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Review Article
Application of animal and human  
PET in cardiac research
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Abstract: Purpose of Review: After a warm-up period of imaging research, several modalities of positron emission 
tomography (PET) are under development for evaluating ischemic heart disease. Recent Findings: Several types of 
well-documented stem/progenitor PET imaging have been utilized for changes in myocardial blood flow and carbo-
hydrate metabolism. Some recent experimental and human studies reported that these data may have beneficial 
effects on cardiac research. Summary: Although the role of PET in the pathology of ischemic heart disease has not 
been sufficiently elucidated, many studies attempting imaging research of myocardial metabolism and neural regu-
lation have been reported. Further studies are needed to better evaluate the potential of PET in evaluating ischemic 
heart disease.
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Introduction

Cardiac ischemia is the serious event in heart 
surgery. A great need exists for improved for-
mulations and mechanisms to prevent and pro-
tect the myocardial tissues from reperfusion 
damage caused by myocardial ischemia. Cur- 
rent efforts to prevent reperfusion damage to 
the myocardial tissues, which in many cases 
leads to myocardial infarction and circulatory 
arrest [1-3]. The neural regulation is involved in 
an imbalance in metabolic supply and demand 
within the ischemic myocardial tissues [4-8], 
which is a natural prevention from ischemia 
and reperfusion-associated tissue inflamma-
tion and organ dysfunction. Modern imaging, 
such as positron emission tomography (PET), 
has revolutionized our view of ischemic heart 
disease [9-13], allowing the opportunity to in- 
vestigate the metabolic regulation mechanis- 
ms of heart by measuring the changes in myo-
cardial blood flow or carbohydrate metabolism, 
and to offer potential information to further 
improve prognostic outcome of ischemic heart 
disease [14-17].

Positron-emitting tracers

Today, the field of PET medicine is undergoing 
great development [18]. Traditionally, there 
have been several options for positron-emitting 
tracers, i.e., 15O-water, 13N-ammonia and 82Ru- 
bidium. However, some new sources of posi-
tron-emitting tracers were successively accu-
mulated, such as 18F-labeled myocardial flow 
radiotracer flurpiridaz [14], and the potential  
for PET in conjunction with several radiotra- 
cers seems to be expanding very rapidly. Ra- 
pid development of labeling biologic chemistry 
gives great potential for the development of 
new PET tracer candidates [15]. It is known th- 
at nanoparticle imaging rely on MRI detection 
of the iron oxide cores [19, 20], and a study of 
Ueno [21] showed that dextran nanoparticles 
the PET isotope copper-64 detected heart 
transplant rejection and predicted organ sur-
vival by reporting on myeloid cells.

The applications of an 18F-labeled perfusion 
agent [18F fluorodeoxyglucose (18F-FDG) and 
18F-sodium fluoride (18F-NaF)] for PET have 
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revealed details on the pathophysiology of car-
diovascular diseases [22]. Some radiotracers 
have unique effects, such as F-labeled fluoro-
deoxyglucose ([F]FDG) reflects glucose flux and 
N-labeled ammonia ([N]NH3) stand for a bio-
marker of blood flow [23].

The relevant characteristics of radiotracer, ani-
mal models compared with human disease are 
listed in Table 1 and discussed below. 

PET imaging to monitor the allograft rejection

Owing to have the potential to be a specific, 
sensitive and quantitative diagnostic test, PET 
imaging in conjunction with radiotracers such 
as F-labeled fluorodeoxyglucose ([F]FDG) refle- 
cting glucose flux and N-labeled ammonia ([N]
NH3) reflecting blood flow, is increasingly used 
in clinical routine for transplant rejection de- 
tection [29, 30], yielding high diagnostic infor-
mation, while providing valuable outcome in 
human transplant recipients [31]. Hoff [16] 
evaluated for the ability of positron-emitting 
tracers [13NH3 and 18F 2-fluoro 2-deoxyglucose 
(18F-FDG)] to detect acute allograft rejection 
after heterotopic cardiac transplantation in the 
rat with sham-operated controls, nonrejecting 
isografts, and rejecting allografts, and found 
that uptake of 18F-FDG and 13NH3 in native 
hearts of animals from all experimental groups 
is not significantly different from that in sham-
operated controls, suggesting that glucose  
may be a preferred metabolic substrate dur- 
ing rejection, which supports a humoral me- 
chanism for substrate preference during trans-
plant rejection and a potential diagnostic role 
for PET.

Daly [24] evaluated N-labeled ammonia ([N]
NH3) reflecting myocardial perfusion and 18F- 
labeled fluorodeoxyglucose ([18F]FDG) small 

animal PET imaging in a well-established mu- 
rine cardiac rejection model, and found that 
there was a significant increase in [F]FDG up- 
take in allografts from 14 d to 21 d, and [F]FDG 
uptake correlated with an increase in rejection 
grade within allografts between 14 d and 28 d 
after transplantation; whereas the uptake of 
[N]NH3 was significantly lower relative to the 
native heart in allografts with chronic vascu-
lopathy compared to isograft controls on 28 d, 
suggesting that PET imaging with [F]FDG can 
be used after transplantation to monitor the 
evolution of rejection, and decreased uptake of 
[N]NH3 in rejecting allografts may be reflective 
of decreased myocardial blood flow. These da- 
ta suggest that combined [F]FDG and [N]NH3 
PET imaging could contribute to unravel patho-
physiological mechanisms underlying allograft 
rejection as a noninvasive, quantitative tech-
nique, and has potential application for serial 
monitoring of allograft rejection in human 
transplant recipients.

PET imaging to monitor the cerebral glucose 
metabolic change after cardiac ischemia/re-
perfusion

There is a growing concern about heart-brain 
neural crosstalk. Understanding neural mecha-
nisms could lead to a better comprehension of 
cerebral circuit structure and function after car-
diac ischemia/reperfusion injury. We used PET 
imaging to monitor the cerebral glucose meta-
bolic changes after cardiac ischemia/reperfu-
sion (Figure 1). Surgical procedures of myocar-
dial ischemia-reperfusion injury models were 
performed following previously described me- 
thods [32-35]. After reperfusion, approximate 
500 ± 50 μCi 18-fluoro-6-deoxy-glucose (18F-
FDG) was injected via the tail vein. After 1 h of 
18F-FDG uptake, rats were anesthetized with 
2% isoflurane. Images were obtained with the 

Table 1. Radiotracer characteristics and application of PET in cardiac Research
Researcher Species Radionuclide Application
Daly [24] C57BL/6 mice [13N]NH3 and [18F]FDG Monitoring the development of cardiac allograft rejection

Hoff [16] Rat 13NH3 and [18F]FDG A potential diagnostic role of PET

Ueno [21] Female 57BL/6 mice Isotope copper-64 Predicting organ survival by reporting on myeloid cells

Srivatsava [17] Patients [18F]FDG The assessment of myocardial viability in patients with left ventricular dysfunction

Meeder [13] Patients [13N]NH3 Exploring the pathophysiology of smoking-related coronary events 

Gerber [25] Patients [18F]FDG Predicting recovery of global cardiac function

Siebelink [26] Patients [13N]NH3 and [18F]FDG The assessment of revascularization with suspicion of jeopardized myocardium

De Jong [27] Patients [(11)C]CGP 12177 Measurement of myocardial beta-adrenoceptor density

De Boer [28] Patients Tc-MIBI and [18F]FDG The assessment of myocardial viability
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whole body scanning pattern (5 min per scan-
ning bed) by the Trans-PET BioCaliburn 700 
system (Raycan Technology Co., Ltd, Suzhou, 
China). The PET images were reconstructed 
using the three-dimensional (3D) OSEM meth-
od with a voxel size of 0.5 × 0.5 × 0.5 mm3. A 
volume-of-interest (VOI) analysis was conduct-
ed using the AMIDE software package (The 
Free Software Foundation Inc., Boston, Mas- 
sachusetts, USA).

PET imaging in the assessment of sympathetic 
re-innervation after heart transplantation

Some reports show that structural sympathetic 
re-innervation of the transplanted heart can 
develop after cardiac transplantation [36-39], 
but the evidence can be difficult to diagnose. 
Schwaiblmair [40] investigated the influence  
of sympathetic re-innervation on cardiopulmo-
nary exercise testing after orthotopic heart 
transplantation in 35 patients underwent PET, 
and found that sympathetic re-innervation en- 
abled an increased peak oxygen uptake, sug-
gesting that partial sympathetic reinnervation 
after cardiac transplantation is of functional 
significance. Schwaiger [41] studied possible 

re-innervation of the human transplant after 
cardiac transplant by PET imaging approach  
in combination with catecholamine analogue 
[11C] hydroxyephedrine ([11C]HED), and found 
that there is the presence of sympathetic neu-
ronal tissue in the terminals of transplanted 
human heart, which may reflect local sympa-
thetic re-innervation. Bengel [42] described 
individual growth of sympathetic terminals late 
after cardiac transplantation by a longitudinal 
quantitative assessment, and found that sym-
pathetic re-innervation was happened in the 
basal anterior region, apex, septal, and lateral 
wall, whereas inferior wall remained denervat-
ed; the largest reinnervated area surveyed in 
an individuum was 66% of the left ventricle, 
suggesting that re-innervation remained region-
ally heterogeneous.

PET imaging to predict recovery of global car-
diac function

The past decade has seen strong progress in 
understanding PET imaging accuracy for pre-
dicting recovery of cardiac function after revas-
cularization [43-45]. Gerber [25] assessed the 
accuracy of PET to predict recovery of global 

Figure 1. Alternations of glucose metabolism by small animal PET scanning. Representative images of 18F-FDG ac-
cumulation in the rats’ brains of two groups (Control group and Model group). The images were displayed in three 
planes: coronal, horizontal, and sagittal planes.
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cardiac function after revascularization in 157 
male patients with coronary artery disease, 
and found that the highest sensitivity (79%) 
and specificity (55%) predicted postoperative 
ejection fraction improvement by using 18F-FDG 
PET, suggesting that FDG positron emission 
tomography can predict improvement of cardi-
ac function coronary patients with impaired 
ejection fraction. Srivatsava [17] prospectively 
studied 120 patients with left ventricular (LV) 
dysfunction who underwent 99mTechnetium-
Sestamibi myocardial perfusion SPECT-CT and 
18FFDG cardiac PET-CT, and indicated that  
the change in LV impaired ejection after surgi-
cal management was statistically significant 
compared to medical management, and the 
assessment of myocardial viability was per-
formed in patients who present after 12 h of 
acute myocardial infarction or with LV dysfunc-
tion due to ischemic heart disease to decide 
upon appropriate surgical management, sug-
gest that there is an important role of PET-CT  
in assessment of myocardial viability in pa- 
tients with LV dysfunction.

PET imaging to evaluate the cardiovascular 
effects of drugs and stimulation

Within the last decade, PET imaging has trans-
lated from a mere research tool to the cardio-
vascular efficacy of drugs by myocardial perfu-
sion imaging and flow quantification. Molecular 
imaging tools including PET are increasingly 
applied in the drug development process [46].

Ueno [21] imaged the effects of angiotensin-
converting enzyme inhibitor (5 mg/kg enalapril) 
in mice with heart allografts, and found that 
enalapril significantly decreased macrophages-
avid nanoparticle signal by using sensitive posi-
tron emission tomography-computed tomogra-
phy (PET-CT) imaging, and reduced a number of 
myeloid cells in the graft, blood, and lymph 
nodes by histology and flow cytometry, suggest-
ing that angiotensin-converting enzyme inhibi-
tor significantly prolong allograft survival. 

Spinal cord stimulation causes significant sym- 
ptomatic improvement in many patients with 
refractory angina pectoris [37, 47-49], and the 
mechanism underling this beneficial response 
is not fully known [50-53]. Hautvast [54] as- 
sessed the effect of spinal cord stimulation  
on myocardial blood flow by positron emission 
tomography in patients with refractory angina 

pectoris, and found that after 6 weeks of sti- 
mulation, both frequency of daily anginal at- 
tacks and nitrogen consumption decreased, 
and the coefficient of variation of flow, repre-
senting flow heterogeneity, decreased after 
treatment, both at rest and after dipyridamole 
stress, suggesting that spinal cord stimulation 
is clinically effective due to homogenization of 
myocardial blood flow. Posma et al. [55] also 
reported a redistribution of myocardial flow  
during dual chamber pacing in a patient with 
non-obstructive hypertrophic cardiomyopathy 
by positron emission tomography, suggesting 
that early septal activation reduced septal fi- 
bre strain and blood flow and increased septal 
perfusion reserve.
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