
tioning of CRLs. Perturbation of cullin dened-
dylation and thereby the inactivation of CRLs 
through genetic ablation of Cops8, an essen- 
tial subunit of the CSN deneddylating holoen-
zyme impairs cardiac autophagic flux in both 
perinatal and adult mice through perturbation 
of autophagosome-lysosome fusion [38, 39, 
55]. Deficiency of Atrogin-1, a major substrate 
receptor protein for CRLs in muscle tissues was 
also shown to impair cardiac autophagy in mice 
[56]. Hence, there was a good reason to hypo- 
thesize that neddylation inhibition via MLN- 
4924 impairs cardiac autophagic flux. However, 
the findings of the present study seem to reject 
the hypothesis. Both the widely used LC3-II  
flux assay and the measurement of the free 
GFP proteins resulting from autophagic cleav-
age of the transgenic GFP-LC3 demonstrated 
that myocardial autophagic flux was not dis-
cernibly altered by the MLN4924 treatment 
regime (Figure 2) that was verified to have 
effectively inhibited neddylation as reflected  
by decreased myocardial levels of neddylated 
Cul1 (Figure 1). Similarly, LC3-II flux in liver was 
not discernibly affected by the MLN4924 treat-
ment, either (data not shown). 

Neddylation inhibition by MLN4924 increases 
autophagic flux in the brain 

MLN4924 has the ability to cross the blood-
brain barrier [45]. Hence, it is important to 
assess the impact of the MLN4924 regime on 
autophagy in brains. A striking finding of this 
study is that brain p62 protein levels of MLN- 
4924 treated mice were remarkably lower th- 
an that in the vehicle control treated mice 
(Figure 3). Although we were not able to assess 

the alteration of p62 protein synthesis in the 
brain by MLN4924 treatment, it is unlikely that 
the decreased p62 proteins were caused by a 
reduction of p62 synthesis. This is because 
several lines of evidence support the notion 
that the synthesis of p62 should likely be 
increased by MLN4924 treatment. First, a re- 
cently reported study showed that p62 expres-
sion in vascular smooth muscle cells was up- 
regulated by MLN4924 [57]; and second, ned-
dylation inhibition by MLN4924, as discussed 
above, is expected to compromise UPS perfor-
mance while increased p62 had been associ-
ated with UPS impairment resulting from pro-
teinopathy [58]. Thus, the decreases in brain 
p62 protein levels induced by the MLN4924 
treatment are very likely caused by enhanced 
degradation, indicating that neddylation inhibi-
tion by MLN4924 increases autophagic activity 
in the brain. Indeed, the tissue levels of steady 
state p62 proteins have been used frequently 
as an inverse indicator of autophagic flux be- 
cause p62 is primarily degraded by autophagy 
[44]. 

In summary, our data suggest that systemic 
neddylation inhibition by MLN4924 for three 
consecutive days does not significantly affect 
autophagic flux in mouse hearts and livers but 
may increase autophagic activity in the brain in 
normal animals. It should be pointed out that 
the effect of repeated episodes of the 3-day 
MLN4924 treatment regime remains to be test-
ed in the future.
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