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Brief Communication
Parental telomeres implications  
on immune senescence of newborns 
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Abstract: Telomere, the biological chronometer, and its effect on the immune system considerably varies among 
individuals. During pregnancy, multiple risk factors affect telomere reprogramming during fetal life which can lead 
to health disparities in newborns. These changes may cause a long-term impact on the telomere genetics of the 
newborn and become a reason for lifelong health implications and immune senescence. Therefore, telomere short-
ening in parents due to genetic variation may act as a hallmark of immune senescence and aging in their newborns.
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Introduction

Immunity maintains tissue homeostasis, but 
with time the age-related functional decline of 
responses may cause immune senescence. 
Immune senescence is accompanied by varia-
tions in immune response in the body that may 
lead to increased inflammatory mediators that 
affect neighboring cells and telomeres [1]. This 
makes the body sensitive to inflammatory dis-
orders and infectious diseases. Moreover, it is 
a multifactorial response, dependent on the 
environmental changes, antigenic reactions, 
and epigenetic modifications that ultimately 
form the immunobiography of an individual 
(Figure 1).

Telomeres

Telomeres, play a critical role in genomic stabil-
ity and have long non-coding ribonucleoprotein 
with tandem repeat (approximately 300-8000) 
sequences (TTAGGG) at the end of the chromo-
some [2]. During every cell division, telomeres 
shorten (30 to 200 base pairs) in somatic cells 
rather than germ cells, stem cells and cancer-
ous cells. p53 protein recognizes the Hayflick 
limit (extremely shortened telomeres) of the 
telomere, it activates replicative senescence of 
cells along with cellular apoptosis and telomer-
opathies like cardiovascular disease [3], meta-

bolic disease [4], upper respiratory track dis-
eases in children [5] and chronic obstructive 
pulmonary disease (COPD) [6]. On the contrary, 
longer telomeres due to enzyme telomerase 
increased the risk of different cancers [6-12].

Factors affecting telomeres

Multiple studies have reported that leukocyte 
telomere length (LTL) is multifactorial and has 
been affected by age, gender, Body Mass Index 
(BMI), hormone (higher estrogen), physical inac-
tivity, smoking, alcohol intake, stress, antioxi-
dants, vitamins (folate, nicotinamide, vitamin A, 
B12, C, D, and E), trace and toxic elements 
(magnesium, zinc and iron), inflammation, 
paternal age and most importantly socioeco-
nomic status (SES) of parents [13].

According to literature, different viral studies 
revealed that infections like human immunode-
ficiency virus (HIV), and nowadays pandemic 
COVID-19 trigger extensive proliferation of T 
cells and lymphocytes with short telomeres [14, 
15].

Earlier in 2019, we published the data on 
genetic programming in fetus irrespective of 
SES. It was found that smaller telomeres (T/S 
ratio: 1.13 ± 0.18, 6432 ± 1350 base pairs) in 
mothers compared to newborns (cord blood) 
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(T/S artio: 1.18 ± 0.23, 6765 ± 1350 base 
pairs). Our results also highlighted that high 
SES mother-cord base pairs (6818 ± 1248-
6936 ± 1326) had longer telomeres than low 
SES (5916 ± 754-6214 ± 596) which confirmed 
that there is telomere reprogramming during 
fetus life [16, 17]. Thus above literature em- 
phasizes the role of maternal telomeres and 
their transfer to newborns. Therefore, it was 
observed that there is a research gap in the 
detection of inheritance patterns of telomeres 
from either mother or father. Such changes in 
telomere may lead to immune senescence or 
premature aging in newborns, especially among 
social disparities.

Immune senescence 

Immune aging is a complex and diversified  
area of research, certain T cells can be evalu-
ated by different markers like CD27 (co-stimu-
latory immune checkpoint), CD28 (co-stimula-
tory signals), CD45 (leukocyte common anti-
gen), CD57 (sulfated glycan carbohydrate on 
chronic immune activation T cells) and Killer 
cell lectin-like receptor subfamily G (KLRG1) 
(co-inhibitory or immune checkpoint) [1]. KLR- 
G1 acts as a key immune senescence marker 
which acts as an inhibiter for NK and T cells. It 
has an immunoreceptor (tyrosine-based inhibi-

tory motif) in its cytoplasmic domain. If KLRG1 
is prohibited to ligate on T cells it increases  
AKT phosphorylation which boosts the cell pro-
liferation capacity and improves the action of 
cell cycle proteins, cyclin D, cyclin E, and a 
reduction of cyclin inhibitor p27. On the other 
hand, CD57 is a glycoepitope, but its ligand 
remains unknown, a proliferation of T cells 
expressing CD57 is severely increased with 
aging [18].

Research also highlighted that the loss of sur-
face markers CD27 and CD28 on the immune 
cells will upregulate p16 and p21 of cell cycle 
regulatory proteins and may induce p53 under 
stress, and is more related to senescence due 
to telomere damage [18]. Therefore, the short-
ening of telomeres can act as a hallmark of 
senescent T cells. This may be due to T cells’ 
continuous replication and a TERC gene ex- 
pression reduction, which ultimately affect 
telomerase activity. Later on, it was discovered 
that loss of CD27 and CD28 expression could 
be associated with a reduction of telomerase 
activity or vice versa [19]. Senescent T cells are 
also prolific producers of different cytokines, 
IL-6, IL-8, IL-10, TNF, IFNγ, and TGF-β but they 
fail to proliferate effectively when stimulated. 
Hence, senescent T cells, which lost their repli-
cative capacity, show CD27 and CD28 down-

Figure 1. Immune senescence in the human body. Immune senescence is a multifactorial response, and results in 
different reactions in the body which may ultimately lead to telomere damage. 
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regulation and elevated expression of CD57, 
KLRG-1, and CD45 [19] (Figure 2).

Telomere, telomerase and immune senes-
cence

Along with telomeres, telomerase activity 
increases during the earlier gestation period 
but after birth, telomeres are gradually short-
ened with age. Stress exposures in mothers, 
metabolic or endocrine disturbances, or oxida-
tive, immune systems, can alter the telomere 
biology which may lead to cellular and immune 
senescence. Immune senescence owing to 
telomere attrition includes loss of T cells (naïve 
T cells), increase in reserves of memory T cells 
along with interleukin 6 (IL-6) and tumor necro-
sis factor α (TNF-α). Both IL-6 and TNF-α 
upsurge telomerase activity by activation of 
NF-κB, STAT1, and STAT2 pathways. However, 
the mechanism causing aging by such media-
tors of inflammation is still under investiga- 
tion. Additionally, immune senescence driven 
by inflammation is called “Inflammaging” which 
can distinguish between the pathological and 

natural age-related accumulation of Reactive 
oxygen species (ROS), and may prime oxidative 
stress, mitochondrial dysfunction, and release 
of DNA into the cytosol especially in neutrophils 
[20].

Telomerase genes (TERC and TERT) and 
telomere

Many Genome-wide association studies (GWAS) 
have mixed results in evaluating the possible 
impact of human TERC and TERT gene polymor-
phisms on telomere length and its association 
with common diseases, aging, and lifespan. 
Previously a GWAS of European descent identi-
fied SNPs in 7 loci from which 5 loci (TERC, 
TERT, NAF1, OBFC1, RTEL1) were identified in 
telomere biology but lead SNPs (TERC and 
TERT) associated with different diseases and 
cancers [21]. To date, data from large-scale 
populations have also illuminated many SNP’s 
roles in human telomere homeostasis and their 
association with different diseases like respira-
tory diseases, acute myeloid leukemia (AML), 
gastric, lung, and hepatocellular cancer [6-12].

Figure 2. Immune senescence due to telomere damage. Telomere damage may cause due to the downregulation of 
CD27 and CD28 and reduction of telomerase activity or vice versa on the immune cells which may lead to upregula-
tion of p16 and p21. Therefore, senescent T cells lost their replicative capacity and increase expression of CD57, 
KLRG-1, and CD45 immune markers.
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A study on maternal-newborn samples found 
that both the TERC and TERT were associated 
with shorter telomere length (P = 0.041 and 
0.046, respectively) [22] and can be consid-
ered as the potential functional genes in the 
alteration of telomere genetics [23].

In 2020 a study used “teloscore” by weighing 
the effect of each single nucleotide polymor-
phism (SNP) on LTL, based on the knowledge of 
the allele associated with LTL increase. So 
“genetically determined” telomere length by 
teloscore was used to identify the telomere 
length [24].

A genetic analysis, in Singaporean Chinese 
population highlighted 10 genome-wide loci 
associated with telomere gene (TERC and 
TERT) SNPs, respiratory infections and immu-
nological competence [7]. Moreover, an in- 
creased hTERT expression and shorter telo-
meres were linked to the development of gas-
tric cancer and its progression and its relation-
ship with numerous etiological risk factors and 
transcriptional activators [25]. 

The current knowledge about telomeres and 
telomerase reiterates the importance that 
should be also devoted to monitoring lifestyle 
and health-promoting measures, social and 
clinical factors, that may increase telomere 
length and immune senescence of the cells 
which can help in balancing various cellular 
functions and preventing multiple diseases.

Now point to ponder is that there is a dire need 
for the identification of parents and newborn 
connection in telomere genetics by genetic 
screening of newborns which can spotlight clin-
ical risks in newborns. Similarly, different clini-
cal risk factors may also affect parents’ im- 
mune senescence that can be inherited to  
their newborn. As the world is approaching pre-
cision medicine, such basic research on chro-
mosome stability and genetic screening may 
become a part of antenatal care, which can 
help in designing directed therapies for disor-
ders at hand in the near future.

Statement of significance

Looking into the telomere length by working on 
the telomere maintenance genes (TERC and 
TERT) and their single nucleotide polymorphism 
(SNP) and its association with immune senes-
cence may be significant for the identification 

of inheritance patterns. The telomere changes 
identification from either father or mother, high-
lights the risk of different clinical factors in par-
ents-newborns, due to telomere length varia-
tion. Therefore, such research on immune 
senescence and its association with telomere 
genetic variation should be a priority agenda  
for research-based organizations and public 
health policymakers.

Conclusion

The studies regarding telomeres should not 
only be confined to aging but also give an 
insight into genetic variations of telomere  
maintenance gene and telomere length asso-
ciation with immune scenesense. Such studies 
can instigate public health awareness and in- 
timating health significance among the local 
population.
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