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Abstract: Sphingosine 1-phosphate (S1P) is a lipid metabolite with intra- and extracellular signalling properties. 
It activates five G protein-coupled cell surface receptors designated S1P-receptors type 1-5 (S1P1-5) that transmit 
extracellular signals into cells, and it modulates intracellular signalling as a cofactor. The analysis of sphingosine 
kinases (SphK) type 1 and 2, the key enzymes for S1P production, in different infection models point to an important 
role for the activation of different immune cells like macrophages, mast cells, and dendritic cells. S1P additionally 
influences local and systemic lymphocyte circulation and positioning, the vascular tone, and blood pressure. Modu-
lation of S1P-mediated signalling pathways therefore results either in local immune cell activation or systemic im-
mune suppression, or both. Pharmacological approaches that modulate certain S1P-mediated signalling pathways 
while leaving others untouched appear to be promising new avenues for next generation pharmaceuticals. This re-
view summarizes current strategies to modulate S1P signalling for immune intervention with the clear focus on the 
specificity of the different principles applied. Known local and systemic effects of S1P on immunity are discussed as 
potential pharmaceutical targets to combat immune and autoimmune diseases and sepsis.
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Introduction

S1P is a signalling molecule with an extraordi-
nary broad functional repertoire [1, 2]. 
Surprisingly the importance of this molecule in 
immunity was barely recognized until a small 
molecule called FTY720 was shown to induce 
profound immune suppression in rodents by a 
totally new mechanism at that time (Figure 1) 
[3]. Although early investigations reported that 
this substance induced apoptosis [3-6], subse-
quent studies revealed disruption of lympho-
cyte emigration from thymus and lymph nodes 
as its predominant mode of action [7-9]. 
FTY720 shared structural similarities with 
sphingosine, the unphosphorylated precursor 
of S1P (Figure 1). While FTY720 itself was a 
prodrug and not inhibiting lymphocyte emigra-
tion, it was phosphorylated in vivo by sphingo-
sine kinases (SphK), the major S1P producing 
enzymes, to the respective phosphate FTY-P 
(Figure 1), which turned out to be the active 

compound that binds to four out of five S1P 
receptors except S1P2 [10, 11]. Of the two 
known sphingosine kinases, SphK2 was the 
predominant one involved in FTY720 phosphor-
ylation [12-16]. At first activation of S1P recep-
tors was considered to establish an insuperable 
barrier for exiting lymphocytes [17, 18]. The 
analysis of several different S1P receptor defi-
cient mice however demonstrated that loss-of-
function of S1P1 in T and B cells was critical to 
interrupt their circulation, emphasizing activa-
tion-induced S1P1 receptor internalization as 
the most important function of FTY-P in order to 
block lymphocyte emigration from thymus and 
lymph nodes [19-21]. Consequently S1P in 
blood and lymph was established as the pre-
dominant exit signal for emigrating lymphocytes 
[22]. Further studies have shown that locally 
produced S1P in the microenvironment of thy-
mus and lymph nodes is also important for effi-
cient lymphocyte emigration [23-25], and the 
expression of different S1P receptors in various 
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leukocyte subsets led to the rapid expansion of 
immune functions mediated by S1P and FTY-P 
[1, 2], why the latter is now called immunomod-
ulator rather than immunosuppressant. 
Different functions of the five known S1P recep-
tors together with the presence of local and 
systemic pools of S1P and a vivid regulation of 
S1P receptor surface expression and S1P 
metabolism attracted a lot of attention from 
pharmacologists to modulate S1P receptor 
function and S1P metabolism for targeted 
immune intervention [26, 27]. This review dis-
cusses the principles of S1P and S1P receptor 
signalling in different immune conditions and 
disease states.

Immune suppression

FTY720 was first tested in clinical trials as an 
immunosuppressant after renal transplanta-
tion [28-31]. Although FTY720 was able to 
induce apoptosis in lymphocytes [3-6], it turned 
out that concentrations reached in patients 
were not high enough to substantially eradicate 
lymphocytes [8, 32]. The predominant mode of 
action was subsequently attributed to disrupt-

ed lymphocyte circulation due to prevention of 
their egress from thymus and lymph nodes 
[7-9]. The finding that FTY720 had to be phos-
phorylated in order to be active in vivo and that 
it was structurally similar to the naturally occur-
ring lipid metabolite sphingosine suddenly 
attracted notice to S1P and its receptors as 
potential target molecules of FTY720 [10, 11]. 
Efficient activation of four out of five S1P recep-
tors except S1P2 by FTY-P led to the hypothesis 
that S1P receptor activation prevented lympho-
cyte exit by establishing endothelial cell barri-
ers [17, 18]. Parallel investigations however 
demonstrated that FTY720 inhibited T and B 
cell chemotaxis to S1P even in the absence of 
endothelial cell barriers simply by internaliza-
tion and degradation of the S1P1 receptor in 
lymphocytes [20, 33, 34]. The analysis of S1P1 
deficient fetal liver chimeric and T cell-specific 
conditional knockout mice supported the 
notion that S1P1 expression in T and B cells was 
required in order to exit thymus and lymph 
nodes [19, 21]. Additional support provided the 
analysis of SphK2 deficient mice with an induc-
ible deletion of SphK1 preferentially in hemato-
poietic and vascular endothelial cells (VEC), 
resulting in almost complete depletion of circu-
lating S1P and therefore referred to as “S1P-
less mice” [22]. The absence of circulating S1P 
in these mice induced lymphopenia due to a 
block of T and B cell emigration from thymus 
and lymph nodes and resembled the pheno-
type of lymphocyte-specific S1P1 receptor dele-
tion [22]. These results constituted a system 
where S1P in blood and lymph served as an exit 
signal for T and B cells in thymus and lymph 
nodes. The latter expressed the S1P1 receptor 
on their cell surface in order to sense S1P for 
exiting [19-21, 35, 36]. This general picture was 
further specified by studies indicating that 
locally produced S1P within thymus and lymph 
nodes supported lymphocyte egress most like-
ly via establishment of local S1P gradients at 
the respective exit sites [23-25], although the 
existence of such gradients was never directly 
shown due to analytical constraints. Main 
sources for S1P were shown to be red blood 
cells (RBC) and VEC in blood [22, 37, 38], lym-
phatic endothelial cells (LEC) in lymph [39], and 
pericytes in thymus [25]. Regulation of S1P1 
receptor surface expression on lymphocytes 
turned out to be critical for maintaining lympho-
cyte circulation [36]. Surprisingly not only sur-

Figure 1. Phosphorylation and structure of sphingo-
sine and FTY720. While sphingosine is phosphory-
lated by SphK1 and SphK2 to S1P, FTY720 is pre-
dominantly phosphorylated by SphK2 in vivo. 
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face expression of S1P1 in thymus and lymph 
nodes was important for T and B cell emigra-
tion, but also its internalization and desensiti-
zation to re-enter lymphoid organs [40]. 
Prevention of S1P1 receptor desensitization 
trapped lymphocytes in circulation [40]. While 
S1P1 was the predominant exit signal-sensing 
receptor on T and B cells, natural killer (NK) 
cells were shown to emigrate from lymph nodes 
and bone marrow mainly via activation of the 
S1P5 receptor [41, 42]. An interesting finding 
was that S1P5 signalling on NK cells was not 
influenced by CD69 expression [41], while S1P1 
was inhibited upon CD69 upregulation through 
direct interaction [43, 44]. This could be an 
important functional characteristic of NK cells 
to escape CD69-mediated retardation of lym-
phocytes in lymph nodes in order to enable 
their participation in the early immune defense 
against infections [45].

Interfering with the outlined regulation of lym-
phocyte egress from lymphoid organs has 
evolved as a new concept for immune suppres-
sion [46]. A major advantage of this approach is 
the complimentary mode of action in combina-
tion with classical immunosuppressants like 
cyclosporine or tacrolimus, which would theo-
retically allow for better efficacy and lower tox-
icity in combinatorial treatment. But there are 
some obstacles that turned out to be counter-
active. One major problem was the rather ubiq-
uitous expression of S1P1 which resulted in 
various side effects like transient bradycardia, 
impaired renal function, and the development 
of macula edema [28]. More specific agonists 
and antagonists for S1P1 were developed to 
decrease the list of unwanted side effects. But 
while FTY720 was predominantly activated via 
phosphorylation by SphK2 in tissues, which led 
to more than 100-fold higher FTY-P concentra-
tions in tissues than in blood [47], direct ago-
nists and antagonists were present in blood at 
high concentrations and interfered with the 
maintenance of the vascular tone by blood-
borne S1P and S1P1 receptor stimulation on 
VEC [48]. Thus application of FTY720 as a pro-
drug turned out to be beneficial to prevent 
increased vascular leak. Novel strategies need 
to be established to circumvent these pitfalls of 
currently available small molecules in order to 
be regarded as competitive immunosuppres-
sive candidates in the current pharmaceutical 
market. 

Multiple sclerosis

Multiple sclerosis (MS) is an autoimmune dis-
ease of the central nervous system. Although 
the cause of this disease remains unknown, it 
is evident that lymphocytes cross the blood-
brain-barrier and cause inflammation around 
the axons of the brain and the spinal cord, lead-
ing to demyelination, neuroaxonal injury, astro-
gliosis, and finally neurodegeneration [49]. The 
initial finding that FTY720 had a therapeutic 
effect on experimental autoimmune encepha-
lomyelitis (EAE) in mice [50-53], an established 
animal model for MS, led to the exploration of 
its therapeutic potential in clinical trials for MS 
[54, 55]. FTY720 was approved in the United 
States in 2010 and in Europe in 2011 for treat-
ment of the relapsing form of MS under the 
brandname Gilenya [56]. It was the first orally 
available treatment for MS. The initial finding 
that FTY720 induced lymphopenia shaped the 
hypothesis that lymphocytes did not reach the 
inflammatory sites in the brain anymore, which 
would result in decreased inflammation and 
potentially lower destruction of neuronal tissue 
[50]. More recent studies documented that pre-
dominantly naïve and central memory T cells 
including interleukin 17 producing (Th17) T 
cells were reduced in peripheral blood whereas 
effector memory T cell counts were normal [57, 
58]. It was suggested that effector memory T 
cells were not trapped in lymph nodes by the 
mechanism outlined in “immune suppression” 
because they did not circulate through lymph 
nodes due to the lack of the chemokine recep-
tor CCR7, which was involved in redirecting T 
cells from peripheral blood into lymph nodes 
[57, 58]. While the predominant deletion of 
Th17 cells in peripheral blood was considered 
as the most important event for its therapeutic 
efficacy in MS [58], FTY720 may also modulate 
the function of astrocytes in the brain [59, 60]. 
Mice carrying a genetic deficiency of the S1P1 
gene in glial fibrillary acidic protein (GFAP) 
expressing astrocytes not only showed attenu-
ated EAE, but FTY720 had also no additional 
effect on EAE progression [59]. These data 
suggest that the efficacy of FTY720 in MS treat-
ment may at least partially depend on its local 
activity on astrocytes in the brain rather than 
immune cell trafficking. Notably the conditional 
genetic deletion of S1P1 in GFAP expressing 
astrocytes also showed diminished lymphocyte 
infiltration without alterations of peripheral lym-
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phocyte counts [59]. Besides general immune 
suppression by impairment of lymphocyte cir-
culation, disruption of local S1P1 signalling in 
astrocytes could be an alternative treatment 
option for MS, which may also be effective for 
primary progressive forms of MS that are insen-
sitive for current immune therapies. A corre-
spondent phase III clinical trial for FTY720 
(INFORMS) is ongoing [56]. While S1P1 inhibi-
tion in astrocytes could be an effective treat-
ment option for MS, the endogenous role of 
S1P and S1P1 receptor signalling in astrocytes 
and other cells of the central nervous system 
(CNS) remains enigmatic. A better understand-
ing of the basic functions of S1P in the CNS 
may not only explain the unforeseen efficacy of 
FTY720 for MS treatment, but may offer addi-
tional and more CNS-specific target molecules 
for better treatment options.

Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic disease, 
characterized by an inflammatory synovitis that 
can lead to functional impairment and destruc-
tion of joints. Although the cause of this dis-
ease is unknown, autoimmunity plays a pivotal 
role in RA pathology [61]. Targeting S1P-driven 
lymphocyte circulation seems to be a promising 
strategy to combat this disease. In fact applica-
tion of FTY720 in SKG mice, which spontane-
ously develop T cell-mediated chronic autoim-
mune arthritis due to a mutation in ZAP-70, 
proved to have therapeutic potential [62]. While 

FTY720 has not yet been tested for RA treat-
ment in the clinical setting, a different strategy 
evolved that targets the metabolism of S1P. 
Inhibition of the retro-aldolase S1P-lyase 
(SGPL1), which irreversibly cleaves S1P into 
hexadecenal and phosphoethanolamine, 
resulted in more than 100-fold accumulation of 
S1P in lymphoid organs [63-65]. Consequently 
the S1P-gradient between blood and lymph 
with high S1P levels and lymphoid organs with 
low S1P levels was annulled, and surface 
expression of S1P1 on lymphocytes was pre-
vented in thymus and lymph nodes. Exit-
mediating S1P1 signalling was ultimately abro-
gated in these cells, and lymphopenia was 
developing similar to that seen after FTY720 
treatment [63-65]. The SGPL1 inhibitor LX2931 
was developed by Lexicon Pharmaceuticals 
and is currently tested in phase II clinical trials 
for RA treatment [66]. First results demonstrat-
ed low efficacy of this compound compared to 
placebo controls, why an additional dose esca-
lation trial was initiated (Lexicon Pharmace- 
uticals). LX2931 is structurally similar to 2-ace-
tyl-4-tetrahydroxybutylimidazole (THI), a com-
pound found in the food additive caramel colour 
III (E150c, Figure 2) [67]. Inhibition of SGPL1 by 
THI was evident in mice and could be antago-
nized by vitamin B6 supplementation, indicating 
that THI blocked the functionally important 
interaction of SGPL1 with its prosthetic group 
pyridoxal phosphate (PLP) [63, 67-70]. It is very 
likely that LX2931 also functions as an antago-
nist of PLP, which implicates that vitamin B6 
consumption may partially neutralize the phar-
macological effect of LX2931 in patients. Thus, 
although inhibition of SGPL1 proved to be a 
promising approach for RA treatment, PLP-
independent direct inhibitors for this metabolic 
enzyme are still missing. Compared to FTY720 
treatment, SGPL1 inhibition had at least one 
remarkable advantage: S1P accumulation was 
predominantly seen in lymphoid organs, and 
less or no accumulation of S1P was observed in 
most other peripheral organs like heart, eye, or 
liver [66]. This profile decisively increased the 
specificity to lymphoid compartments, which 
was probably a major reason for the favourable 
safety of LX2931 demonstrated in clinical 
trials.

Asthma

The role of S1P in allergic responses is probably 
best demonstrated for asthma, which is a 
chronic inflammatory disease of the airways 

Figure 2. Structure of THI and LX2931. THI is a com-
ponent of caramel colour III (E150c), while LX2931 
was developed by Lexicon Pharmaceuticals for treat-
ment of RA.
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[71]. Airway smooth muscle cells are thought to 
play a key role in asthmatic attacks, and the 
finding that S1P was not only increased in air-
ways of asthmatic patients, but also induced 
contraction of human airway smooth muscle 
cells prompted researchers to take a closer 
look into the regulation of S1P and its signalling 
in allergic asthma [72]. Notably administration 
of S1P increased bronchial hyperresponsive-
ness in mice [73], while inhalation of FTY720 
and sphingosine kinase inhibitors abrogated 
experimental asthma [74, 75]. The main S1P 
receptor involved in the induction of airway 
hyperreactivity was S1P3 [76]. Besides the con-
traction of smooth muscle cells, different 
immune cells were modulated by S1P as well, 
including dendritic cells (DC) [74], eosinophils 
[77, 78], and mast cells [79]. Activated mast 
cells produced S1P [80], and human eosino-
phils upregulated expression of S1P receptors 
type 1-3, the chemokine receptor CCR3, and its 
ligand CCL5 upon S1P stimulation, and sup-
ported their recruitment to inflamed sites [77]. 
Inhalation of S1P and FTY720 did not result in 
systemic lymphopenia and immune suppres-
sion, but inhibited the migration of lung DC to 
mediastinal lymph nodes, which abrogated the 
development of allergen-specific Th2 cells in 
respective lymph nodes even during ongoing 
allergen challenge [74]. Notably FTY720 also 
reduced the capability of DC to form an immu-
nological synapse with naïve and effector Th2 
cells, which additionally impaired the allergen-
specific immune response [74]. While the 
mechanistic details of this impairment 
remained unknown, activation of S1P3 down-
stream of the protease-activated receptor 1 
(PAR1) in DC also promoted inflammation, 
although in a very different setting of systemic 
inflammatory response syndromes [81]. The 
involvement of S1P3 in the promotion of other 
DC functions like the above mentioned activa-
tion of Th2 cells may be possible. Importantly 
S1P signalling not only modulated DC migra-
tion, but also improved DC function [74, 81]. All 
different cell types involved seemed to have 
one characteristic in common: They all signal 
via S1P. Abrogation of S1P signalling in the local 
environment of the lung could therefore be a 
promising approach to combat asthma. 
Antagonists for S1P1 and/or S1P3 seem to be 
attractive candidates, which could be delivered 
locally by inhalation. Although this concept has 
not yet been evaluated in the clinical setting, it 
might be a reasonable future approach.

Anaphylaxis

Anaphylaxis is a serious allergic response with 
a rapid onset. It typically starts upon allergen 
exposure with Immunoglobulin E (IgE) binding 
to an antigen of the allergen, which then acti-
vates FcεRI receptors on mast cells and baso-
phils, although IgE-independent mechanisms 
also exist [82]. The release of inflammatory 
mediators like histamine subsequently impairs 
the function of multiple organ systems and 
induces e.g. vasodilation, vascular leak, bron-
chial smooth muscle contraction, and heart 
muscle depression [83]. As mentioned above, 
mast cells released S1P upon activation [80], 
and S1P in turn enhanced degranulation and 
histamine release via activation of S1P2 on 
mast cells in an autocrine manner, resulting in 
increased anaphylaxis [84]. SphK2 deficient 
mast cells revealed impaired effector functions 
like degranulation, suggesting that S1P produc-
tion in mast cells predominantly occurred via 
SphK2 [80]. But in contrast to the impaired 
effector function of SphK2 deficient mast cells, 
SphK2 deficient mice had higher histamine 
concentrations in blood after induction of pas-
sive anaphylaxis than wild type control mice 
and SphK1 deficient mice [80]. It turned out 
that histamine concentrations in blood were 
not only dependent on the ability of mast cells 
to produce S1P via SphK2, but also on the 
amount of S1P in blood circulation, which may 
additionally activate mast cells in the event of 
an allergic response [80]. SphK1 deficient mice 
had lower S1P concentrations in blood com-
pared to wild-type mice due to lower S1P pro-
duction [12]. SphK2 deficient mice however 
exhibited higher S1P-levels in blood due to 
defective distribution and SGPL1-dependent 
degradation in peripheral tissues [85]. Further 
investigations demonstrated that increased 
S1P concentrations in blood of SphK2 deficient 
mice resulted in a faster recovery from an ana-
phylactic shock due to enhanced histamine 
clearance in blood [86]. The latter was mediat-
ed by an S1P2-dependent increase in blood 
pressure and pulse distension [86]. Furthermore 
blood-borne S1P regulated vascular integrity 
via stimulation of S1P1 signalling, most likely in 
endothelial cells [48, 87]. Depletion of blood-
borne S1P in the above mentioned S1P-less 
mice or abrogation of S1P1 signalling by activa-
tion-induced receptor internalization entailed 
increased vascular leak, a common phenotype 
of anaphylaxis [48]. Because of the counteract-
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ing roles of local (enhancing) and systemic 
(attenuating) S1P in early (enhancing) and late-
stage (attenuating) anaphylaxis, S1P signalling 
pathways turned out to be rather difficult thera-
peutic targets for the treatment of anaphyla- 
xis. 

Sepsis

Sepsis is a systemic inflammatory response 
with an underlying infection that can cause 
organ dysfunction in its severe state [88]. 
Uncontrolled inflammation was typically regard-
ed as the main cause of this disease. Current 
research however indicates that sepsis is much 
more complex than just being a deregulated 
immune response. Frequently a systemic 
inflammatory response is accompanied by an 
anergic phase, and both immune states are 
typically not severe enough to fully account for 
the observed high lethality rate [88]. Many fac-
tors contribute to the severity of this disease, 
and S1P might be a good candidate for thera-
peutic target molecules since it is involved in 
many processes that are relevant for sepsis 
onset and progression like regulation of vascu-
lar integrity [48, 87], lymphocyte circulation 
[20, 21], blood-borne antigen presentation [89, 
90], and cytokine secretion [91, 92]. Probably 
the most challenging difficulty of targeting S1P 
signalling for sepsis treatment is to gain the 
required specificity for certain pathways at the 
right time. S1P1 signalling in endothelial cells 
for example was shown to be critically involved 
in cytokine amplification during influenza virus 
infection [91, 92]. It may therefore also play a 
role in the release of cytokines during sepsis, 
which needs to be proven. Increased vascular 
permeability is a known complication during 
sepsis, and S1P in blood was shown to be an 
important regulator for the vascular tone [48, 
87]. Apolipoprotein M (ApoM), which is a bind-
ing molecule for S1P in plasma [93], was 
decreased in sepsis patients and may not only 
serve as a new diagnostic biomarker, but could 
also have therapeutically relevant functional 
consequences, e.g. by providing less S1P in 
plasma, which may increase vascular permea-
bility and contribute to disease severity [94]. 
Lymphopenia is also frequently observed in 
sepsis patients [95]. Although lymphocyte 
apoptosis was attributed as the cause for lym-
phopenia [96], the involvement of other mecha-
nisms like deregulation of S1P-mediated lym-
phocyte egress from lymphoid organs as 

outlined above cannot be excluded. Disruption 
of S1P gradients may also interfere with the 
presentation of blood-borne antigens by mar-
ginal zone B cells to follicular DC in the B cell 
zone of the spleen [89, 90], which again needs 
to be investigated. Importantly S1P3 signalling 
in DC was a crucial event in the signalling cas-
cade of PAR1, which sustained an inflammatory 
response [81]. Application of S1P3 antagonists 
could therefore be a first approach to interfere 
with sepsis progression.

Conclusion and outlook

S1P signalling evolved as a clinically relevant 
therapeutic target for immune suppression, 
MS, and RA. Further applications may include 
asthma, anaphylaxis, and sepsis in the future. 
S1P was shown to modulate lymphocyte egress 
from lymphoid organs [20, 21], vascular integ-
rity [48, 87], blood pressure [86], pulse disten-
sion [86], DC function [74, 81], mast cell activa-
tion [80, 84], eosinophil recruitment [77, 78], 
antigen presentation [89, 90], and cytokine 
secretion [91, 92]. While some of its activities 
were relevant for normal operation (lymphocyte 
egress, vascular integrity, antigen presenta-
tion), others were only observed in certain dis-
ease states (blood pressure, pulse distension, 
DC function, mast cell activation, eosinophil 
recruitment, cytokine secretion). Current phar-
macological target molecules include S1P 
receptors (agonists/antagonists like FTY720) 
[56], the degrading enzyme SGPL1 (inhibitors 
like LX2931) [66], the S1P producing enzymes 
SphK1 and SphK2 (inhibitors), the S1P trans-
porter Spns2 (inhibitors) [97-100], and S1P 
itself (anti-S1P antibodies like iSONEP) [101, 
102]. FTY720 was already approved for MS 
treatment (Gilenya, Novartis), and LX2931 
(Lexicon Pharmaceuticals) and iSONEP (LPath, 
Inc.) are currently tested in phase II clinical tri-
als for treatment of RA and age-related macular 
degeneration, respectively. Further research is 
needed to decipher the network of S1P signal-
ling in order to support the development of 
more selective and efficient pharmaceutical 
compounds for clinical use in immunity and 
sepsis.
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