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Abstract: Breast cancer is the most frequently happening cancer and the most typical cancer death among females. 
Despite the crucial progress in breast cancer therapy by using Chemotherapeutic agents, most anti-tumor drugs are 
insufficient to destroy exactly the breast cancer cells. The noble method of drug delivery using nanoparticles pres-
ents a great promise in treating breast cancer most sufficiently and with the least harm to the patient. Nanoparticles, 
with their spectacular characteristics, help overcome problems of this kind. Unique features of nanoparticles such 
as biocompatibility, bioavailability, biodegradability, sustained release, and, most importantly, site-specific targeting 
enables the Chemotherapeutic agents loaded in nanocarriers to differentiate between healthy tissue and cancer 
cells, leading to low toxicity and fewer side effects. This review focuses on evaluating and comprehending nanopar-
ticles utilized in breast cancer treatment, including the most recent data related to the drugs they can carry. Also, 
this review covers all information related to each nanocarrier, such as their significant characteristics, subtypes, 
advantages, disadvantages, and chemical modification methods with recently published studies. This article dis-
cusses over 21 nanoparticles used in breast cancer treatment with possible chemical ligands such as monoclonal 
antibodies and chemotherapeutic agents binding to these carriers. These different nanoparticles and the unique 
features of each nanocarrier give the researchers all the data and insight to develop and use the brand-new drug 
delivery system.

Keywords: Breast cancer, nanoparticles, chemotherapeutic agents, immunotherapy, site-specific tumor targeting, 
targeted therapy

Introduction

Cancer immunotherapy is the non-natural sti- 
mulus of the immune system to cure cancer, 
boosting the immune system’s natural ability  
to eradicate ailments, which is common in the 
treatment of bladder cancer, breast cancer, 
kidney cancer, cervical cancer, brain cancer, 
head and neck cancer and colorectal and 
esophageal cancers and many other types of 
cancer [1, 2]. Cancer immunotherapy has 
altered the standard for cancer cure; such 
treatments focus on enhancing anti-tumor im- 
mune reflexes with more insignificant off-tar- 
get impacts than chemotherapies and some 
other mediators that straightly eliminate can-
cer cells [3-5]. This method has shown promis-
ing results in cancer remedies. Nevertheless, 
patient response rates continue to vary for rea-
sons that are not well understood; however, 
there have been some assumptions for this 

phenomenon, such as immune competency 
and variety, differing antigen specificity and 
expression levels, and gut microbiota [6]. The 
use of cancer immunotherapy to trigger the 
immune system to identify and eradicate malig-
nancies has provided novel promises for suc-
cessful cancer treatment [7, 8]. Immunothe- 
rapies that increase the capability of endoge-
nous T cells to terminate cancer cells have 
established therapeutic effectiveness in a 
diversity of human malignancies [9, 10]. Na- 
noparticles have lured significant consideration 
and display excessive potential in the field of 
malignancy immunotherapy. NPs used as trans-
porters can carry immune cargo, such as anti-
gens, gene therapeutics, and proteins to the 
intended position. Compared to specific immu-
notherapy, NP-based immunotherapy boosts a 
more brutal immune response and has higher 
specificity and effectiveness [11, 12]. Such na- 
nosized structures are anticipated to partici-
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pate in imaging, pursuing, and observing abili-
ties with the targeted transfer of mixtures to 
tumors, cellular purposes and procedures, or 
precise organs [13-17]. Breast cancer is a se- 
vere ailment in women and is the top reason for 
mortality. This malignancy is a heterogeneous 
illness, so stratification of tumors is essential 
to attain better clinical outcomes [18]. Meta- 
stasis is primarily responsible for its incura- 
bleness [19, 20]. Epidemiologic studies have 
acknowledged the diversity of breast cancer 
risk factors such as race, ethnicity, family his-
tory of cancer, genetic traits, and changeable 
contacts such as augmented alcohol consump-
tion, physical sedentariness, exogenous hor-
mones, and confident females generative fac-
tors [21]. Cancer immunotherapy is an innova-
tive method that promotes the host immune 
system to identify and eliminate highly selected 
cancer cells. However, there is no comprehen-
sive assessment of methods used to eradicate 
tumoral cells. This article tends to deliberate 
using of nanoparticles as too invasive tumoral 
cells and the effectiveness of this method. In 
this review, contemporary findings of nanoma-
terials used in breast cancer immunotherapy 
have been widely classified and extensively 
included through distinct sectors. These clas-
sifications are immensely helpful for a compre-
hensive understanding of used particles and 
mechanisms of theranostics in this era.

Breast cancer

Breast cancer is the most frequently happen- 
ing cancer and is the most typical cancer death 

most common reason for cancer death in fe- 
males in less industrialized districts, it is now 
the second cause of cancer death in more 
industrialized communities after lung cancer 
[27, 28]. There are numerous risk factors for 
breast cancer such as aging, genetic muta-
tions, having dense breasts, the unique history 
of breast cancer or specific non-cancerous 
breast diseases, family history of breast or 
ovarian cancer, preceding treatment using ra- 
diation therapy, and consumption of diethylstil-
bestrol drug [29]. Breast cancer’s common 
symptoms in women are a new lump in the 
breast or underarm (armpit), thickening or 
swelling of the breast, irritation of breast skin, 
redness or flaky skin in the nipple part of the 
breast, pulling in of the nipple or discomfort in 
the nipple area, nipple discharge except for 
breast milk, including blood, any alteration in 
the size or the shape of the breast, ache in any 
part of the breast [30]. The experiment of Joan 
R. Bloom showed that breast cancer exerts 
physical distresses and emotional distresses. 
Emotional support is particularly significant 
during the acute recovery period for one’s men-
tal health, whereas instrumental support gives 
promising results for women who have poorer 
physical and psychological healthiness [31].

Types of breast cancer

There are different kinds of breast cancer 
encompassing non-invasive and invasive can-
cers. Non-invasive breast cancer includes Duc- 
tal carcinoma in situ, and Lobular carcinoma  
in situ and invasive breast cancer contains 

Figure 1. Most common cancers among women.

amole females. His disease  
is a multifaceted ailment that 
shows a considerable degree 
of inter- and intra-tumoral het-
erogeneousness [18, 22-25]. 
According to the data from 
WHO, in 2020, there were 2.3 
million women identified with 
breast cancer and 685,000 
losses worldwide. As of the 
end of 2020, 7.8 million fe- 
males were thriving who were 
detected with breast cancer 
in the past five years, making 
it the world’s most predomi-
nant cancer [26] (Figure 1). 
Breast cancer positions the 
fifth reason for mortality from 
malignancy. While it is the 
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Invasive ductal carcinoma, invasive lobular car-
cinoma, Paget’s disease of the nipple, Inflam- 
matory breast cancer, Phyllodes tumors of the 
breast, locally advanced breast cancer, and 
metastatic breast cancer [32, 33] (Figure 2).

In the past years, traditional classifications 
encompassing histological valuation and stag-
ing were applied to establish the patient’s treat-
ment method. Recently, molecular analysis of 
breast tumors has opened a gate for further 
understanding breast cancer biology and clas-
sification [34, 35]. Also, targeted-gene sequ- 
encing has emerged as the most novel and 
exact approach to determine the class of bre- 
ast cancer. This next-generation method has 

tor negative (estrogen-receptor and progester-
one-receptor negative) [43] (Table 1).

Targeted-gene sequencing

Targeted-gene sequencing is a revolutionary 
DNA sequencing practice aiming at amplicons 
and particular genes [44]. Comparing and ana-
lyzing the Genome of the DNA and gene expres-
sion of primary cancer cells and metastases in 
numerous cases can help estimate the mecha-
nisms that cause metastasis [45]. In addition, 
targeted-gene sequencing has facilitated the 
prediction of future recurrence sites [46, 47], 
precise treatment based on molecular fea-
tures, response to therapy, and survival [48]. 

Figure 2. Classification of breast cancer.

helped extensively evaluate 
the mutations in breast tu- 
mor cells [36].

Molecular classification

Through molecular analysis  
of breast cancers with gene 
expression profiling, breast 
cancer could be sub-classi-
fied into diverse subtypes. 
Generally, these subtypes 
comprise luminal ER (estro-
gen receptor) positive (lumi-
nal A and luminal B), human 
epidermal growth factor re- 
ceptor 2 (HER2) enriched, and 
basal-like or triple-negative 
[22, 37, 38]. Luminal A bre- 
ast cancer is hormone-rece- 
ptor-positive (estrogen-recep-
tor and progesterone-recep-
tor positive), HER2 negative, 
and has trivial levels of the 
protein Ki-67, which helps 
control how fast cancer cells 
grow [39]. Luminal B breast 
cancers are categorized by a 
minor ER expression, a slight 
progesterone receptor (PgR), 
and a high histologic grade 
[40, 41]. HER2-enriched bre- 
ast cancer is hormone-recep-
tor negative (estrogen-recep-
tor and progesterone-recep-
tor negative) and HER2 posi-
tive [42]. Triple-negative/bas-
al-like breast cancer is HER2 
negative and hormone-recep-
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Targeted gene sequencing panels are used  
to determine the exact mutation in a sample. 
Focused conferences hold the genes or regions 
suspected to cause breast cancer [49].

Classification of particles

Microparticles used in drug delivery

Microparticles (MPs) are dense or dispersed 
particles ranging from 1 to 1000 µm [50]. The 
medication is dissolved, trapped, encapsulat-

transporting structures for immunotherapies to 
regulate the immune system [57]. N.P./MPs 
include many kinds; the most important ones 
are polymeric particles and liposomes. The 
majority of the typical polymeric particles are 
composed of chitosan, biodegradable polyes-
ters, altered Dextrans, and Polyketals [58]. 
Most of the biodegradable polyesters (e.g., poly 
lactic-co-glycolic acid (PLGA)) are drug delivery 
tools that are approved by Food and Drug 
Administration [59].

Table 1. Classification of molecular subtypes

Molecular subtype ER-estrogen 
receptor

human epidermal growth 
factor receptor 2

PR-progesterone 
receptor Ref.

Luminal A positive negative positive [39]
Luminal B minimum positive/negative minimum [40, 41]
HER2 negative positive negative [42]
Triple-negative or basal-like negative negative negative [43]

Figure 3. A summary of the nanopar-
ticle types used in breast cancer drug 
delivery. In general, organic and inor-
ganic nanoparticles are the two pri-
mary nanoparticles used for drug deliv-
ery. Also, polymeric NPs are the most 
frequently used particles that contain 
nanocapsules as the most valuable ob-
ject to deliver the drug to the intended 
specific breast tumor cells.

ed, or connected to a mic-
roparticle matrix. Dependent 
on the technique of com- 
posing, microparticles, mic- 
rospheres, or microcapsules 
can be produced [51, 52]. 
Like nanoparticles, micropar-
ticles are used as drug trans-
porters or as adjuvants for 
vaccines. The medications or 
antigens may combine into 
particles in the shape of a 
dense dispersion or a solid 
solution [53]. Also, they may 
be adjoined to the particle 
exterior by physical adsorp-
tion and chemical attaching 
[54]. These transportation sy- 
stems present several bene-
fits contrasted to common 
dosage forms, which contain 
enhanced effectiveness, de- 
creased toxicity, and better- 
ed patient convenience [55]. 
Some critical challenges con-
fronting immunotherapy in- 
clude inaccurate toxicity and 
inexact immune activation 
[56]. To help undertake this 
problem, nanoparticles and 
microparticles play an es- 
sential role as effective drug 
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Nanoparticles used in drug delivery

Nanoparticle drug delivery systems are profes-
sional methods that transport medication to 
the intended cells and control the release of 
drugs [60]. The recent procedure of a drug 
delivery method tends to lessen side effects 
and decrease the dosage. Lately, different NPs, 
as depicted in (Figure 3), have stimulated inter-
est because of their possible use for efficient 
drug delivery [61]. Boosting ligand binding 
effectiveness can reduce dosage and decrea- 
se NP. Toxicity Reducing dosage or dosage fre-
quency also lessens the mass of nanoparticles 
per mass of medication; therefore, attaining 
more energy [62]. According to the character-
ization from NNI (National Nanotechnology 
Initiative), nanoparticles are systems of sizes 
fluctuating between 1 to 100 nm in as a single 
minimum dimension [63].

Nevertheless, the prefix “nano” usually refers 
to particles up to several hundred nanometers 

in size. Nanoparticles with enhanced physico-
chemical and biological features are absorbed 
in cells more effortlessly than giant molecules 
[64]. Thus, nanoparticles could be effectively 
utilized as transporting means for presently 
accessible bioactive compounds [60]. NPs can 
load different components at the same time for 
simultaneous transport, keep the loads from 
degradation and early release, and inactively or 
actively target cancer cells by the enhanced 
permeability and retention (EPR) influence or 
surface alteration by ligands correspondingly 
[61] (Figure 4). Also, inorganic nanoparticles 
could be utilized as a local source of ICD-in- 
ducing cure or focus attention on a treatment 
by external energy fields to diminish harm to 
normal cells [65, 66].

Due to the lack of full clinical application sup-
port and intratumorally administration of these 
nanoparticles, most nanocarriers’ use remains 
only in vivo and in vitro stage. According to the 
academic journals, there has been a hope that 

Figure 4. It indicates nanoparticle-mediated drug delivery to tumor cells, especially breast cells and summarizes 
how NPs reach the target organ and stimulate the destination cells. NPs have been utilized for effective drug deliv-
ery, analytic tools and facilitate an efficient, targeted biomolecular interface to lessen side effects caused during 
the treatment.
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vascular interventional administration might  
be a possible solution to utilize NPs by locating 
the tumor-feeding vessels [67]. A summary in 
(Table 2). is brought to compare these nanopar-
ticles in detail.

Organic nanoparticles

Organic nanoparticles are developed upon 
organic or synthetic organic molecules. Nature 
provides many examples of organic NPs like 
protein combinations, lipid bodies, milk emul-
sions, or more intricate prepared structures 
such as viruses [68, 69]. The principal value  
of devising medications into nanoparticles is 
enhancing particle exterior surface in touch 
with the dissolution agent, enhancing bioavail-
ability. Numerous drugs have been formulated 
with this method and are available [70]. By 
using an innovative technique called SMILE 
(Stabilized Metal Ion Ligand complex), Scien- 
tists have produced a biomimetic nanoparticle 
formulation of Cu(DDC)2 to overcome drug 
delivery issues [71]. Cu(DDC)2 metal-organic 
compound core and surface covered bovine 
serum albumin (BSA) are integrated to make 
Metal-organic Nanoparticle (MON), which effi-
ciently prevents the outgrowth of breast cancer 
cells [72, 73].

Polymeric nanoparticles: Polymeric NPs have 
drawn significant attention over the latest years 
because of their features due to their tiny scale 
[74-76]. Possible usage for controlled drug re- 
lease, the capability to retain medication and 
other molecules with biological function from 
the environment, enhance their bioavailability, 
and therapeutic index are benefits of polymeric 
nanoparticles in drug delivery [77]. Nanocap- 
sules and Nanospheres are two types of poly-
meric nanoparticles. Polymer nanoparticles  
are one of the most advanced non-invasive 
methods for drug delivery uses [78]. Polymeric 
nanoparticles are units within the size variation 
from 1 to 1000 nm and can be filled with effec-
tive compounds trapped inside or surface-
adsorbed onto the polymeric core [77]. Poly- 
meric nanoparticles can control drug release 
either by diffusion via polymer matrix or ma- 
trix degradation. They have been inspected as 
drug-delivery systems for the site-specific tar-
geting of cancer cells [79]. The most significant 
benefits for these particles are supplying con-
trolled release to the preferred site, supply sta-
bility to labile molecules (e.g., proteins), and 

supply capability to alter surfaces with ligands 
for stealth and targeted drug delivery goals 
[80]. Due to the poor water-solubility, three of 
the most critical drugs in breast cancer deliv-
ered by polycaprolactone-polyethylene glycol 
(PCL-PEG) nanoparticles are Cisplatin, Doxo- 
rubicin, and 5-fluorouracil. PCL-PEG is a poly-
meric nanoparticle that increases the stability 
and solubility of drug molecules to enhance 
drug delivery systems [81, 82]. Bressler and his 
colleagues have shown that AXT050 is a multi-
modal peptide with anti-tumorigenic and anti-
angiogenic properties by targeting integrin 
αVβ3 on the surface of cells in culture. It also 
can target and disturb both cancer cells and 
endothelial cells; therefore, this technology 
may be capable of administrations in cancer 
nanomedicine [83]. Abou-El-Naga’s experiment 
has represented that cellular uptake of Do- 
cetaxel was time-dependent and reached the 
maximum after conjugating on PLGA NPs and 
with folic acid combination, which triggered the 
endocytosis mechanism; therefore, folic acid/
PLGA NPs can have a promising drug delivery 
system for Docetaxel in breast cancer treat-
ment [84]. Soe ZC and her colleagues’ study 
has shown that transferrin-conjugated poly-
meric nanoparticle-targeted NP used as a 
doxorubicin carrier into a drug-resistant cell line 
has (a transferrin (Tf)-conjugated polymeric 
nanoparticle composed of poloxamer 407 
(F127) and 123 (P123) (Dox/F127&P123-Tf)) 
improved cellular uptake and tempted prohibi-
tion of cell propagation in vitro, not only in doxo-
rubicin-sensitive cells but also in the doxorubi-
cin-resistant in a particular type of breast can-
cer cells. Hence, transferrin-targeted NPs can 
be utilized as harmless and effective drug carri-
ers to treat doxorubicin-sensitive and resistant 
breast tumor cells [85].

(1) PEG: The most helpful polymer for drug 
delivery is Polyethylene glycol (PEG) because of 
its unique behavior that prevents early recogni-
tion by the immune system (opsonization) [86]. 
Also, the hydrophilic characteristic of PEG leads 
to stabilizing nanoparticles by steric and not 
ionic effects, especially in water [87]. Carrying 
PEGylated nanoparticles with drugs to epider-
mal growth factor receptor (EGFR) + Triple-
negative breast cancer (TNBC) requires binding 
PEG engager to polyethylene glycol and EGFR 
simultaneously. Enhancing the anti-prolifera-
tive activity of PEG-liposomal doxorubicin by 
PEG engagement in EGFR+TNBC cells brings 
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Table 2. The summary of the advantages and disadvantages of each nano-carriers with their variable size
Np Type Size Advantage Disadvantage Ref
Polymeric  
Nanoparticles

Biodegradable, biocompatible, Efficacious distribution of 
both water-soluble and insoluble medications.

Cytotoxicity, Organizational heterogeneity 
as reproduced by high polydispersity index.

[229]

Nanospheres 100-200 nm Significant external to volume ratio, Measured release of 
insoluble actives.

Absence of Stability of some actives, High 
manufacture expenditure.

[230-232]

Nanocapsules 5-1000 nm The usage of natural polymers such as polysaccharides 
and proteins can rise bioavailability and biodegradability.

Extensive dispersal of condensed actives, 
a purification procedure is required after 
the synthesis of nanocapsules.

[232-234]

Dendrimers 1-100 nm Functionalization of outlying groups control solubiliza-
tion and permits targeted delivery of load-Appropriate for 
combining lipophilic and lipophobic cargo.

Toxicity linked with surface amin groups-
Pharmacokinetics, biodistribution, biodeg-
radation, and chronic toxicity of PAMAM is 
not understood yet.

[235]

Micelles 20--100 nm Self-assembling, thermodynamic constancy, targeting 
potent.

Selection of appropriate surfactants. [236]

Polymersomes 100 nm to a 
few μm

highly adaptable and biologically steady systems and 
their overall possessions and drug encapsulation and re-
lease competencies can be effortlessly tuned by applying 
numerous block copolymers that are biodegradable and/
or stimuli-responsive.

More clinical studies are vital for its forma-
tion as gold standard avenues.

[237]

Solid lipid  
Nanoparticles

50--100 nm Progresses solubility in water of hydrophobic cargo, Hy-
drophilic cargo conceivable, Relatively low-cost manufac-
ture, Biocompatible/biodegradable, Possible production 
scaling-up.

Recrystallization danger and little en-
capsulation load, High water content in 
dispersals (70-99.9%), Premature cargo 
release during storing.

[238, 239]

Liposomes 30 nm to a few 
μm

Effective delivery of both water-soluble and insoluble 
drugs, simply tailored size and carrying capacity, Signifi-
cant construction.

Swift release, Petite shelf lives, Variability, 
clearance to reticuloendothelial structure.

[229, 240, 241]

Metal Nanoparticles 1 nm to a few 
hundreds of nm

Uniformity in scope, shape, and branch length Tuned p 
harmacokinetics and biodistribution Augmented surface 
area, enlarged loading Targeting is achieved.

Poisonous effects on the body. [229, 235]

Carbon Nanotubes About 0.7 nm Multiple roles Chemical alteration Water soluble and 
biocompatible Efficient cargo.

Poisonousness. [235]

Ceramic Nanoparticles 1--100 nm Do not swell or change porosity and are steady at numer-
ous pH and temperatures.

Sluggish biodegradation or non-degrada-
tion.

[242, 243]

Human serum albumin 
(HSA) Nanoparticles

66.5 kDa Low toxicity, biodegradability, reproducibility, manageable 
release, and numerous drug binding sites.

the potential risk of pathogen contamina-
tion (e.g., HIV, hepatitis, CJD), side effects.

[219, 221]

Overall, the benefits overcome the drawbacks; however, the extended use of some nanoparticles is limited due to the toxicity.
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about a reduction in breast tumor cells’ growth 
and reductions in their number [88-90].

(2) PCL: Poly-ε-caprolactone (PCL) is another 
frequently used polymer nanocarrier decom-
posed by hydrolysis of its ester. Versatile na- 
ture, ease of fabrication, and biocompatibility 
are the features that have made PCL the cen- 
ter of attention in nanoparticle drug delivery 
[91, 92]. This nanocarrier is most suitable for 
long-term delivery up to one year because of  
its unique characteristic in slow biodegrading 
compared to other polymers [93]. NPs based 
on Poly (ε-caprolactone)-Poly (ethylene glycol)-
Poly (ε-caprolactone) (PCL-PEG-PCL) can effi-
ciently deliver Doxorubicin (DOX), an anthracy-
cline anti-cancer drug, to the targeted breast 
tumor cells [94]. A study has shown synthesis 
of robust docetaxel/aptamer-polydopamine 
(DTX/Apt-pD)-CA-(PCL-ran-PLA) NPs with star-
shaped CA-(PCL-ran-PLA) copolymers, which 
could be practical as optimistic targeting drug 
delivery systems for synergistic chemo-photo-
thermal therapy of breast cancer [95].

(3) PEG-PCL: Cuong N-V and colleagues showed 
that three biodegradable PEG-PCL-PEG triblock 
copolymers with many PCL blocks were manu-
factured to transport anti-cancer drugs. The 
structures of copolymers were characterized by 
proton nuclear magnetic resonance, Fourier 
transforms infrared spectroscopy, gel perme-
ation chromatography, differential scanning 
calorimetry, and X-ray diffraction, correspond-
ingly. These hydrophobic PCL elements con-
tained copolymers that could compress DOX 
into the micelle cores. The cytotoxicity of DOX-
loaded micelles was higher than that of free 
DOX in specific breast cancer cells. These 
explanations show that DOX-loaded micelle is a 
hopeful means of treating multidrug-resistant 
tumors [96]. Additionally, in a study, mPEG-PCL 
copolymer was created. The copolymer mPEG-
PCL was self-assembled into polymersomes  
in an aqueous solution in the presence of 
Methotrexate. Assays showed that methotrex-
ate-loaded mPEG-PCL polymersomes had more 
prohibition effects on breast cancer cells than 
free Methotrexate, providing an appropriate 
and proper system for delivering Methotrexate 
to the breast cancer cells [97].

(4) Chitosan: Chitosan is a polymeric nanocar-
rier that is biodegradable, biocompatible, and 
vastly used in drug delivery with diverse admin-

istration methods. Positive surface charge and 
mucoadhesive feature enable chitosan NPs to 
connect to mucus membranes and release the 
loaded drug in a sustained release way [98, 
99]. Other beneficial characteristics of chito-
san are low immunogenicity and high biocom-
patibility, along with a high cationic charge 
[100, 101]. Additionally, chitosan is used to 
overcome the drug resistance and increased 
toxicity of some sufficient anti-cancer medica-
tions such as 5-Fluorouracil and doxorubicin 
[102]. A water-soluble product of chitosan ca- 
lled carboxymethyl chitosan (CMCS) can load 
5-Fluorouracil and doxorubicin and facilitate 
the sustained release of these drugs [103]. 
Mono-dispersed and pH-sensitive chitosan sili-
ca hollow nanospheres (CSeSiO2 HNPs) have 
shown promising results in breast cancer ther-
apy. Antibody molecule (to ErbB 2) is conjugat-
ed with SiO2 HNPs to a pH-sensitive polyelec-
trolyte layer to make a suitable nano-transport-
er for targeted TNF drug transport to breast 
cancer cells [104, 105]. In Santos-Carballal B’s 
study, chitosan oligosaccharide (COS) showed 
promising results in preventing the aggressive 
capability of MDA-MB-231 breast tumor cells, 
which leads to a reduction in the metastasis 
process [106]. Even in Cancer gene therapy, 
chitosan is outstandingly valuable through spe-
cific nano complexes like chitosan-hsa-miR-
NA-145 (CS-miRNA), which downregulates the 
target mRNA proliferation in MCF-7 breast can-
cer cells [107].

(5) Gelatin: Gelatin is a versatile and natural 
biopolymer that has numerous significant func-
tions because of its low price, easy accessibili-
ty, biodegradable and biocompatible character-
istic, non-toxicity, easy adhesion, and adjusting 
chemically and consequently has a vast capac-
ity to be utilized in drug delivery systems such 
as nanoparticles which contain protein [108-
110]. Amifostine is used to firmly connect a tar-
geting ligand (Herceptin) to amphiphilic gelatin 
(AG)-iron oxide calcium phosphate (CaP) NP 
which produces a nanoparticle system with a 
pH-sensitive CaP shell and degradable AG core, 
enabling the manageable sustained release of 
the two medicines [111]. A bioligand and mag-
netic targeting with the dual-targeting system 
of AGIO@CaP-CD (HER-AGIO@CaP-CD) led to  
a considerably high cellular uptake in HER2-
overexpressing SKBr3 cells and more effective 
treatment for breast cancer [112].
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(6) Poly-D, L-lactide-co-glycolide (PLGA): Be- 
cause of the adjustable and sustained-release 
characteristics, low toxicity, and biocompatibil-
ity with tissue and cells, US Food and Drug 
Administration have approved Poly PLGA as 
one of the most efficient biodegradable poly-
meric NPs to be utilized in drug delivery struc-
tures [113]. Hydrolyzed PLGA in the body pro-
duces lactic acid and glycolic acid, biodegr- 
adable metabolite monomers. The body deals 
with these two monomers so quickly, leading to 
the low toxicity of PLGA [114]. Also, in cancer 
treatment, incorporating Docetaxel into the 
rod-shaped PLGA improves the efficacy of  
taxane-resistant triple-negative breast cancer 
[115].

(7) PLGA-PEG polymeric nanoparticles: In Ak- 
bari E’s research, trapoxin/Methotrexate-co-
loaded PLGA-PEG NPs were synthesized. The 
trapoxin/Methotrexate co-loaded PLGA-PEG 
displayed high growth inhibition against breast 
cancer cells; consequently, it showed good ac- 
complishment, which supports using the sys-
tem as a good candidate in the synergistic 
delivery of antineoplastic agents to treat breast 
cancer [116]. In another experiment done by 
Amirsaadat S and colleagues, PLGA-PEG NPs 
were used to co-deliver two natural anti-cancer 
agents, Metformin and Silibinin, against breast 
cancer cells. Outcomes disclosed that the en- 
capsulation of Metformin and Silibinin in PLGA-
PEG NPs could efficiently hinder the propaga-
tion of breast cancer cells than their pure forms 
[117]. Jusu SM and colleagues experimented 
with releasing targeted and untargeted (PGS 
and PTX) cancer drugs from physical blends of 
PLGA and PEG microparticles. The outcomes 
presented that the composite microcapsules 
allow the prolonged release of cancer drugs 
(PGS, PTX, PGS-LHRH, PTX-LHRH) over time 
that could significantly ease the localized tre- 
atment of TNBC [118]. Results show that 
nanochrysin or chrysin-loaded PLGA-PEG used 
in T47D and MCF7 cell lines apply a repress- 
ing effect on the two breast cancer cell lines,  
further than that of pure chrysin. Based on 
these outcomes, nanochrysin can be utilized 
for breast cancer therapy and proposes a no- 
vel and effective drug delivery system to con-
test breast cancer [119]. In Cao D’s work, 
injectable liposomal doxorubicin-loaded PLGA-
PEG-PLGA thermogel was synthesized. Lipo- 
somal doxorubicin-loaded thermogel exhibited 

protracted release of DOX deprived of separa- 
te initial burst compared with DOX-Gel. This 
study suggests that a hybrid medication deliv-
ery system containing liposome and hydrogel 
can sustain and enhance drug release, improv-
ing the anti-cancer effectiveness through local-
ized therapy and reducing cytotoxicity [120]. 
Tabatabaei Mirakabad FS’s study showed that 
curcumin-loaded PLGA-PEG nanoparticles have 
an inhibitory effect on the MCF-7 breast cancer 
cell line more than pure curcumin [121].

(8) Polylactic acid (PLA): PLA is a thermoplastic 
polyester nanoparticle that has drawn atten-
tion due to its biocompatibility, non-toxicity,  
and biodegradability features. Poly-lactic acid 
nanoparticles (PLA-NP) are commonly used as 
nanomedicines because of their benefits over 
metallic NP, such as keeping anti-cancer drug 
loads for sustained periods [122]. The anti-can-
cer drug paclitaxel (PTX) can be loaded to PLA/
hydroxyapatite (HAp, which exhibits pH sen- 
sitivity) core-shell nanoparticles and facilitate 
effective drug delivery via the EPR effect to the 
breast tumor cells [123].

(9) Nanosphere: Nanospheres must be assu- 
med to the matrix-based structures [124], 
which are different in size from 10 to 200 nm  
in diameter and can be crystalline or amor-
phous. They integrate with drugs, dissolve, 
encapsulate, or join bioactive to the polymeric 
matrix compound. These NPs guard bioactive 
and keep them from degrading chemicals and 
enzymes [125]. Hollow carbon nanospheres 
(HCNs) modified with anti-HER2 antibody and 
loaded with DOX facilitates the drug delivery 
(Figure 5) to the specific HER2-positive bre- 
ast cancer cells and considerably restrain the 
tumor cells in vitro, causing ~a 60% decrease 
in the size of the HER2-positive tumors in vivo 
[126]. To overcome some of the typical restric-
tions of breast cancer treatment like off-target-
ed drug delivery, fast drug clearance, and drug 
resistance, porous magnetite nanospheres are 
used to load Doxo with great effectiveness for 
targeted drug transport to breast cancer cells 
depending on pH-sensitive drug release [127].

(10) Nanocapsule: A polymeric nanocapsule is 
a liquid or solid core with a polymeric shell cov-
ering the whole structure, its main difference 
from the nanosphere (Figure 6) [128]. These 
nanoparticles can transport enzyme biocata-
lysts, drugs, and vectors to tumor cells [129]. 
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They have a spherical form; drugs are located in 
the unfilled center and coated with polymeric 
shells [130]. The size of these particles differs 
from 50 to 300 nm. Nanocapsules can trans-
port both hydrophilic and lipophilic drugs [131]. 
Lipid nanocapsules can efficiently transport 
hydrophobic drugs like Docetaxel and Thymo- 
quinone to the intended breast tumor cells. 
These nanoparticles considerably improve the 
anti-tumor effect of free Docetaxel in breast 
cancer cells [132]. Utilizing Chitosan Grafted 
Lipid Nanocapsules loaded with Docetaxel and 
Thymoquinone is a novel method to enhance 
chemotherapeutic effectiveness in treating re- 
sistant breast tumor cells, which has shown 
promising results both in vivo and in vitro [133].

(11) Dendrimers: Dendrimers are created of 
repeating components, like polymers. However, 
they are significantly different from usual poly-
mers by two key features: dendrimers are ne- 
ver produced by polymerization reactions, but 
they have a flawlessly devised and vastly re- 
producible structure and a very branched 3D 
design because of the usage of at least one 
kind of branching components as construction 

blocks for their synthesis [134, 135]. The main 
difference between these two is that a den- 
dron usually has a sole chemically addressa-
ble assembly called the focal point or core. 
Dendrimers are built by adding layers to the 
branching groups [136]. The construction of 
dendrimers includes a core molecule with br- 
anching groups to which different branching 
molecules are attached in layers [137]. Be- 
cause of their low toxicity, a polymeric den-
drimer is of significant attention in biomedical 
uses such as polyamidoamine (PAMAM) den-
drimers [138]. In HER2-positive breast cancer, 
Trastuzumab (TZ)-grafted dendrimers signifi-
cantly enhance the transport of Docetaxel 
(DTX) to the tumor cells. These nanoparticles 
lead to higher antiproliferation activity, cellu- 
lar internalization, and induction of apoptosis 
against HER2-positive breast cancer cells 
[139-141].

(12) Micelles: Polymeric micelles are widely 
investigated transporters to carry weakly water-
soluble medications [142]. Amphiphilic block 
copolymers shape Polymeric micelles nano-
sized core/shell systems. The reasons that 

Figure 5. It summarizes the two agents working together to fight against breast tumor cells. The first one is the 
body’s immune system which produces CD8+ T cells based on the antigen of the tumor cells presented by DCs to T 
cells. The second agent is immune checkpoint inhibitors delivered by nanoparticles to the organ. CD8+ T cells are 
then capable of attacking cancer cells and eliminating them with the help of immune checkpoint inhibitors carried 
to the position by nanoparticles like nanosphere.



Nanoparticles in breast cancer

11 Am J Clin Exp Immunol 2022;11(1):1-27

make these nanoparticles exceptionally well 
suitable for drug delivery uses are both the  
natural and adjustable features of polymeric 
micelles [143]. Polymeric micelles are applied 
in drug delivery because of their appealing 
qualities, like biocompatibility, less toxicity, 
core-shell assembly, micellar association, mor-
phology, nano size, and relatively high steadi-
ness [144]. The fundamental notion in this 
method is receptor-mediated endocytosis. The 
ligands coupled to the micelles attach to their 
exact receptors on the cell membrane, leading 
to the micelles’ endocytosis [145]. The varia-
tion in mass between the micelles and univer- 
se enables them for extended circulation in the 
blood with escaping of renal clearance, yet per-
mits for a means of eliminating the surfactant 
from the body when no longer needed [143]. 
IR780 iodide, a near-infrared (NIR) dye deliv-
ered to the tumor cells by micelles, has shown 
magnificent ability in the phototherapy of can-
cer cells. Herein, amphiphilic 28 micelles bas- 
ed on D-a-tocopheryl polyethylene glycol succi-
nate (TPGS) and D-a-tocopheryl succinate 29 
(TOS) can carry IR780 to the targeted malig-
nant breast cells [146-148].

(13) Polymersome: Polymersomes are synthet-
ic vesicles, small empty with a solution. These 

nanoparticles are made of amphiphilic synthet-
ic block copolymers that shape the vesicle 
membrane and have sizes fluctuating from 50 
nm to 5 µm [149].

Both hydrophilic doxorubicin hydrochloride 
(DOX·HCl) and hydrophobic doxorubicin base 
(DOX) can be delivered by polymersomes to the 
breast tumor cells [150].

Lipid Nanoparticles: (1) Solid lipid nanoparti-
cles: Solid lipid nanoparticles (SLNs) have been 
produced to transport dissolvable water drugs 
and corrective dynamic medication efficiently. 
These NPs are made up of assembled quality 
polymers, making them capable of advanced 
drug delivery with less toxicity [151, 152]. 
Doxorubicin encapsulated in lipid nanoparti-
cles (SLN-Dox) goes through the cell membrane 
via endocytosis and arrives at the cytoplasm. 
This drug-NP complex overcomes the resis-
tance mechanism in the cell membrane with-
out the support of a chemosensitizer [153, 
154]. An examination that Bin Lu and Su-Bin 
Xiong did showed that conjugation of solid lipid 
nanoparticles with mitoxantrone could control-
lably release without burst effect and high 
effectiveness in the targeting of the drug to 
lymph nodes and a definite affinity for tumor 

Figure 6. The main differences between nanosphere and nanocapsules. Nanocapsules have vesicular structures 
that a drug is loaded in the unfilled center and coated with a polymeric shell, while nanospheres matrix-based struc-
tures with a drug dispersed in it physically.
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tissues which assistances to improve the ther-
apeutic outcome and diminish the side effects 
of anti-tumor agents [155]. In another examina-
tion that Oliveira da Rocha and Bento da Silva 
did show that a combination of solid lipid 
nanoparticles and Docetaxel can inhibit the 
tumor growth of 4T1 breast cancer; further-
more, it did not have noticeable systemic nox-
iousness in mice; consequently, it can be used 
for the treatment of breast cancer [156].

(2) Liposome delivery: Liposomes are spherical 
systems designed by one or multiple concentri-
cal lipid bilayers surrounding separate aqueous 
spaces [157]. These NPs are usually manufac-
tured with innately connected phospholipids, 
chiefly phosphatidylcholine. To amend the 
membrane’s firmness and enhance stability, 
cholesterol is often manufacturing liposomes. 
The molecular load is filled via liposome forma-
tion in aqueous solution, solvent substitute 
mechanisms, or pH gradients techniques [158]. 
Indeed, liposomes are the most valuable and 
complex NP class because of their ability to 
carry numerous biologically effective complex-
es and macromolecules [159-161]. Liposomes 

have exclusive features for drug delivery; actu-
ally, they can include an extensive diversity of 
hydrophilic and hydrophobic diagnostic or ther-
apeutic mediators (Figure 7) [162]. In eliminat-
ing tumor cells, liposomes have been estab-
lished to be very practical. The purpose behind 
that is liposomes decrease the toxic side 
effects of chemotherapeutic medications and 
increase their anti-cancer effectiveness [163]. 
For progressive chemotherapy of tumor cells, 
size is the critical feature of liposomes; Bigger 
liposomes are efficiently eliminated from circu-
lation by the reticuloendothelial system (RES) 
[164]. Liposome-based chemotherapeutics 
can gather in tumor tissue with this “passive” 
drug transport [165]. Metformin (MET), an anti-
diabetic drug, also has been effective against 
breast cancer. MET can be delivered to the 
tumor cells by MET-encapsulating liposome 
(LP-MET) and Herceptin-conjugated LP-MET 
(Her-LP-MET), which have shown promising 
results both in vivo and in vitro [166]. The Zeta 
potentials of LP-MET and Her-LP-MET and their 
size efficiently increase penetrability and retain-
ing effects [167]. In the same way, PEGylated 
DSPC liposomes produced with the microfluidic 

Figure 7. Liposomes are new drug delivery structures that have vesicular structures consisting of bilayers. These 
nanoparticles are made of aqueous spaces, which are surrounded by a membrane created of lipid bilayers.
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system containing doxorubicin expose less tox-
icity because of their sustained release from 
the liposome [168].

Inorganic nanoparticles and nanocrystals

Inorganic Nanoparticles and Nanocrystals are 
made of crystalline clusters of atoms (from just 
a few to numerous tens of thousands). When 
the size of the resources is decreased to the 
nanometer scale, their natural features can be 
extraordinarily altered, and novel physical fea-
tures can appear [169]. Inert metals such as 
gold and titanium shape nanospheres; never-
theless, iron oxide nanoparticles similarly turn 
out to be a choice. Several latest findings, like 
the nanoparticles’ intracellular degradation or 
the tight connection amid intracellular localiza-
tion and local nanoparticle concentration and 
their cytotoxic consequence [170, 171], offer 
new visions to undertake the influence of 
nanoparticles on cells. Metal inorganic nano- 
particle structures break down into their com-
ponent metal atoms, and these materials mi- 
ght have contact with biosystems. A signifi- 
cant quantity of these nanoparticles might stay 
in the body after treatment which can cause 
toxicity [172]. Inorganic NPs have exclusive 
properties, which contributes to the lessening 
of nontoxic photosensitizer (PS) leakage, allow 
for a high loading capacity of PSs, augment PS 
passive uptake, and allow for ease of func- 
tionalization with numerous ligands to promote 
active PS absorption and, therefore, allow for 
the overall improvement of photodynamic tre- 
atment of breast cancer treatment [173-175].

Metal nanoparticles: Metal nanoparticles are 
micron-sized systems containing metals like 
gold, silver, titanium, platinum, cerium, zinc, 
thallium, and iron, or their composites like hy- 
droxides, oxides, sulfides, fluorides, chlorides, 
and phosphates [176]. Noble metal nanoparti-
cles (Ag, Au, Pt) are useful for numerous bio-
medical uses like anti-cancer, radiotherapy 
enhancement, drug transfer, thermal ablation, 
and many others [177]. Ionic covalent bond- 
ing and physical absorption can attach gold 
nanoparticles (AuNPs) surfaces to drugs that 
are transferred to the tissue and regulate drug 
release via biological stimuli or light initiation 
[178]. Noble metal NPs have exclusive featur- 
es like high surface-to-volume ratio, vast opti-
cal components, effortless manufacturing, and 

trouble-free surface chemistry, making them 
versatile for cancer treatment [179-182].

(1) Gold nanoparticles: Gold nanoparticles 
(AuNPs) are small gold particles with a diame-
ter of 1 to 100 nm, which, once distributed in 
water, are also acknowledged as colloidal gold 
[183]. Gold nanoparticles can be utilized to 
enhance the biodistribution of drugs to dis-
eased organs, tissues, or cells to improve tar-
get drug delivery [184, 185]. Gold nanoparti-
cles can accumulate in breast tumor tissue. 
Conjugated with drugs such as Trastuzumab, it 
can also be a drug carrier to augment uptake  
of the drug to the tumor tissue [186]. Sani A’s 
studies have shown that AuNPs are not poison-
ous; nevertheless, many other studies oppose 
this declaration; consequently, further studies 
are needed [187]. In Libutti SK’s experiment,  
a new nanomedicine was conjugated with hu- 
man tumor necrosis factor-alpha (rhTNF) and 
thiolated PEG onto the surface of gold nanopar-
ticles (named CYT-6091) [188]. The outcomes 
presented that it was less poisonous than 
treatment with only rhTNF. Moreover, the gold 
nanoparticles had accumulated in the tumor 
site and mostly avoided healthy tissue [189-
191]. Zhang C’s studies represented that by 
using the aptitude of doxorubicin to interpolate 
DNA duplexes, the novel dual-drug encompass-
ing DNA-Gold nanoparticles, Dox@affi-F/AuNPs 
(dual-drug-containing affibody-DNA-Gold nano- 
particles), can exhibit outstanding constancy in 
simulated physiological circumstances, and it 
could target HER2 overexpressing cancer cells 
[192]. Studies have revealed a prominent cyto-
toxicity outcome of prepared chrysin functional-
ized metal- reduced graphene oxide nanocom-
posites against breast carcinoma cells than the 
normal cells via prompting apoptosis, and it 
holds an optimistic future for cancer chemo-
therapeutic purposes; however additional stud-
ies need to be carried out with different types 
of cancer cell lines [193].

(2) Silver nanoparticles: Silver nanoparticles 
are nanoparticles of silver between 1 nm and 
100 nm in size. While frequently described as 
‘silver’, some are manufactured of a large per-
centage of silver oxide due to their large sur-
face to bulk silver atoms [194]. Silver nanopar-
ticles transport breast cancer drugs due to 
their competent agents targeting tumor cells 
and risk-free, healthy tissues [195]. Swanner 
and Fahrenholtz’s examination for the first time 
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showed that systemically administered AgNPs 
effectively reduce the growth of solid, TNBC 
mammary tumors in mice, which supports the 
likelihood that AgNPs may be beneficial for  
the treatment of some human breast cancers 
[196].

(3) Platinum nanoparticles: Platinum nanopar-
ticles are frequently in the form of a suspen- 
sion or colloid of nanoparticles of platinum in  
a fluid, usually water [197]. Examination of 
Manzoor and Junaid Bashir showed that plati-
num nanoparticles also revealed anti-meta-
static potential on the breast cancer cell. In  
the cell cycle analysis, platinum nanoparticles 
stimulated cell cycle arrest at the G0/G1 phase. 
Platinum nanoparticles also showed antiba- 
cterial properties against pathogenic bacteria 
[198].

Carbon nanotubes: Carbon nanotubes (CNTs) 
have become widespread and extensively in- 
vestigated in medical use. They have proven to 
be effective in the areas of drug transport and 
biosensing techniques for cancer treatment. 
This method has been revealed to improve  
drug transport and biosensing techniques, and 
therefore, carbon nanotubes have lately drawn 
attention in cancer treatment [199]. CNTs are 
round unified cylinders of graphene layers, 
exhibiting distinctive physical, mechanical, and 
chemical features that have recently appealed 
to great attention [200-205]. Some evidence 
indicates that IGF1 (Insulin-like growth factor-1) 
and HER2-specific monoclonal antibodies can 
be attached to single-wall carbon nanotubes, 
which is a considerable step to overcome bre- 
ast cancer in the late stages [206]. The field of 
carbon nanomaterials is developing techno- 
logy with promising applications in the biome- 
dicine field, especially for detecting, recogniz-
ing, and treating breast cancer. Nevertheless, 
no carbon nanomaterial simultaneously pres-
ents the desirable traits for therapeutic Admi- 
nistration in humans, and further studies are 
needed [207]. A novel treatment of metastatic 
breast cancer is also given by combining two 
advanced methods, including selective near-
infrared photothermal removal and carbon na- 
notubes loaded with immune checkpoint inhi- 
bitors [208]. More specifically, this treatment 
uses anti-cytotoxic T-lymphocyte-associated 
protein 4 (anti-CTLA-4) checkpoint inhibition, 
resulting in unrestrained T-cell propagation 
[209].

Ceramic nanoparticles: Ceramic nanoparticles 
(CNs) are developing as drug delivery systems, 
primarily because of their small size (<50 nm) 
and physicochemical features. They include 
albumin, iron oxide, or silica [210, 211]. Alu- 
minum oxide (Al2O3) and titanium dioxide (TiO2) 
are the most frequently used NPs for the pro-
posal of nanocarriers. These NPs are not sus-
ceptible to swelling or variations in porosity 
with pH. Because of their more unchanging, 
bioavailable, readily makeable, and acceptable 
proteins and polypeptide formulation, ceramics 
nanoparticles are a particular carrier for pro-
tein and peptide delivery systems [212-214]. 
Based on the examination of Mahidhara and  
K Kanwar, they showed that iron-saturated-bo- 
vine lactoferrin-loaded alginate-enclosed chito-
san-calcium phosphate (ACSC) ceramic Nano 
Capsules (Fe-bLf-loaded ACSC NCs) has prom-
ising anti-breast cancer efficacy in both in vitro 
and in vivo studies. The NCs proved to be highly 
anti-tumorigenic since none of the mice inject-
ed with breast cancer cells developed tumors 
in the xenograft models [215].

Nanoparticle albumin-bound (nab) technology

Paclitaxel (nab-paclitaxel; Abraxane®) is Food 
and Drug Administration-approved nanoparti-
cle albumin-bound (nab™) for curing metastatic 
breast cancer. The key feature of the drug is 
that the formulation has no conventional sur-
factants in water-based injections [216]. Al- 
bumin is a versatile biomaterial for the manu-
facturing of NPs [217]. The effectiveness of the 
albumin-based transfer exists in its capability 
to boost tumor targeting and accumulation. For 
example, improved tumor accumulation is due 
to the enhanced uptake passively facilitated by 
the improved permeability and retaining effect 
[218].

Human serum albumin (HSA) nanoparticles

Prepared human serum albumin (HSA) can be 
used as one of the versatile carrier structures 
for drug delivery [219]. HSA nanoparticles can 
bind to numerous drug molecules and have 
excellent stability during storing and in vivo 
applications. Also, the toxicity and antigenicity 
of these NPs are very low. Biodegradability, 
reproducibility, and manageable release are 
other significant features of HSA nanoparticl- 
es. In addition, due to the numerous drug bind-
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ing sites on the albumin molecule, significant 
amounts of drugs can be loaded on the matrix 
of HSA nanoparticles [220, 221].

Antibody monoclonal modified-nanoparticles

Monoclonal antibodies (mAbs) are produced by 
B cells and specifically target antigens [222]. 
Pertuzumab and Trastuzumab are the most 
favorable and Food and Drug Administration 
approved antibodies used in breast cancer 
treatment, and they target HER2/neu recep- 
tors and inhibit cell growth rate [223, 224] 
(Table 3; Figure 8). HER2 is a receptor with 
tyrosine kinase activity and participates in the 
epidermal growth factor receptor family [225] 
(Figure 9). HER2 is highly expressed in around 
20-30% of breast cancer tumors, and the out-
come of that is a more aggressive ailment, aug-
mented mortality, and higher recurrence rate 
[226]. NPs containing HSA show a promising 
approach for targeted drug delivery to tumor 
cells; consequently, the binding of HSA nano- 

are trying to treat this problem. One of the best 
cures for treating this malignancy is nanoparti-
cles and monoclonal antibodies. Her2/neu is a 
receptor that is in charge of breast cells’ growth 
every single cell by sending signals to nuclear 
cells; however, in some tumoral cells, it overex-
presses; thus, cells begin to grow uncontrolla-
bly. The advent method of utilizing nanoparti-
cles to treat cancer has significantly changed 
the protocols for eliminating tumor cells and 
drug delivery. The most significant advantage 
of these nanoparticles is precise targeting in 
which the drug does not affect other healthy 
tissues and just attacks the malignant cells. 
Also, drugs carried in nanoparticles are more 
stable than other conventional drugs and are 
protected from degradation or environmental 
effect. Biocompatibility, or fewer side-effects, 
is another advantage of these nanosized par- 
ticles used as drug transporters. This means 
that these materials are compatible with li- 
ving tissue, and we experience fewer second-

Table 3. Monoclonal antibody especially for breast cancer

Drug Mechanism Type Therapy Group Side effects FDA  
Approval REF.

Pertuzumab HER2/neu Humanized 
monoclonal 
antibody 

Metastatic HER2-
positive breast 
cancer

Risk of infection, Bruising and 
bleeding, Anemia, Diarrhea, 
Loss of appetite, Sore mouth

Yes [244]

Trastuzumab HER2/neu Humanized 
monoclonal 
antibody 

breast cancer and 
stomach cancer

flu-like symptoms (high tem-
perature, chills, and mild pain), 
nausea, and diarrhea

Yes [245]

particles to the antibody tra- 
stuzumab takes advantage  
of the capability of HER2-po- 
sitive cells to integrate ele-
ments binding to HER2, and it 
is an appropriate method for 
treatment [227]. Conjugation 
of antibodies with nanoparti-
cles such as gold, metal, iron 
oxide with different sizes and 
shapes showed promising re- 
sults in Bryan E. White and 
Molly K. White’s examination 
[228].

Discussion

Breast cancer is one of the 
foremost causes of death 
among women; subsequent- 
ly, immunologists worldwide 

Figure 8. Mechanism of trastuzumab.
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ary adverse effects other than the therapeutic 
influence.

Due to the fact that breast cancer is one of the 
invasive types of cancers, especially among 
women, the classification of nanoparticle usag-
es and their results can assist in remedying  
the treatment of this malignancy. Countless 
nanoparticles have been developed to eradi-
cate breast cancer; however, no article clearly 
classified them. Therefore, this article has tried 
to gather all valuable data to this extent. The 
name of nanoparticles, their results, and their 
future function have been mentioned to assist 
physicians and scholars remedy this cancer.

All in all, these benefits have made nanoparti-
cles one of the most valuable tools to cure  
cancer. Every nanoparticle has its exceptional 
characteristic, but Among NPs, due to their 
unique features and fewer disadvantages, po- 
lymeric NPs and compact lipid nanostructures 
like phospholipids, including liposomes and 
micelles, seem to be the best choice in drug 
transport to breast cancer cells. Liposomes 
can carry a wide variety of biologically active 
compounds because of their high firmness and 
stability that keep these compounds safe. With 
fewer side effects, greater-sized liposomes  
are also an excellent choice for drug delivery 
since they are removed faster through the re- 
ticuloendothelial system (RES). Polymeric na- 
noparticles, specifically PCL, PEG, nanospher- 

es, and nanocapsules, tend to be ideal drug 
transporters to the targeted breast tumor ce- 
lls. Again, outstanding stability is why these 
NPs are widely utilized in drug delivery systems. 
Various bioactive drugs make them sufficient 
drug transporters since they guard medications 
against biodegradation and enzyme effects. 
For battling these tumoral cells, some drugs 
can be used to target these receptors, and by 
blocking those signaling, tumoral cells begin  
to diminish. Compared with other monoclonal 
antibodies such as PD-1 inhibitors, Her2/neu 
Mabs give promising and better outcomes. The 
FDA-approved monoclonal antibody for this 
kind of treatment is Pertuzumab and Trastu- 
zumab, which explicitly targets Her2/neu re- 
ceptors. These two monoclonal antibodies are 
humanized; subsequently, the body does not 
battle against them, and it does not assume 
them as an unknown substance so that they 
can be used safely; however, they have some 
adverse effects; therefore, the physician should 
pay attention to patients’ overall stability for 
prescribing those for patients’ therapy. Some  
of those side effects are the risk of infection, 
bruising and bleeding, Anemia, Loss of appe-
tite, Sore mouth, flu-like symptoms (such as 
fever, chills, and mild pain), nausea, and diar-
rhea. Besides, most Nps cannot be adminis-
trated in clinical stages, so exploring possible 
methods to make them clinically applicable is 
the main challenge for future research. For the 

Figure 9. HER-2 receptors send signals to cells and are in charge of cell growth; thus, in breast cancer, it causes 
cells to grow and divide at an uncontrolled rate, leading to tumor growth. Arrows in the figure illustrate growth signals 
from HER2 receptors to the nucleus of cells.
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first time, this article discussed the most novel 
method to treat breast cancer in the most 
effective way possible by gathering recent data 
from numerous nanoparticles and breast can-
cer immunotherapy articles.

Conclusion

Nanoparticles are designed to improve the 
qualities of conventional drugs, especially che-
motherapeutic agents, in numerous aspects. 
These nanocarriers hinder the degradation of 
the drug, decrease toxicity and adverse side 
effects and control the sustained release of  
the medication. Breast cancer is also treated 
with these versatile nanocarriers, exclusively 
Polymeric NPs, in the most efficient way po- 
ssible. Although abundant nanocarriers have 
been investigated preclinically, only a handful 
of nano carrier-based drugs such as Doxil 
(Caelyx) (Liposomal Doxorubicin (PEGylated)), 
Myocet (Liposomal doxorubicin (non-PEGylat-
ed)), Lipusu (Liposomal paclitaxel), and Ab- 
raxane (Albumin-particle bound paclitaxel) are 
approved by Food and Drug Administration 
(FDA) and available in the pharmaceutical mar-
ket for treating breast cancer in different stag-
es. However, most of these NPs are still in vivo 
and in vitro stage and do not have clinical use, 
so there are no clear clinical records for most of 
the NPs.This review illustrates that much work 
must be done to discover new methods to clini-
cally utilize the NPs and manufacture more effi-
cient and less toxic drugs. This article highlights 
the advantages and drawbacks of all available 
NPs and opens the gates for further investiga-
tions by reviewing the most prominent studies 
in this field.
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