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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 
(COVID-19), one of the deadliest medical difficulties to affect people in more than a century. The virus has now 
spread to many countries worldwide, posing a big challenge to the health status of people in affected populations. 
Gaining more knowledge about the different aspects of this virus will lead us to better control and treatment meth-
ods. In this paper, we discuss the SARS-CoV-2 structure and the mechanism of this virus’s entry into host cells 
through angiotensin-converting enzyme 2 (ACE2), the main receptor for the SARS-CoV-2 virus. The main connec-
tion between SARS-CoV-2 and ACE2 is Spike protein. Other topics are also included, like ACE2 structure, functions, 
and physiology. For instance, ACE2 is involved in the renin-angiotensin-aldosterone system, Angiotensin A/ACE2/
Alamandine/MAS-Related GPCR D (MrgD) Axis, the Kinin-Kallikrein System. It also acts as Chaperone Protein for 
the Amino Acid Transporter, B0AT1, and has a connection with Apelin Peptides. Since ACE2 plays a primary role in 
COVID-19 pathogenesis, scientists have discovered some SARS-CoV-2 therapy methods based on ACE2 targeting. 
Tissue expression in different genders and ages, polymorphisms, and host epigenetics, the role of ACE2 in hyperten-
sion, and cytokine storm are explained separately.

Keywords: Angiotensin-converting enzyme 2, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coro-
navirus disease 2019 (COVID-19), pathophysiology, renin-angiotensin-aldosterone system (RAAS), treatment

Introduction

Coronaviruses are a wide range of viruses that 
can pass on a disease to a variety of animals 
while causing respiratory illnesses in humans 
with different levels of severity. Two highly 
pathogenic coronaviruses with a zoonotic ori-
gin, inclusive of SARS-CoV and MERS-CoV 
(Middle East respiratory syndrome coronavi-
rus), separately appeared in humans and cre-
ated lethal respiratory disease in 2002 and 
2012, bringing coronaviruses to the center of 
attention of public health in the 21st century [1]. 
A new coronavirus was discovered in the respi-
ratory epithelium of patients with unknown 
pneumonia in December 2019 [2, 3]. Resear- 
chers have recently come to the conclusion 
that SARS-CoV was seen weeks or even mon- 
ths before Wuhan in different areas, including 
Europe. However, for months before Wuhan, 
this new virus was dormant because it did not 

have the necessary conditions to become a 
pandemic [4]. This novel coronavirus infection 
in general mentioned as COVID-19, has been 
distributed quickly over the globe because of  
its high transmissibility [5, 6]. On March 11, 
2020, the World Health Organization confirmed 
Covid-19 as a pandemic [7]. According to the 
PubMed database, more than 200,000 articles 
have been written on the issue of COVID-19 
until now. Based on WHO reports, the overall 
number of confirmed cases and mortality till 
now-March 30, 2022-is about 480 M and 6.1 
M, respectively. As the number of verified infec-
tions and deaths continues to rise daily, we 
must learn more about virus transmission 
mechanisms and epidemiology [8]. 

After an incubation period of about 5.2 days, 
COVID-19 infection symptoms arise. Fever, cou- 
gh, and exhaustion are among the symptoms, 
while sputum production, headache, haemopty-

http://www.ajcei.us


Characterization of the ACE2

25 Am J Clin Exp Immunol 2023;12(3):24-44

sis, diarrhea, dyspnea, and lymphopenia are 
also present [9-13]. Viral infections rely on the 
virus entering the cell and using the host cells’ 
replication machinery to produce numerous 
viral copies, which are then excreted by the cell 
[14]. SARS-CoV consists of 4 structural prote- 
ins including nucleocapsid (N), membrane (M), 
envelope (E) and spike (S) proteins together 
with 16 nonstructural proteins and 5-8 acces-
sory proteins. Attachment to the host cell mem-
brane and fusion - carried out by glycoprotein  
S. The N protein is packaged into the viral 
genomic RNA within the virion, and the struc-
tural proteins S, E, and M are incorporated into 
the virion membrane. E and M proteins assist 
virus gathering and budding by interacting with 
other viral proteins [15, 16]. Cell entrance 
receptors are unquestionably important in 
determining virus tropism and altering the 
severity of infection [17]. Various host cell 
receptors are used by SARS-CoV proteins to 
enter host cells including Integrins, angioten-
sin-converting enzyme 2 (ACE2), sialic acid 
receptor, dipeptidyl peptidase 4 (DPP4), and 
glucose-regulated protein 78 (GRP78) [18]. The 
researchers also reported that SARS-CoV-2 
could infect cells expressing ACE2, but it does 
not have an effect on ACE2 lacking or cells 
expressing other SARS-CoV-2 receptors, such 
as aminopeptidase N and dipeptidyl peptidase 
4 (DPP4) [19]. Based on these results, the pri-
mary cell entrance receptor for SARS-CoV-2 
has been recognized as angiotensin-converting 
enzyme 2 (ACE2) or angiotensin-converting 
enzyme homolog (ACEH) [20, 21]. The viral 
attachment action is continued by priming the 
spike protein S2 subunit by the host transmem-
brane serine protease 2 (TMPRSS2). This helps 
cell entrance and subsequent viral replication 
endocytosis with the assembly of virions. It was 
discovered for the first time in 2003 as the 
SARS-CoV receptor [22]. The structure, physiol-
ogy, interactions with the COVID-19 virus, and 
treatments based on the metallocarboxyl pepti-
dase angiotensin receptor ACE2 will be dis-
cussed in this paper. Understanding the involve-
ment of ACE2 in various paths will be crucial in 
determining the effect of SARS-CoV-2/ACE2 
binding on organismal physiology and in  
developing better therapeutics and diagnostic 
techniques.

Material and methods

We conducted a review of studies that have 
investigated the characteristics of ACE2 and its 

function in the pathogenesis of the SARS- 
CoV-2 virus. Databases such as PubMed, 
Google Scholar, Scopus, Ovid-Medline and Web 
of Science were searched up to June 2022. 
There were no restrictions on the course, lan-
guage or type of paper. This was done through 
analysis of cases, clinical studies and original 
research. We used free text as well as Medical 
Subject Heading (MeSH) terms “angiotensin-
converting enzyme 2 (ACE2)”, “severe acute 
respiratory syndrome coronavirus 2 (SARS-
CoV-2)”, “coronavirus disease (COVID-19)”, 
“ACE2 structure”, “ACE2 functions and physiol-
ogy”, “ACE2 expression”, “host epigenetics and 
SARS-CoV-2 infection”, “ACE2 targeting”. Some 
studies based on inclusion and exclusion crite-
ria were excluded from our review. All studies 
written in English and indexed in PubMed, 
Scopus, Web of Science (ISI), MEDLINE, and 
EMBASE journals were included in the study. 
Studies in non-English language and studies 
published before 2000 were excluded.

Epidemiological studies reporting ACE2 charac-
teristics and its role in SARS-CoV-2 pathogene-
sis were included. Reviews, in vivo studies, let-
ters to the editor, case series, case reports, 
and epidemiological studies without data on 
ACE2 characteristics and its role in SARS-CoV-2 
virus pathogenesis were excluded.

SARS-CoV-2 structure

The classification of human coronaviruses  
is as follows: The kingdom Riboviria, order 
Nidovirales, family Coronaviridae, and subfami-
ly Orthocoronavirinae [23]. Alphacoronavirus 
(α-CoV), Betacoronavirus (β-CoV), Gammacor- 
onavirus (γ-CoV), and Deltacoronavirus (δ-CoV) 
are four members of the Coronaviridae family 
[24]. Alphacoronaviruses include human coro-
naviruses 229E (HCoV-229E) and human coro-
naviruses NL63 (HCoV-NL63), while Betaco- 
ronaviruses include, Coronavirus human OC43 
(HCOV-OC43), human coronavirus HKU1 (HCoV-
HKU1), Severe acute respiratory syndrome 
coronavirus 1 (SARS-CoV-1), Middle East res- 
piratory syndrome coronavirus (MERS Corona- 
viruses, both Alpha and Beta, can communi-
cate a disease to types of mammals, including 
humans) [25]. Coronaviruses are single-strand-
ed, enveloped RNA viruses. Some coronavirus-
es of the genus betacoronavirus, such as 
SARS-CoV, MERS-CoV and SARS-CoV-2, have 
caused human infections in recent years. 
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Figure 1. The structure of SARS-CoV-2 virus. Coronavirus contains a single-stranded RNA genome. There are different 
proteins on the surfuce of each particle including envelope protein, membrane protein, and spike protein. The spike 
protein is divided into two subunits: S1 and S2. S1: subunit S1, CTD: carboxy-terminal (C-terminal) domains, RBD: 
receptor-binding domain (RBD), HR: heptad repeat (HR), FP: fusion peptide (FP) domain.

SARS-CoV-2 contains a 30 kb single-stranded 
positive-sense RNA genome with 80% se- 
quence identity to SARS-CoV. In its genomic 
RNA (gRNA), SARS-CoV-2 contains 14 open 
reading frames (ORFs). Two-thirds of the 
genome is covered by ORF1a and ORF1b, whi- 
ch overlap with a ribosomal frame shift and  
are translated into the polyproteins pp1a and 
pp1ab, respectively [26]. The translation prod-
uct of ORF1ab is cleaved by proteases encoded 
by SARS-CoV into 16 non-structural proteins 
(nsps). These include key enzymes such as 
papain-like protease(s) (PLpro), chymotrypsin-
like protease (3CLpro), RNA-dependent RNA 
polymerase (RdRp) and helicase (Hel) [27]. 
Coronaviruses have four structural proteins: 
the nucleocapsid protein (N) forms a helical 
capsid to accommodate the viral genome. A 
lipid envelope, consisting of S (spike), E (enve-
lope) and M (membrane) proteins, surrounds 
the entire structure (Figure 1). The membrane 
and envelope proteins are required for virus 
assembly, while the S protein is essential for 

virus entry and recognition by the host cell [28, 
29]. Almost all coronaviruses have two primary 
subunits, S1 and S2, and the spike protein has 
both N- and C-terminal domains [30].

SARS-CoV-2 entry

First, the receptor binding domain (RBD) region 
of the S protein binds specifically to the pepti-
dase domain of ACE2 [28, 29, 31-33]. The coro-
navirus entry mechanism usually requires two 
S-protein cleavages. The first is near the S1- 
S2 boundary, while the second is near the S2’ 
position in the S2 subunit, performed by furin 
and TMPRSS2, respectively (Figure 1) [34]. 
Although TMPRSS2 tends to activate SARS-
CoV-2, cathepsins, particularly cathepsin L, can 
also cleave the S2’ site [22]. If the target cells 
do not produce enough TMPRSS2 or if a virus-
ACE2 complex does not contact TMPRSS2, the  
ACE2-bound virus is internalized into the late 
endolysosome via clathrin-mediated endocyto-
sis, where cathepsins cleave the S2’ site [35, 
36]. 
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Figure 2. The replication cycle of SARS-CoV-2 virus. All stages of virus replication depend on its entry through ACE2 
receptor. TMPRSS2: transmembrane serine protease 2, ACE2: angiotensin-converting enzyme 2.

The RBD alternates between a standing and 
lying state. This allows it to bind to receptors 
and evade the immune system [37, 38]. The 
FPPR (fusion-peptide proximal region), 630 
loops and CTD2 (carboxy-terminal (C-terminal) 
domains) are essential elements of the S fusion 
machinery that, according to recent structural 
analyses, appear to control the fusogenic struc-
tural rearrangements of the S protein. The 
FPPR shift exposes the S2’ site near the fusion 
peptide to proteolytic cleavage when ACE2 cap-
tures the RBD-up configuration, removing both 
the 630 loop and the FPPR from their positions 
in the closed S trimer structure. Due to the 
cleavage of the S1-S2 boundary of the SARS-
CoV-2 S protein by furin, detachment of the 630 

loop from the hydrophobic surface of CTD2 may 
destabilise this domain and release the N-ter- 
minal region of S2 from S1, probably releasing 
S1 altogether. Following S1 dissociation, a se- 
ries of refolding events would occur in the me- 
tastable pre-fusion S2, allowing the fusogenic 
transition to a stable post-fusion structure [22]. 
In parallel with these transitions, the thrust of 
HR1 unfolding forces the fusion peptide into 
the target cell membrane [39, 40]. The fusion 
peptide and transmembrane regions of HR2 
are folded back to the similar end of the mole-
cule, causing the membranes with which they 
act together to bend towards each other, result-
ing in membrane fusion [22]. Several steps ha- 
ppen after virus entry into host cell (Figure 2).
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ACE2

ACE2 structure 

ACE2 is a type I integral membrane protein con-
sisting of 805 amino acids and two functional 
domains. The first is a 17-amino-acid N-terminal 
signal peptide containing a peptidase domain 
(PD) (residues 19-615) with its HEXXH zinc-
binding metalloprotease motif, and the second 
is a C-terminal collectrin-like domain (CLD) (res-
idues 616-768) including a ferredoxin-like fold-
ed neck domain (615-726) terminating in a 
hydrophobic transmembrane hydrophobic helix 
region of 22 amino acid residues followed by  
an intracellular segment of 43 amino acid resi-
dues. Collectrin is a regulator of renal amino 
acid transport and insulin. The consensus zinc-
binding motif sequence HEXXH is found in zinc 
metalloproteinases, where two histidine resi-
dues chelate a catalytic zinc ion. The HEXXH 
histidine motif, which is known to be a major 
component of a large number of zinc-depen-
dent metalloproteases, consists of five resi-
dues, a histidine at the beginning followed by a 
conserved glutamic acid, the two variable 
amino acids and a histidine at the end [41-43].

The ACE2 protein has two domains in its extra-
cellular part: the zinc metallopeptidase domain 
and the C-terminal domain. The metallopepti-
dase domain of ACE2 is divided into two subdo-
mains (I and II) that form the two sides of a long 
and deep canyon. The bottom of the active site 
cleft, consisting of a prominent α-helix (helix  
17, residues 511-531), is the only place whe- 
re these two catalytic subdomains meet. The 
deeply recessed and protected proteolytic 
active site of ACE2 exists to prevent hydrolysis 
of properly folded and functional proteins. The 
zinc-binding site is approximately half the leng- 
th of the large active site cleft (subdomain I 
side). In the native structure, His374, His378, 
Glu402 and a water molecule coordinate the 
zinc. These residues form the HEXXH + E motif 
conserved in the zinc metallopeptidase clan 
MA in the zinc-binding site of ACE2. Clan MA 
(glutenin family) and clan MB (several families 
of zinc metallopeptidases with the HEXXH + E 
and HEXXH + H zinc-binding motifs) are the two 
most prominent metallopeptidase clans. ACE2 
binds to a chloride (Cl-) ion coordinated by 
Arg169, Trp477 and Lys481 in subdomain II 
[42, 44-47]. 

There is a single carboxypeptidase active site 
in ACE2 [42], omiting only one amino acid from 
the peptide C-terminus [48]. The catalytic site 
is located in a deep channel on the top of the 
molecule, which is an important feature of the 
ACE2 structure. Crystal structure analysis has 
suggested the presence of multiple hinge re- 
gions and N-glycosylations. Ridges consist of 
loops, helices, and a part of a β-sheet sur-
rounding the channel. The RBD acts like a sur-
face with a cavity(s) that connects a ridge(s) 
near the catalytic site in a deep channel [49]. 

There are essentially two types of ACE2. In  
full-length ACE2, a structural transmembrane 
domain links the extracellular domain to the 
plasma membrane. This version of ACE2 has  
a PD at the N-terminus and a CLD at the 
C-terminus, terminating in a single transmem-
brane helix and an intracellular fragment of 
about 40 residues. The extracellular domain 
been shown to be the receptor for the SARS-
CoV S protein, and lately, for the SARS-CoV-2. 
The membrane anchor is absent in the soluble 
form of ACE2 (sACE2), which circulates in low 
concentrations in the bloodstream. It is thought 
that this soluble version may act as a competi-
tive interceptor for SARS-CoV and other corona-
viruses by blocking the binding of viral particles 
to full-length ACE2 on the cell surface [50, 51].

ACE2 functions and physiology

ACE2 and the renin-angiotensin-aldosterone-
system (RAAS): Renin-angiotensin-aldosterone 
system is the most important mainstream in 
maintaining blood pressure homeostasis be- 
sides fluid and salt balance. The cardiovascular 
system, electrolyte and water balance are also 
regulated by this system. The primary enzymat-
ic component of this system is ACE2. Ang 1-9 
and Ang 1-7 are being created by this enzyme 
and through the process of cleaving a single 
residue from angiotensin I (Ang I) and angioten-
sin II (Ang II), respectively. Ang 1-7 antagonizes 
the effects of vasopressor ANG II By inactivat-
ing Ang II, ACE2 acts as a negative regulator of 
the renin-angiotensin system [14, 52, 53]. 

As recently explained by Zheng et al., ACE2 is 
not an aminopeptidase (48). It is classified as 
carboxypeptidase because it is responsible for 
catalysing the removal of the COOH-terminus 
phenylalanine residue from ANG II, resulting in 
the reduction of ANG II by this single catalytic 
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event. Ang II is considered a key effector of the 
RAAS, contributing to hypertension (HTN) by 
reducing baroreceptor sensitivity (BRS) to con-
trol heart rate and promoting vasoconstriction, 
sodium retention, reactive oxygen species 
(ROS), inflammation and fibrotic scarring, as 
well as increasing the bioactive peptide Ang 
1-7, which opposes the ANG II-ANG II type 1 
(AT1) receptor axis through its anti-inflammato-
ry and antifibrotic actions, as well as increasing 
BRS. As a result, the ACE2 peptidase pathway 
is a critical inflexion point in the RAAS process-
ing pathway. An overall higher Ang II and lower 
Ang 1-7 tone may be the result of ACE2 reduc-
tion [14]. Moreover, in response to ANG II, the 
angiotensin receptor subtype AT1 induces 
apoptosis in the alveolar epithelium (Figure 3) 
[54].

Angiotensin A/ACE2/Alamandine/MAS-related 
GPCR D (MrgD) axis: It is classified as carboxy-
peptidase because it is responsible for catalys-

tor, MrgD. As a result, it has been proposed that 
alamandine may be an endogenous ligand for 
MrgD. However, according to the findings of 
Vera et al., Mas does not appear to be a poten-
tial alamandine receptor. In conclusion, ala-
mandine is not a Mas agonist, although its vas-
cular properties are identical to those of 
Ang-(1-7) [53, 55].

ACE2 and the kinin-kallikrein system (KKS):  
The precursor kininogen, proteolytic kallikrein 
enzymes, and effector peptides bradykinin (BK-
1-9 or BK) and its active metabolite [des-Arg9]-
BK (BK-1-8 or DABK) make up the kinin-kalli-
krein system (KKS). These peptides bind to  
two G protein-coupled receptors: B1 receptor 
(BKB1R) which has DABK as its main agonist, 
while the B2 receptor (BKB2R) has BK as its 
ligand. BKB1R is a heptahelical protein that dif-
fers from BKB2R in that its expression is highly 
sensitive to inflammatory mediators including 
LPS and interleukins. LPS-induced hypotension 

Figure 3. Renin-angiotensin aldosterone system. ACE2 plays a key role in 
RAAS system by converting angiotensin I and II to angiotensin 1-9 and 1-7 
respectively. ATR1R: angiotensin II type I receptor.

ing the removal of the COOH-
terminus phenylalanine resi- 
due from ANG II, resulting in 
the reduction of ANG II by this 
single catalytic event. Ang II is 
considered a key effector of 
the RAAS, contributing to hy- 
pertension (HTN) by reducing 
baroreceptor sensitivity (BRS) 
to control heart rate and pro-
moting vasoconstriction, sodi-
um retention, reactive oxygen 
species (ROS), inflammation 
and fibrotic scarring, as well as 
increasing the bioactive pep-
tide Ang 1-7, which opposes 
the ANG II-ANG II type 1 (AT1) 
receptor axis through its anti-
inflammatory and antifibrotic 
actions, as well as increasing 
BRS. The main difference be- 
tween alamandine and Ang-(1-
7) is an alanine residue at  
the amino terminus of Ang A 
instead of an aspartate resi-
due. Alamandine has similar 
physiological effects to angio-
tensin-(1-7), such as vasodila-
tion, antifibrosis, antihyperten-
sive and critical outcomes. In 
addition to being a Mas ago-
nist, Ang-(1-7) is a weak ago-
nist of the Mas-related recep-
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is attenuated in BKB1R-deficient mice, and the 
amount of polymorphonuclear leukocytes that 
concentrate in inflamed tissues is unusually 
low. Indeed, the BKB1R may be a beneficial 
pharmaceutical target for the treatment of pul-
monary inflammatory diseases. In the human 
airway epithelia, DABK is a substrate of ACE2. 
Cleaving a single amino acid residue of the car-
boxyl terminus of the DABK, which is then inac-
tivated, ACE2 blocks BKB1R/DABK activation. 
ACE2 activity is reduced in response to infec-
tious or inflammatory stimuli like COVID-19 dis-
ease, making the DABK/BKB1R axis more 
active. This encourages airway epithelial cells 
to produce and release chemokines like C-X-C 
motif chemokine 5 (CXCL5), which bind to 
receptors on neutrophils such as the C-X-C 
motif chemokine receptor 2 (CXCR2). As a 
result, these chemokines attract neutrophils 
from the BM (bone marrow) or other peripheral 
reservoirs to the lung. The development of 
acute lung inflammation is aided by increased 
neutrophil infiltration of the lungs [56-63].

ACE2 and apelin peptides: Apelin is a peptide 
hormone that may be found in various tissues 
and fluids. It is an endogenous peptide that 
binds to the apelin receptor, originally identifi- 
ed as an orphan G-protein-coupled receptor 
(GPCR), APJ, or AR [64]. In the process of apelin 
production, a preproprotein of 77 residues is 
the first molecule, which is then truncated to 
proapelin of 55 residues and then to apelin-13 
to -36, which act as the bioactive isoforms. 
Spontaneous cyclization of the N-terminal Gln 
leads to the pyroglutamate-modified form (Pyr-
apelin-13) of apelin-13. Although all apelin iso-
forms bind to the apelin receptor and have 
identical physiological effects, their potency, 
efficacy and receptor recycling rates differ. In 
addition, research has shown that the produc-
tion of apelin isoforms is tissue specific [65]. 

Apelin has Several functions, including being a 
strong cardiac inotrope, modulating blood pres-
sure, having great therapeutic ability to treat 
obesity and cardiovascular diseases, hypotha-
lamic regulation of water intake and the endo-
crine axis, regulating vascular homeostasis, 
angiogenesis and fluid balance, therefore per-
forming an important function in vascular dis-
eases [65-67]. 

Similarities in sequence and mRNA expression 
distribution were discovered between apelin 

and angiotensin II, indicating that they have 
comparable physiological functions [68]. ACE2 
can also metabolize apelin-13, in addition to 
the molecules mentioned previously [69, 70]. 
According to Wang et al., ACE2 is a basic 
enzyme that controls the amplitude and dura-
tion of native apelin peptide activity in the car-
diovascular system. Although the half-lives of 
the apelin peptides were prolonged in an ACE2-
deficient condition, they were still degraded at 
a relatively high pace, indicating that additional 
proteases play a crucial role. In total, these 
findings suggest that ACE2 has a proclivity for 
cleaving the peptide amide bond, which is de- 
fined by proline-phenylalanine as the penulti-
mate and C-terminal residues, respectively 
[67]. 

Apelin increased ACE2 promoter function in 
vitro and increased ACE2 expression in failing 
hearts in vivo via activation of its receptor, APJ. 
These findings demonstrate that ACE2 links the 
RAS to the apelin system, providing a theoreti-
cal basis for the apelin-ACE2-angiotensin 1-7 
axis as a therapeutic target for cardiovascular 
disease [71]. 

ACE2 as a chaperone protein for the amino 
acid transporter, B0AT1 (SLC6A19): Hartnup 
amino acid transporter B0AT1 (SLC6A19) is the 
main luminal sodium-dependent neutral amino 
acid transporter of small intestine and kidney 
proximal tubule [72]. The ACE2-B0AT1 complex 
is formed as a dimer of heterodimers, with 
homodimerization mediated by the collectrin-
like domain of ACE2 [51]. Independently of the 
RAS system, ACE2 regulates intestinal amino 
acid homeostasis, expression of antimicrobial 
peptides, and the ecology of the gut microbi-
ome [73]. The association of B0AT1 with collec-
trin (Tmem27), a protein homologous to the 
membrane-anchoring domain of ACE2, has la- 
tely been demonstrated to regulate its expres-
sion in the kidney. Different analyses employing 
wild-type and ACE2-null mice revealed that 
ACE2 is required for B0AT1 expression and 
activity in the small intestine. The transport 
rate and cell surface expression of the trans-
porter were boosted when the two accessory 
proteins, ACE2 and collectrin, were coexpre- 
ssed. Camargo et al. thus show that ACE2 is 
required for the expression of the Hartnup 
transporter in the intestine [72]. Another coro-
navirus receptor, aminopeptidase N, has also 
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been shown to interact with B0AT1 (APN or 
CD13). Yan et al. thus show that B0AT1 may be 
involved in the regulation of some enteric infec-
tions of some coronaviruses [51].

ACE2 expression

Tissue distribution of ACE2

The tropism of virus contamination is specified 
by the tissue expression of the receptor, which 
has fundamental implications for the compre-
hension of its pathogenesis and the creation of 
therapeutic approaches [74]. While the central 
symptoms of COVID-19 disease are appeared 
in the respiratory tract [75, 76], ACE2 is ex- 
pressed in a variety of human organs besides 
the lungs, suggesting that SARS-CoV-2 might 
infect other tissues as well [77]. Furthermore, 
some studies have shown that human trans-
mission of SARS-CoV-2 can take place by routes 
outside of the respiratory tract [78].

The research compared the ACE2 expression 
rates across across 31 normal human tissues 
[77]. They found that ACE2 expression was 
highest in the small intestine, testes, kidneys, 
heart, thyroid and adipose tissue, and lowest in 
the blood, spleen, BM, brain, blood vessels and 
muscle. In the lung, colon, liver, bladder and 
adrenal gland, ACE2 expression was moderate 
[77, 79]. Two studies have shown that in the 
normal human lung, ACE2 is mainly expressed 
by alveolar type II (AT2) and alveolar type I (AT1) 
epithelial cells [80-82]. The cytoplasm of bron-
chial epithelial cells also showed weak positive 
ACE2 staining. Tissues of the upper respiratory 
tract, such as oral and nasal mucosa and naso-
pharynx, did not show ACE2 expression on the 
surface of epithelial cells, which may indicate 
that these tissues are not the primary site of 
entry for SARS-CoV. The prominent presence of 
ACE2 in the epithelia of the human lung and 
small intestine suggests that SARS-CoV may 
enter by these routes. The abundance of ACE2 
expression on endothelial and smooth muscle 
cells in virtually all organs shows that once in 
circulation, SARS-CoV can easily move through-
out the body. Another study suggests that 
although ACE2 is expressed in the lung, liver, 
stomach, ileum, kidney and colon, its expres-
sion rates are quite low, particularly in the lung 
[82]. 

Hamming et al. found that ACE2 was widely 
expressed in enterocytes from all areas of the 

small intestine, including the duodenum, jeju-
num and ileum, but not in enterocytes from the 
colon and stomach. In enterocytes, staining 
was restricted to the brush border [82]. In addi-
tion, Liu et al. discovered ACE2 expression in 
the pancreas of normal people. SARS-CoV-2 
may bind to ACE2 in the pancreas and create 
pancreatic damage, as the pancreas had a lit-
tle higher expression than the lungs [83].

Based on Immunohistochemistry techniques, 
ACE2 protein is found in Clara cells, type II cells, 
and endothelium and smooth muscle of small 
and medium vessels in the mouse lung [84]. 
Skin-derived epithelial cells have been found to 
express ACE2 [85]. ACE2 was present in the 
epidermal basal cell layer extending to the hair 
follicle basal cell layer. ACE2 was also present 
in the smooth muscle cells surrounding the 
sebaceous glands. Sebaceous gland cells sh- 
owed weak cytoplasmic staining. In eccrine 
gland cells, there was a clear granular staining 
pattern for ACE2 [80]. 

Immune cells such as B and T lymphocytes  
and macrophages were consistently negative 
for ACE2 in the spleen, thymus, lymph nodes 
and BM. Because ACE2 is consistently absent 
from immune cells in all haematolymphoid or- 
gans, direct viral infection is unlikely to be the 
cause of these symptoms [80]. Nonetheless, 
SARS-CoV-2, like MERS-CoV and SARS-CoV, 
can infect immune cells [86]. 

Similar to observations in other organs, only 
endothelium and smooth muscle cells were 
stained in the brain [80]. A study used immuno-
histochemistry to identify ACE2 expression lev-
els in 12 brain areas and found ACE2 in both 
endothelial and non-vascular cells [87]. The 
brain has been shown to have ACE2 receptors 
in glial cells and neurons, making it a potential 
target for COVID-19. Diffusion of COVID-19 into 
the systemic circulation or across the cribriform 
plate of the ethmoid bone during early or late 
stages of infection may lead to brain involve-
ment, as previously documented in SARS-CoV 
patients [88].

ACE2 expression in different genders

Comparing the ACE2 expression levels in males 
and females has led to different and some-
times contradictory results. Although ACE2 is 
positioned on the X chromosome and has been 
shown to evade X inactivation, it is believed to 
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have a sex- and tissue-specific bias, with re- 
duced expression in female lungs versus male 
lungs [89, 90]. In 99 cases of SARS-CoV-2 
infection, researchers discovered that there 
were more men than women [76], Like MERS-
CoV and SARS-CoV, in which males were infect-
ed at a higher rate than females [91, 92]. 
According to a recent study, Asian males had 
more ACE2-expressing lung cells [74], which 
explains the more vulnerability of males to 
SARS-CoV-2 infection comparing to females. 

Contrary to the above findings, another study 
examined ACE2 expression in 31 normal human 
tissues and found that men and women had 
similar levels of ACE2 [77]. This conclusion is 
confirmed by Li et al. as well [93]. In both ma- 
les and females, ACE2 expression levels were 
favorably associated with immune signatures 
in the skin, digestive system, brain and blood 
vessels. In the lungs, the relationships between 
ACE2 expression and immune signatures var-
ied between sexes and between ages, demon-
strating that different host immune responses 
to COVID-19 disease may explain why males 
and females, and young and old people infect-
ed with this virus, have significantly different 
levels of disease severity [77].

Chen et al. discovered that ACE2 expression is 
high in Asian females and young individuals, 
who are considered to be less prone to severe 
or fatal consequences. Meanwhile, it is low in 
males and reduces even more with age and 
type II diabetes (T2D), people who are most  
vulnerable to negative consequences, demon-
strating an inverse relationship between ACE2 
expression and COVID-19 severity. These re- 
sults show that estrogen may play a role in 
Asian females having higher ACE2 expression 
than Asian males. Applying estrogen/androgen 
therapy for transgender males for one year had 
caused a considerable increase in ACE2 ex- 
pression levels and ACE2 expressing cells in 
their testis Sertoli cells [94].

ACE2 expression during aging

One study found that ACE2 expression de- 
creased significantly or slightly with age in all 
ethnic groups and in both sexes. The statis- 
tics showed a substantial association between 
ages, sex, ethnic group, body mass index (BMI) 
and ACE2 expression in different tissues when 
the other four variables were controlled, with 

the strongest association being with age [94]. 
Consistent with this, ACE2 levels were found to 
be significantly reduced in old rats of both 
sexes. Although rats of all sexes and ages had 
similar levels of ACE2, male rats appeared to 
have a greater age-related decline in lung ACE2 
expression than female rats [95]. It has also 
been stated that in humans, ACE2 activity does 
not change with age in men, but significant 
changes occur in women with age [96, 97].

In contrast to the above findings, one study 
showed that ACE2 expression rates did not 
change significantly between younger and older 
individuals. This indicates that the susceptibili-
ty to SARS-CoV-2 and SARS-CoV may not be  
significantly associated with sex, age or race.  
In fact, like SARS-CoV, SARS-CoV-2 can affect 
both sexes and infect different age groups 
equally. However, the risk of death from SARS-
CoV-2 and SARS-CoV infection appears to be 
remarkably associated with sex and age, with 
older people more likely to be infected [77].

ACE2 and SARS-CoV-2

After SARS-CoV-2 enters the lungs and airways 
via respiratory droplets, the viral life cycle 
begins. RBD domain of SARS-CoV-2 has a 
strong tendency to bind to the ACE2 receptor 
[9]. This high binding affinity of the SARS-CoV-2 
RBD domain to bind to ACE2 receptors may be 
responsible for the virus transmission between 
different species [98]. In the process of mem-
brane fusion, some transmembrane enzymes 
such as disintegrin metallopeptidase domain 
17 [ADAM17], TMPRSS2, and TNF-α converting 
enzyme (TACE) and some effective proteins 
such as vimentin and clathrin are needed [99]. 
After binding to a specific region within the 
SARS-CoV spike protein to ACE2 receptors in 
host cells, membrane fusion is activated and 
this leads to the release of viral RNA in the cyto-
plasm and causes infection [100]. The interac-
tion of ACE2 with SARS-CoV-1 and with SARS-
CoV-2 and subsequent downstream effects are 
very similar to each other [31]. Downregulation 
of ACE2 by SARS-CoV-2 can impair Ang II clear-
ance and lead to exacerbated tissue damage. 
Moreover, we can consider that the downre- 
gulation of ACE2 by SARS-CoV-2 reduces the 
chance for further invasion of the virus, which 
leads to slow down the spread of the virus 
[101]. In their study on Ace2-knockout mice, 
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Kuba and his colleagues showed the important 
role of this receptor in the pathogenesis of 
COVID-19 [102]. Therefore, it is very important 
to understand the exact way of communication 
between ACE2 receptors and SARS-CoV in 
order to control the spread of the disease and 
find possible treatment methods. Also, more 
studies are needed to understand more pre-
cisely the downstream pathways of communi-
cation between these receptors and the virus.

COVID-19 therapy methods based on ACE2 
targeting 

Currently, there are no specific antiviral drugs 
for the treatment of COVID-19 disease, making 
it difficult to control and contain the virus. There 
are two different therapeutic approaches to 
COVID-19 treatment, clinical and pharmacolog-
ical strategies. Symptomatic management and 
oxygen therapy are the mainstay of clinical 
treatment, including mechanical ventilation for 
patients with respiratory failure. Remdesivir is 
one of several antiviral drugs under investiga-
tion, although none has been specifically 
approved for COVID-19. In addition, vaccine 
development and approaches that directly tar-
get the virus or block viral entry, as well as 
treatments that address the immunopathology 
of infection, have become a major focus [103]. 
Vaccines, monoclonal antibodies, oligonucle-
otide-based therapies, peptides, interferon 
therapies, small-molecule pharmaceuticals, or 
natural remedies (e.g. traditional Chinese medi-
cine [TCM]) are all possible pharmacological 
COVID-19 treatments [104]. 

ACE2 receptors of alveolar type 2 (AT2) cells in 
the lung are one of the important targets for 
SARS-CoV-2. Because the viral entrance is con-
trolled by receptor-mediated endocytosis, AP2 
(activator protein 2)-associated protein kinase 
1 (AAK1), a recognized regulator of endocyto-
sis, could be a viable target to stop the virus 
from entering the cell. The Janus kinase in- 
hibitor baricitinib, which binds to the cyclin 
G-associated kinase (endocytosis regulator), is 
sufficient to block AAK1. Two cancer drugs 
Sunitinib and Erlotinib, have been demonstrat-
ed to decrease viral infection of cells by inhibit-
ing AAK1. These chemicals, on the other hand, 
have substantial adverse effects and cannot 
be called a safe therapeutic drug [30]. 

By reducing the expression of TMPRSS2, SARS-
CoV enters cells via an endosomal pathway. 

Cathepsin L, which activates the fusogenicity of 
the spike proteins, may play a key role in this 
pathway. In HeLa cells, an immortal cell line 
used in scientific research, a commercial ser-
ine protease inhibitor (camostat) has been 
shown to moderately limit infection by SARS-
CoV and human coronavirus NL63 (HCoV-
NL63). It expresses the ACE2 and TMPRSS2 
receptors. In human Calu-3 airway epithelial 
cells, co-treatment with Camostat and EST 
[trans-epoxysuccinyl-L-leucylamindo-3-methyl-
butane ethyl ester], a cathepsin inhibitor, effec-
tively blocked both cell entry and multi-step 
development of SARS-CoV. The dual blocking  
of entry from the cell surface and through the 
endosomal pathway may be responsible for 
this effective suppression. These findings point 
to camostat as a potential antiviral medication 
for preventing or suppressing SARS-CoV infec-
tion caused by TMPRSS2 [105]. In cell lines, 
SARS-CoV can use the endosomal cysteine pro-
teases cathepsin B and L (CatB/L) and the ser-
ine protease TMPRSS2 for S protein priming, 
and both proteases must be inhibited for  
strong viral entry blocking. In the infected host, 
though, only TMPRSS2 action is required for 
viral transmission and pathogenicity, whereas 
CatB/L activity is not required [31].

ACE2 polymorphism and susceptibility to 
COVID-19

The ACE2 gene was detected on chromosome 
Xp22 and spans 39.98 kbp of genomic DNA, 
with 20 introns and 18 exons. Genetic polymor-
phism is frequent in the ACE2 gene [106]. There 
is growing evidence that the ACE2 gene poly-
morphism can affect the interaction between 
ACE2 and the S protein of SARS-CoV-2, impact-
ing viral entrance into the host cell thus inhibit-
ing COVID-19 lung and systemic damage [107].

A study evaluated over 290,000 samples from 
public genetic datasets covering over 400 pop-
ulation groups and discovered numerous ACE2 
protein-altering variations. They detected natu-
ral ACE2 variations that may change virus-host 
interaction and therefore host vulnerability. 
S19P, I21V, E23K, K26R, T27A, N64K, T92I, 
Q102P, and H378R are among the variations 
anticipated to increase vulnerability. K31R, 
N33I, H34R, E35K, E37K, D38V, Y50F, N51S, 
M62V, K68E, F72V, Y83H, G326E, G352V, 
D355N, Q388L, and D509Y were expected to 
be defensive variants with reduced S-protein 
binding. When compared to wildtype ACE2, bio-
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chemical studies revealed that K31R and E37K 
variants had decreased affinity for S-protein, 
while K26R and T92I variants had enhanced 
affinity. Soluble ACE2 K26R and T92I were 
more efficient in inhibiting the entry of S-protein 
pseudotyped virus, implying that ACE2 varia-
tions can affect SARS-CoV-2 susceptibility 
[108].

Another study designed in silico molecular 
docking to identify the impact of ACE2 mis-
sense mutations on SARS-CoV-2 spike protein 
interaction. Six ACE2 missense variants (I21T, 
A25T, K26R, E37K, T55A, E75G) were discov-
ered in HDOCK and FireDock simulations as 
having a greater affinity for RBD than wild type 
ACE2 plus 11 variations with decreased affinity 
(I21V, E23K, K26E, T27A, E35K, S43R, Y50F, 
N51D, N58H, K68E, M82I). This finding sup-
ports the theory that the ACE2 genetic back-
ground is the initial “genetic gateway” through-
out disease development [107].

In a separate paper, they planned to perform 
an in silico study of the widely studied ACE2 
gene variations and identify the effects of the 
variants on mRNA secondary structure and cel-
lular factor binding affinity. A total of 14 ACE2 
SNPs (single nucleotide polymorphisms) were 
selected and studied. The RNAsnp database 
was used to test all the variations and the 
results showed that three of them, rs233574, 
rs2074192 and rs4646188, had a significant 
effect. According to their assessments, these 
three SNPs can cause significant changes in 
the secondary structure of RNA. Based on the 
spliceAid2 database, only the wild-type variant 
of the ACE2 gene can bind to proteins. The 
database (spliceAid2) predicted that 5 out of 
14 SNPs cause a change in the ACE2 gene so 
that only the wild-type form can bind to pro-
teins. In two of the fourteen, only the mutant 
form can bind to proteins. The remaining two 
SNPs result in a dual form in which certain pro-
teins bind to either the wild type or the mutat- 
ed sequence. In its wild-type form, rs233574 
showed splicing sequence formation and sec-
ondary RNA modification upon nucleotide 
change (Table 1) [109].

ACE2 and cytokine storm 

The production of vast amounts of pro-inflam-
matory cytokines and chemokines by immune 
effector cells leads to a lethal, uncontrolled 

systemic inflammatory response [110]. In peo-
ple infected with COVID-19, cytokine storm syn-
drome (CSS) is reported at a shockingly high 
frequency (10-20%) and can lead to significant 
morbidity, including multi-organ failure and 
mortality [111].

When the cytolytic activity of lymphocytes is 
impaired, whether due to genetic problems or 
acquired conditions, NK (natural killer) and 
cytolytic CD8 T cells may be unable to function. 
As a result, these cells are unable to lyse in- 
fected and activated antigen-presenting cells 
(APCs), leading to prolonged and amplified 
interactions between innate and adaptive 
immune cells. In this situation, many pro-in- 
flammatory cytokines such as TNF, interferon, 
IL-1, IL-6, IL-18 and IL-33 are produced in an 
uncontrolled manner, resulting in a cytokine 
storm [112]. 

Coronavirus infection decreases ACE2 expres-
sion by activating enzymes that degrade ACE2 
[102], which includes a disintegrase and metal-
loprotease 17 (ADAM17) [113, 114]. The extra-
cellular domain of ACE2 is cleaved from the 
surface of lung epithelial cells by ADAM17, 
reducing the protective ACE2-dependent sig-
naling, resulting in a negative feedback loop  
of increased lung inflammation. In addition, 
ADAM17 is required for the release of pro-
inflammatory cytokines and generates the 
active form of TNF-α. As a result, the cytokine 
storm, another symptom of severe COVID-19 
that causes excessive neutrophil recruitment, 
is exacerbated [115-117]. The contribution of 
ADAM17 in the progression of severe COVID-19 
has not been investigated experimentally [118].

The important point is, ACE2 is endocytosed 
with SARS-CoV, causing a reduction in ACE2 on 
cells and a rise of serum Ang II [119]. 

The transcription of inflammatory genes is reg-
ulated by NF-kappa B (NF-κB). This transcrip-
tion factor plays an important role in lympho-
cyte responses to antigens and in cyto- 
kine-induced gene expression. I kappa B, the 
inhibitor of NF-kappa B, keeps NF-kappa B 
inactive in resting cells. Phosphorylation of I 
kappa B causes it to be degraded by proteases, 
freeing NF-kappa B for nuclear translocation 
[120, 121]. Ang II is a vasoconstrictor that also 
works as a pro-inflammatory cytokine through 
the AT1R receptor. NF-κB and ADAM17 are also 
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Table 1. ACE2 variants and their effect on ACE2-S protein binding affinity

Variants in ACE2 protein Position Effect on 
affinity Ref.

rs775181355 chrX: 15573391 (GRCh38.p13) decrease Benetti et al., 2020a
rs41303171 chrX: 15564175 (GRCh38.p13) decrease Gibson et al., 2020
rs4646116 chrX: 15600835 (GRCh38.p13) decrease Gibson et al., 2020

increase Procko, 2020; Stawiski et al., 2020b
rs146676783 chrX: 15600803 (GRCh38.p13) decrease MacGowan and Barton, 2020

Procko, 2020; Stawiski et al., 2020b
increase Gibson et al., 2020

rs781255386 chrX: 15600833 (GRCh38.p13) increase Gibson et al., 2020
Procko, 2020; Stawiski et al., 2020b 

rs143936283 chrX: 15581305 (GRCh38.p13) increase Gibson et al., 2020
rs1299103394 chrX: 15600836 (GRCh38.p13) increase
rs1447927937 chrX: 15600783 (GRCh38.p13) decrease
rs759579097 chrX: 15581314 (GRCh38.p13) decrease Gibson et al., 2020

Procko, 2020; Stawiski et al., 2020b
increase MacGowan and Barton, 2020

rs766996587 chrX: 15594944 (GRCh38.p13) decrease Gibson et al., 2020
rs370610075 chrX: 15581236 (GRCh38.p13) decrease MacGowan and Barton, 2020

Procko, 2020; Stawiski et al., 2020b
rs961360700 chrX: 15581228 (GRCh38.p13) decrease MacGowan and Barton, 2020

Procko, 2020; Stawiski et al., 2020b
rs73635825 chrX: 15600857 (GRCh38.p13) increase Procko, 2020; Stawiski et al., 2020b
rs778030746 chrX: 15600851 (GRCh38.p13) increase
rs756231991 chrX: 15600845 (GRCh38.p13) increase
rs781255386 chrX: 15600833 (GRCh38.p13) increase Gibson et al., 2020

Procko, 2020; Stawiski et al., 2020b
rs1199100713 chrX: 15594998 (GRCh38.p13) increase Procko, 2020; Stawiski et al., 2020b
rs763395248 chrX: 15594915 (GRCh38.p13) increase Procko, 2020; Stawiski et al., 2020b
rs1395878099 chrX: 15594885 (GRCh38.p13) increase
rs142984500 chrX: 15578253 (GRCh38.p13) increase
rs758278442 chrX: 15600819 (GRCh38.p13) decrease
rs1348114695 chrX: 15600809 (GRCh38.p13) decrease
rs1192192618 chrX: 15600763 (GRCh38.p13) decrease
rs1569243690 chrX: 15600760 (GRCh38.p13) decrease
rs1325542104 chrX: 15600728 (GRCh38.p13) decrease
rs755691167 chrX: 15594988 (GRCh38.p13) decrease
rs1256007252 chrX: 15594976 (GRCh38.p13) decrease
rs759134032 chrX: 15594940 (GRCh38.p13) decrease
rs751572714 chrX: 15578223 (GRCh38.p13) decrease
rs142443432 chrX: 15589423 (GRCh38.p13) increase Chen et al., 2021
rs372272603 chrX: 15589385 (GRCh38.p13) increase
rs762890235 chrX: 15578220 (GRCh38.p13) decrease
rs776328956 chrX: 15575706 (GRCh38.p13) increase
rs191860450 chrX: 15575706 (GRCh38.p13) increase
rs140473595 chrX: 15573407 (GRCh38.p13) increase

activated by the Ang II-AT1R axis, resulting in 
the maturation of epidermal growth factor 

receptor (EGFR) ligands and TNFα, which are 
two NF-κB stimulators [119].
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In several IL-6R-negative non-immune cells, 
including fibroblasts, endothelial cells and epi-
thelial cells, ADAM17 activation also converts 
the membrane version of IL-6R to the soluble 
version (sIL-6R), followed by activation of STAT3 
by the sIL-6R-IL-6 complex [119]. Many cyto-
kines, including IL-6, initiate intracellular signal-
ing via members of the signal transducers and 
activators of the transcription (STAT) family of 
proteins [122]. The major activator of STAT3 in 
vivo, particularly during inflammation, is IL-6, 
while there are nine other components of the 
IL-6 family of cytokines that can activate STAT3, 
at least in vitro. As a result, SARS-CoV-2 con-
tamination of the respiratory tract can stimu-
late both NF-κB and STAT3, which can then acti-
vate the IL-6 amplifier (IL-6 Amp), a mechanism 
for hyperactivation of NF-κB by STAT3, leading 
to a variety of inflammatory and autoimmune 
diseases [123]. In a positive feedback loop, the 
IL-6 Amp generates different pro-inflammatory 
cytokines and chemokines, which include IL-6, 
and recruits lymphoid and myeloid cells in the 
lesion, including activated T cells and macro-
phages, to enhance the IL-6 Amp. Because IL-6 
is a prominent practical indicator of cellular 
senescence, the age-dependent augmentation 
of the IL-6 Amp could be linked to a rise in 
COVID-19 mortality [119]. 

ACE2 and hypertension

The RAS has been implicated in the modula- 
tion of hypertension and severe lung damage 
induced by viruses such as SARS [102, 124]. 
RAS inhibition is an effective antihypertensive 
treatment approach [125].

There are two axes in the RAS. These include 
the ACE/Ang II/AT1R and ACE2/Ang (1-7)/Mas 
receptor pathways [126]. ACE2 expression is 
decreased by SARS-CoV infections, leading to 
an imbalance between the two pathways [102]. 
A new treatment method for hypertension is  
to target the ACE/Ang II/AT1R axis [125]. The 
ACE/Ang II/AT1R system is inhibited by angio-
tensin-converting enzyme inhibitors (ACEIs) 
and angiotensin II type 1 receptor blockers 
(ARBs), which are commonly used in patients 
with high blood pressure [125]. New research 
reveals that COVID-19 individuals with hyper-
tension are more likely to grow acute cases 
[127]. As a result, it is important to discover 
how RAS inhibitors affect COVID-19 patients 
suffering hypertension [125].

Host epigenetics and SARS-CoV-2 infection

Post-translational chemical modifications in 
chromatin, RNA and DNA, such as primary 
methylation, acetylation, phosphorylation, ubi- 
quitination and sumoylation, are all involved in 
the epigenetic regulation of gene expression. 
By altering the function of the gene locus with-
out altering the underlying DNA sequence, this 
type of regulation links genotype and pheno-
type [128]. 

ACE2 transcript levels are regulated at the post-
transcriptional level by microRNAs (hsa-miR-
125a-5p, miR-200 family) that target the 3’ 
untranslated region of the RNA [129]. H5N1 
and H7N9 viruses cause downregulation of 
ACE2 protein by increasing the miR-200c-3p 
expression [130]. The expression of microRNAs 
is controlled by epigenetic mechanisms. Lysine 
demethylase 5B (KDMfB) demethylates H3K4- 
me3 and inhibits the expression of miR-125a 
and miR-200 family members [129]. As a result, 
KDM5B regulates ACE2 transcript levels indi-
rectly [131].

The ACE2 gene has two upstream regulatory 
areas, proximal and distal [132]. The propor-
tional usage of the two promoters differs within 
tissues [132]. In pancreatic -cells and embry-
onic kidney cells, HNF1A controls the produc-
tion of ACE2 [132, 133]. One study found that 
the three putative HNF1 binding regions in the 
proximal promoter region are responsible for 
the responsiveness of ACE2 expression to 
HNF1B [132]. However, chromatin immunopre-
cipitation sequencing (ChIP-Seq) experiments 
in the liver cancer cell line HepG2 demonstrate 
that HNF1A binds to the ACE2 proximal and dis-
tal upstream promoter regions [134]. MYBL2, 
USF1, TAED4, EP300, SP1, HNF4A, CEBP, MAFF 
and GATA3 were also found to bind to the ACE2 
distal upstream promoter region by ChIP-Seq 
analysis [131].

The promoters of transcribed genes are areas 
free of nucleosomes, which can be detected 
using a number of different approaches [135, 
136]. According to single-cell ATAC-Seq results, 
type 2 pneumocytes possessed functional pro-
moters. The nucleosome-free regions at the 
ACE2 locus in alveolar type 1 and 2, secretory, 
multi-ciliated, ionocytes, and neuroendocrine 
cells had transcription factor motifs for IRF1, 
STAT1/2, FOXA1, and FOXD2 [131].
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ACE2 expression can be induced by a variety of 
factors. In human cardiac fibroblasts, angioten-
sin II stimulates the production of ACE2 [137]. 
In various human airway tissues, including tra-
cheal cells, bronchial epithelial cells, small air-
way cells, large airway epithelial cells and pri-
mary human nasal epithelial goblet cells, ACE2 
expression was induced by IFN-α/β [90, 138-
140]. ChIP-Seq data demonstrate that STAT1, 
STAT3, IRF8, and IRF1 bind to a region -1500 to 
500 bp from the ACE2 transcription start site, 
indicating that ACE2 is an interferon-induced 
gene [138]. As the SARS-CoV-2 virus load rises, 
the expression of interferon-responsive genes, 
including ACE2, increases [141].

A typical hallmark of malignancy is hypoxia 
[142]. Many epigenetic modifying enzymes, 
namely the ten-eleven translocation enzyme 
involved in DNA demethylation and the Jumonji 
C domain-containing histone demethylases, 
require oxygen as a substrate cofactor. Epi- 
genetic dysfunction is the result of reduced 
function of these enzymes. In human hepato-
cellular carcinoma Huh7 cells, ACE2 expression 
is increased by hypoxia [143].

Conclusion

ACE2 plays a significant role in numerous  
physiological and pathophysiological fields, 
including Renin-Angiotensin-Aldosterone-Syst- 
em, MAS-Related GPCR D (MrgD) Axis, Kinin-
Kallikrein System, and Covid 19 pathogenesis. 
Coronavirus uses the ACE2 receptor to enter 
host cells. Therefore, accurate identification of 
the structure, mechanism, and function of 
these receptors can play an important role in 
Covid management. For example, AP2 (activa-
tor protein 2)-associated protein kinase 1 
(AAK1) can prevent the virus from entering the 
cell. Various studies have also shown that poly-
morphisms in the ACE2 gene interfere with the 
pathogenesis of SARS-CoV-2 and result in mul-
tiple systemic damages. In this study, we re- 
viewed the structural and functional character-
istics of ACE2. Further studies should be per-
formed to more accurately identify the mecha-
nism by which the virus enters the cell, to target 
these receptors to prevent the virus from enter-
ing, to examine the genetic variation of ACE2, 
and its physiological effects. Understanding 
the exact mechanism of the mutual effects of 
ACE2 and SARS-CoV may lead to finding new 

possible treatment methods based on prevent-
ing the virus from entering the host cell and 
thus preventing its spread and controlling the 
infection. Also, more studies should be done in 
relation to the new strains of this virus and how 
it interacts with cell receptors such as ACE2.
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