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Abstract: Sarcopenia, characterized by the insidious reduction of skeletal muscle mass and strength, detrimentally 
affects the quality of life in elderly cohorts. Present therapeutic strategies are confined to physiotherapeutic inter-
ventions, signaling a critical need for elucidation of the etiological underpinnings to facilitate the development of 
innovative pharmacotherapies. Recent scientific inquiries have associated mitochondrial dysfunction and inflam-
mation with the etiology of sarcopenia. Mitochondria are integral to numerous fundamental cellular processes 
within muscle tissue, including but not limited to apoptosis, autophagy, signaling via reactive oxygen species, and 
the maintenance of protein equilibrium. Deviations in mitochondrial dynamics, coupled with compromised oxidative 
capabilities, autophagic processes, and protein equilibrium, result in disturbances to muscular architecture and 
functionality. Mitochondrial dysfunction is particularly detrimental as it diminishes oxidative phosphorylation, es-
calates apoptotic activity, and hinders calcium homeostasis within muscle cells. Additionally, deleterious feedback 
loops of deteriorated respiration, exacerbated oxidative injury, and diminished quality control mechanisms precipi-
tate the acceleration of muscular senescence. Notably, mitochondria exhibiting deficient energetic metabolism are 
pivotal in precipitating the shift from normative muscle aging to a pathogenic state. This analytical review meticu-
lously examines the complex interplay between mitochondrial dysfunction, persistent inflammation, and the patho-
genesis of sarcopenia. It underscores the imperative to alleviate inflammation and amend mitochondrial anomalies 
within geriatric populations as a strategy to forestall and manage sarcopenia. An initial overview provides a succinct 
exposition of sarcopenia and its clinical repercussions. The discourse then progresses to an examination of the 
direct correlation between mitochondrial dysfunction and the genesis of sarcopenia. Concomitantly, it accentuates 
potential synergistic effects between inflammatory responses and mitochondrial insufficiencies during the aging of 
skeletal muscle, thereby casting light upon emergent therapeutic objectives. In culmination, this review distills the 
prevailing comprehension of the mitochondrial and inflammatory pathways implicated in sarcopenia and delineates 
extant lacunae in knowledge to orient subsequent scientific inquiry.
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Introduction

The prolongation of human life expectancy is 
associated with significant public health chal-
lenges on a global scale, exerting strain on 
healthcare infrastructures due to the degener-
ative health conditions prevalent in an aging 
demographic [1]. Such deterioration in health 
status not only compromises the well-being of 
the elderly but also imposes substantial de- 
mands on caregiving resources and financial 
systems [2]. The World Health Organization 

(WHO) advocates for the promotion of healthy 
aging, focusing on the preservation of function-
al abilities, postponement of diseases correlat-
ed with advanced age, and the improvement of 
autonomy and quality of life for the elderly [3]. 
Sarcopenia, a syndrome linked to aging, is char-
acterized by the diminution of muscle mass and 
strength [4]. The onset of this condition is gen-
erally observed between the ages of 30 and 40, 
with muscle fiber atrophy occurring at a rate of 
3-8% per decade, continuing up to the sixth 
decade of life, thereby adversely affecting an 
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individual’s quality of life [5]. The European 
Working Group on Sarcopenia in Older People 
(EWGSOP) defines sarcopenia as a syndrome 
typified by progressive loss of skeletal muscle 
mass that can culminate in physical incapacita-
tion, diminished quality of life, and mortality [6]. 
Although aging is a primary contributor, the ini-
tiation and progression of sarcopenia are also 
modulated by factors such as lifestyle choices, 
level of physical activity, dietary patterns, meta-
bolic syndromes, and neuromuscular impair-
ments [7]. Notably, a lifestyle characterized by 
physical inactivity or suboptimal exercise can 
precipitate what is known as secondary sarco-
penia at an early stage [8, 9].

At present, therapeutic approaches for sarco-
penia predominantly involve physiotherapeutic 
measures aimed at augmenting muscular st- 
rength and enhancing locomotion proficiency. 
The pharmacological landscape, however, la- 
cks specific agents approved for the ameliora-
tion of sarcopenia [10]. Nonetheless, advanc-
ing our comprehension of sarcopenia’s founda-
tional mechanisms promises to catalyze the 
innovation of targeted therapeutic modalities. 
Contemporary scientific inquiry has concen- 
trated on elucidating the molecular underpin-
nings of sarcopenia [11-13], with particular 
emphasis on the critical roles of mitochondrial 
impairment and inflammatory processes in its 
emergence and progression [14]. Mitochondria 
are implicated in a spectrum of pivotal cellular 
functions within skeletal muscle that are essen-
tial for sustaining normal muscular operation 
and protein homeostasis [15]. These functions 
encompass the orchestration of programmed 
cell death [16], self-digestion of cellular compo-
nents [17], generation of reactive oxygen spe-
cies (ROS) [18], and oversight of protein homeo-
stasis [19]. The roles of mitochondria in me- 
diating both apoptosis and autophagy are indis-
pensable for the purging of defunct organelles 
and aberrant proteins. Furthermore, the pro-
duction of mitochondrial ROS is instrumental in 
redox signaling, which governs gene expression 
and protein homeostasis [20]. Mitochondria 
also play a crucial role in upholding the pro-
teome and ensuring proper protein folding 
through their chaperone and protease systems 
[21]. Their involvement in these essential path-
ways is fundamental to maintaining skeletal 
muscle integrity [22]. Emerging evidence posits 
that mitochondrial dysfunction is a significant 

factor contributing to the degeneration of skel-
etal muscle associated with primary aging and 
is implicated in the exacerbation of secondary 
aging processes [23, 24]. In contrast, enhanc-
ing mitochondrial function has been postulated 
to mitigate the advent of secondary aging phe-
nomena [25].

This revelation has facilitated the identification 
of innovative targets for therapeutic interven-
tion and the formulation of advanced treat- 
ment strategies. Age-related modifications in 
mitochondrial morphology and functionality, 
encompassing disturbed mitochondrial dynam-
ics, diminished oxidative capabilities, attenu- 
ated autophagy, compromised mitochondrial 
DNA (mtDNA), and disrupted protein homeosta-
sis, exert deleterious effects on skeletal mus-
cle architecture and functionality [14, 24]. 
Mitochondrial dysfunction is instrumental in 
the etiology of sarcopenia, as it leads to a 
decrease in oxidative phosphorylation, an in- 
crease in programmed cell death, and compro-
mised calcium ion regulation [17]. A pernicious 
cycle involving reduced mitochondrial respira-
tory function, escalated oxidative injury, and 
faltering mitochondrial quality control mecha-
nisms contributes to the acceleration of skele-
tal muscle senescence [17, 23]. Recent re- 
search indicates that mitochondria exhibiting 
diminished bioenergetic performance serve as 
a critical indicator that triggers the transition 
from normal muscular aging to pathogenic 
muscle aging [26].

This review is designed to explicate the com-
plex interconnection between mitochondrial 
dysfunction and sarcopenia, alongside the 
effect of inflammaging on mitochondrial defi-
cits linked to this muscle-wasting condition. 
The manuscript underscores the pivotal role of 
chronic inflammation and mitochondrial insuf-
ficiency management in elderly populations as 
a strategy for sarcopenia prevention and the- 
rapy. The initial segment offers a succinct yet 
thorough overview of sarcopenia, characterized 
by the progressive diminution of muscle mass, 
strength, and function. Subsequent to this,  
the nexus between mitochondrial dysfunction 
and sarcopenia is examined. In conclusion,  
the review explores the potential interactions 
between inflammatory processes and mito-
chondrial dysfunctions in the aging of skeletal 
muscle tissue.
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Sarcopenia: loss of muscle and physical func-
tion decline

Skeletal musculature is essential for the suste-
nance of body posture and the facilitation of 
routine physical activities, such as standing, 
ambulation, and autonomous living [6]. Addi- 
tionally, serving as the primary reservoir for gly-
cogen, skeletal muscle is integral to the regula-
tion of glycogen metabolism and the mainte-
nance of systemic metabolic equilibrium [27]. 
With the progression of age, both physiological 
and pathological decline in skeletal muscle 
attributes occurs, culminating in a decrease in 
muscle mass, contractile function, and resis-
tance to fatigue, which are collectively recog-
nized in the clinical context as sarcopenia [10]. 
This diminished capability to sustain muscular 
strength and power increases the susceptibility 
of older individuals to a heightened incidence 
of falls, compromised postural stability, and a 
consequent erosion of autonomy [28]. Conse- 
quently, the age-associated regression in skel-
etal muscle function can markedly affect the 
health and life quality of the geriatric demo-
graphic. Therefore, it is imperative to preserve 
skeletal muscle functionality to ensure contin-
ued locomotion, metabolic integrity, and inde-
pendence within the aging cohort.

Contemporary diagnostic criteria for sarcope-
nia have identified muscular strength as a  
more reliable indicator of negative health out-
comes compared to muscle mass. Evidence 
from cross-sectional analyses indicates that 
peak levels of isometric and concentric muscu-
lar strength are attained between the second 
and third decades of life, with a plateau persist-
ing into the fourth or fifth decades. Subsequent 
to this period, a decline commences approxi-
mately in the fifth decade, characterized by a 
decrement of 12% to 15% per decade, which 
further intensifies in advanced age [29, 30]. 
Such a decline in muscular strength may result 
in an individual at the age of 80 possessing 
merely 30-50% of the strength typified by a 
man in his third decade [29].

Beyond the reduction in muscular strength, the 
aging process is correlated with a deceleration 
of contractile function, manifested by extend- 
ed durations of muscle contraction and half-
relaxation [31]. This elongation in muscle twitch 
response is indicative of underlying alterations 
in the kinetics of cross-bridge formation and a 

decelerated calcium ion turnover, both of which 
are factors that contribute to a decrease in the 
power and speed of muscle contractions [32]. 
For example, research utilizing murine subjects 
has demonstrated that the soleus and gastroc-
nemius muscles in aged mice (27-29 months) 
display a maximal shortening velocity that is 
approximately 60% slower than that observed 
in young adult counterparts (7-9 months) [33]. 
This reduction in shortening velocity is concur-
rent with extended twitch contraction dura- 
tions observed in the aged specimens. Com- 
parable shifts in contractile kinetics have been 
observed in human skeletal muscles during 
senescence [34]. The diminution in the ability 
to rapidly generate force is a significant deter-
minant of functional impairment in the elderly. 
The necessity for maximal muscular power for 
activities such as standing from a seated posi-
tion implies that even minor decrements in 
mobility can substantially influence the shift 
from an independent to a dependent state [35]. 
Consequently, interventions aimed at amelio-
rating the declines in muscle contractile veloc-
ity associated with aging may serve to alleviate 
the detrimental effects of slower muscle twitch 
responses on the physical capabilities of older 
adults [32, 34].

Alterations in musculature with advancing age 
profoundly affect performance metrics, encom-
passing changes in isometric and dynamic 
strength as well as resistance to fatigue [36]. 
The diminution of motor units and muscle fibers 
stands as the principal etiological factor in the 
development of sarcopenia [6]. Notably, the 
decline in peak isometric strength is concomi-
tant with the diminution of overall muscle mass, 
a process that is partially ascribed to increased 
deposition of intramuscular adipose tissue and 
connective tissue proliferation [37]. Concurrent 
with generalized muscle atrophy are modifica-
tions in the composition of muscle fiber types, 
with a reduction in the size of both type I and 
type II fibers in elderly populations when com-
pared to their younger counterparts [38]. Mo- 
reover, type II fibers are subject to more pro-
nounced atrophy, indicative of their more rapid 
degeneration as a function of the aging pro-
cess [39].

Furthermore, the intrinsic contractile charac- 
teristics of muscle tissue are compromised 
with age. Diminished calcium responsiveness, 
alterations in actomyosin crossbridge cycling, 
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and impairments in excitation-contraction cou-
pling are fundamental to the observed decre-
ment in muscle contractility associated with 
aging [40]. Quantitative measures such as 
peak force generation, rates of unloaded mus-
cle shortening, and specific force are observed 
to wane as part of the aging process [41]. A 
critical underlying factor is the age-progressive 
loss of spinal motor neurons, which becomes 
more pronounced post the sixth decade of life, 
leading to a preferential denervation and sub-
sequent atrophy of fast-twitch type II muscle 
fibers [42]. The disparity between the loss of 
muscular strength and the reduction in muscle 
mass suggests a deterioration in muscle quali-
ty, a characteristic feature of sarcopenia [6]. 
Consequently, the expedited reduction in motor 
unit numbers contributes to declines in mus- 
cular strength that surpass those attributable 
solely to muscle atrophy in the elderly [43].

To encapsulate, the integrity of skeletal muscle 
is essential for the preservation of posture, 
ambulation, and autonomous functioning. No- 
netheless, the senescence process precipi-
tates sarcopenia, which is delineated by a di- 
minution in muscle mass, strength, power, and 

a diminished resistance to fatigue [42]. Such 
quantitative and qualitative deteriorations in 
skeletal muscle function engender profound 
ramifications, including compromised postural 
stability, an escalated risk of falls, and a de- 
creased capacity to execute routine activities 
of daily life [44, 45]. Sarcopenia significantly 
contributes to the erosion of autonomy and the 
degradation of life quality among the aged pop-
ulation. There is an imperative need for aug-
mented research into the underlying mecha-
nisms and potential therapeutic strategies to 
mitigate the effects of sarcopenia and to safe-
guard musculoskeletal vitality during the aging 
process. The sustenance of mobility and self-
sufficiency stands as a cornerstone for the pro-
motion of healthful aging.

Mitochondrial dysfunction in muscle aging

Impaired mitochondrial protein homeostasis

Mitochondria are critical to cellular function, 
orchestrating calcium signaling, the genesis of 
reactive oxygen species (ROS), and the induc-
tion of cell death via apoptosis among other 
pathways (Figure 1) [46, 47]. Within skeletal 

Figure 1. Association between 
mitochondrial dysfunction and 
sarcopenia in aged muscle.
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muscle cells, the primary pathway for synthe-
sizing adenosine triphosphate (ATP)-the pivotal 
molecule for energy transduction in muscle 
contraction-is mitochondrial oxidative phos-
phorylation, which is indispensable for the 
maintenance, proliferation, and proper func-
tioning of skeletal muscle [48]. The mainte-
nance of mitochondrial integrity and skeletal 
muscle health necessitates the meticulous 
regulation of mitochondrial protein homeosta-
sis, entailing synchronized processes of protein 
biosynthesis, folding, trafficking, turnover, and 
degradation [17, 49]. Nonetheless, research 
indicates that the aging process is associated 
with an exacerbated accumulation of damaged 
and improperly folded mitochondrial proteins, 
which in turn perturbs mitochondrial homeo-
stasis. This disturbance leads to an amplifica-
tion of oxidative stress due to heightened ROS 
production and consequent inflammation with-
in the skeletal muscle tissue [23, 26].

A plethora of empirical investigations across 
human and various animal models have un- 
equivocally established that the incidence of 
mRNA mistranslation, protein misfolding, and 
non-enzymatic post-translational modifications 
in mitochondrial proteins-specifically the for-
mation of irreversible advanced glycation end 
products and oxidative alterations-are marked-
ly elevated in the skeletal muscle of aged 
organisms in contrast to their youthful counter-
parts [50, 51]. These deleterious alterations 
progressively amass in mitochondrial proteins 
and consequentially impair the reparative func-
tions of mitochondrial protein quality control 
mechanisms, including but not limited to heat 
shock proteins, the ubiquitin-proteasome sys-
tem, and mitochondrial-specific proteases [52]. 
This decrement in reparative proficiency pre-
cipitates a compounding cycle of disruption, 
further undermining the homeostasis and 
structural integrity of the mitochondrial pro-
teome [17].

Moreover, mitochondrial dysfunction, precipi-
tated by the accrual of impaired proteins, incre-
mentally debilitates the mitochondrial energy 
provision by diminishing the activity of the elec-
tron transport chain and the synthesis of ATP 
[53]. The consequent scarcity of ATP renders 
the energetic requisites for concurrent normal 
metabolic functions and mitochondrial protein 
repair mechanisms increasingly onerous for 
muscular tissues [52]. This energetic disequi-

librium prompts a metabolic shift from adapt-
able, ATP-intensive reactions, such as the res-
toration of damaged proteins, to a more in- 
flexible, ATP-preserving basal metabolic state 
[17]. This shift exacerbates the disruption of 
mitochondrial protein equilibrium and perpetu-
ates a progressive decrement in mitochondrial 
energy generation over time.

An array of interrelated elements is implicated 
in the perturbation of mitochondrial protein 
equilibrium as organisms age, encompassing 
primary mitochondrial malfunctions, attenuat-
ed activities in both cytoplasmic and mitochon-
drial protein quality control systems, modifica-
tions in mitochondrial dynamics, and the de- 
ficient autophagic elimination of defective mito-
chondria [52, 54]. The aggregation of aberrant-
ly folded, oxidatively modified, and incorrectly 
altered mitochondrial proteins compromises 
the operational efficacy of the electron trans-
port chain complexes that reside within the 
inner mitochondrial membrane. This leads to  
a decrement in ATP synthesis and an overarch-
ing deterioration in mitochondrial functionality 
[55, 56]. Such mitochondrial impairments are 
instrumental in exacerbating muscle atrophy, 
curtailing muscle protein biosynthesis, aug-
menting muscle protein catabolism, and they 
play a contributory role in the onset and ad- 
vancement of sarcopenia as well as associated 
senescent muscle phenotypes [57, 58].

For the prophylactic stabilization or active 
enhancement of mitochondrial function and 
the deceleration of skeletal muscle senes-
cence, it is imperative to give precedence to 
the preservation of mitochondrial protein equi-
librium as a fundamental element [23, 58].  
This necessitates a multifaceted strategy that 
encompasses the prevention of damaged mito-
chondrial protein accumulation by reinforcing 
quality control mechanisms, sustaining the 
reparative capabilities of mitochondrial pro-
teins through the amplification of stress re- 
sponse pathways, mitigating oxidative stress 
and inflammation, and augmenting the total 
mitochondrial content alongside the exercise 
capacity of skeletal muscle tissue [50, 58]. 
Such synergistic initiatives are vital to guaran-
tee that skeletal muscle retains its capacity to 
execute crucial functions, including the restora-
tion of damaged proteins, the biosynthesis of 
new muscle proteins at a robust pace, and the 
catabolism of senescent proteins at a con-
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trolled rate. Consequently, formulating strate-
gies to preserve mitochondrial protein homeo-
stasis is identified as an essential objective in 
the fight against sarcopenia and in fostering 
the longevity of skeletal muscle health [59].

Bioenergetic failure

Mitochondria serve as the nexus of energy 
metabolism within the body, fulfilling the crucial 
role of being the principal locus for oxidative 
phosphorylation and the generation of adenos-
ine triphosphate (ATP) [60]. Nonetheless, skel-
etal muscle exhibits a decrement in these mi- 
tochondrial functions and bioenergetics with 
advancing age, a phenomenon referred to as 
bioenergetic failure [61]. There exists a close 
interrelation between such bioenergetic insuf-
ficiency in mitochondria and sarcopenia-the 
age-associated decline in muscle mass, st- 
rength, and functionality [62].

The onset of sarcopenia is influenced by bioen-
ergetic insufficiency within mitochondria [63].  
A reduction in ATP availability leads to a com-
promise in muscular contractility [64], hinders 
the anabolic processes of protein synthesis 
[65], and induces modifications in the cellular 
signaling cascades that are essential for mus-
cle preservation [66]. Age-related reductions in 
both basal and peak oxygen (O2) consumption 
are observed [67], suggesting a diminution in 
mitochondrial efficacy or quantity with age, or 
possibly both [68]. The significance of the de- 
cline in mitochondrial bioenergetics on muscu-
lar aging is underscored by the established 
association between the rate of ATP produc-
tion/O2 utilization and the preferred walking 
speed among elderly individuals [69].

Bioenergetic insufficiency may arise from a 
constellation of factors, such as diminished 
mitochondrial density, compromised efficacy of 
enzymes crucial for oxidative phosphorylation, 
mutations within mitochondrial DNA (mtDNA), 
and escalated oxidative stress [70-72]. A pivot-
al element leading to this bioenergetic insuffi-
ciency is the diminished oxidative capacity of 
mitochondria [58]. The preservation of an opti-
mal oxidative capacity within mitochondria is 
essential for the assurance of proficient ATP 
generation and the maintenance of cellular 
energetic equilibrium [73]. A compromised oxi-
dative capacity within mitochondria can pre-
cipitate a decrease in ATP output and pertur- 

bations in cellular metabolic processes [74], 
which in turn may adversely impact various 
energy-dependent cellular functions, including 
but not limited to, muscular contraction, pro-
tein biosynthesis, and cellular signaling path-
ways [67, 75]. Within the context of skeletal 
muscle tissue, such compromised mitochon-
drial function assumes particular significance 
with respect to the pathogenesis of sarco- 
penia.

With the progression of age, there is a notable 
decrement in the capacity for oxidative phos-
phorylation within the mitochondria of skeletal 
muscles, evidenced by reduced maximal and 
resting oxygen consumption [64, 76]. Further- 
more, investigations have revealed in both 
aged humans and animal models a decline in 
the peak rate of mitochondrial ATP production, 
as well as a reduction in ATP generation at 
baseline, particularly pronounced within type I 
muscle fibers [77]. Additionally, aging skeletal 
muscles exhibit a decline in mitochondrial den-
sity and a compromised capacity for mitochon-
drial biogenesis [15], collectively indicating a 
reduction in mitochondrial oxidative capacity 
[78]. The efficiency of mitochondria in execut-
ing oxidative phosphorylation wanes, culminat-
ing in diminished ATP synthesis and conse-
quent bioenergetic insufficiency [58]. This bio- 
energetic failure, in turn, exacerbates the de- 
cline in mitochondrial oxidative function, there-
by perpetuating a deleterious feedback loop 
[50].

Interventional approaches aiming to ameliorate 
bioenergetics within aging muscular tissue-
such as habitual physical activity [79], dietary 
modifications [80], and targeted measures to 
bolster mitochondrial functionality [81]-have 
demonstrated efficacy in attenuating the pro-
gression of sarcopenia [82]. These strategies 
may encompass the administration of antioxi-
dants [72], therapies directed at mitochondria 
[83], or targeting specific metabolic routes to 
augment ATP production [66]. Advanced re- 
search is imperative to elucidate the molecular 
underpinnings of bioenergetic failure in mito-
chondria and its interaction with the sarcope-
nic process [50]. The identification of novel 
therapeutic targets to mitigate these age-asso-
ciated alterations holds the potential for devel-
oping interventions aimed at preserving mus-
cular health and functionality in the geriatric 
population [75].
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Oxidative stress

Oxidative disequilibrium arises from a dispro-
portionate ratio of reactive oxygen species 
(ROS) generation to the biological system’s 
capacity for their neutralization via endogenous 
antioxidants [84, 85]. Within skeletal muscle, 
mitochondria constitute the principal source of 
ROS, significantly influencing a myriad of physi-
ological processes [86]. At physiological con-
centrations, ROS are known to activate mito-
gen-activated protein kinase (MAPK) pathways, 
thereby facilitating redox signaling and support-
ing cellular homeostasis [87]. Conversely, per-
sistent oxidative stress may induce pathogenic 
consequences, including the induction of mu- 
scle atrophy [88]. While moderate oxidative 
stress may potentiate skeletal muscle streng- 
th [89], an excessive oxidative burden under-
mines muscular strength and precipitates fa- 
tigue [81].

The mitochondrial free radical theory of aging 
posits that oxidative impairment of mitochon-
drial DNA (mtDNA) sets in motion a deleterious 
feedback mechanism. This mechanism involves 
compromised production of electron transport 
chain (ETC) components, attenuated adenos-
ine triphosphate (ATP) synthesis, and escalated 
ROS accumulation [71, 90].

The degradation of mtDNA within senescent 
skeletal muscle is intricately associated with 
ROS overproduction. Elevated ROS levels pre-
cipitate mtDNA lesions, mutagenesis, and fun- 
ctional impairments [71]. Given its proximity to 
the ETC, mtDNA is particularly susceptible to 
oxidative assaults [91]. MtDNA’s vulnerability is 
exacerbated by its location adjacent to the site 
of oxidant generation, absence of protective 
histones and introns, and an inherently limited 
repair capacity relative to nuclear DNA [92]. 
This susceptibility predisposes mtDNA to muta-
tions induced by ROS, undermining its struc-
tural integrity and replication efficacy [93]. 
Such impairment in mtDNA replication contrib-
utes to mitochondrial dysfunction, which in turn 
perpetuates ROS overproduction and diminish-
es the capacity for mitochondrial biogenesis in 
aging skeletal muscle [94].

The age-associated augmentation in ROS with-
in skeletal muscle tissue can be attributed to a 
confluence of factors, notably a diminution in 
the activity of critical antioxidant enzymes, in- 

cluding superoxide dismutase, catalase, and 
glutathione peroxidase [95]. Research utilizing 
murine models has demonstrated a progres-
sive decline in these enzymes’ activities within 
skeletal muscle across the lifespan [96]. Fur- 
thermore, mitochondria extracted from aged 
skeletal muscle have been shown to emit more 
ROS per unit of ADP than those from younger 
counterparts, signifying qualitative mitochon-
drial functional discrepancies [50]. The con-
comitant decrease in enzymatic antioxidant 
activity and increased mitochondrial ROS pro-
duction culminates in an accumulation of ROS 
due to inadequate neutralization mechanisms.

Empirical data from both preclinical and clinical 
research underscore the central role that the 
mitochondrial free radical vicious cycle plays in 
the aging of skeletal muscle. Studies have con-
sistently reported that aging is associated with 
increased ROS emissions, heightened oxida-
tive stress, and mtDNA damage within skeletal 
muscle, leading to mitochondrial functional 
decline [50, 64, 71]. Furthermore, ROS gener-
ated within mitochondria of aged skeletal mus-
cle have been implicated in the inhibition of ATP 
synthase, an essential component of the ETC 
that facilitates ATP production [97]. This inhibi-
tion by ROS further compromises mitochondrial 
efficiency, perpetuating a self-sustaining cycle 
of dysfunction. In aggregate, aging in skeletal 
muscle is typified by an increase in mitochon-
drial ROS output, oxidative injury, and a decline 
in bioenergetic function [17].

In conclusion, the overproduction of ROS exac-
erbates mitochondrial DNA damage and dys-
function, engendering a self-reinforcing loop 
that results in a downturn of mitochondrial pro-
tein biosynthesis. Thus, interventions designed 
to preserve mtDNA integrity or amplify mtDNA 
abundance may offer viable therapeutic ave-
nues to mitigate age-related mitochondrial de- 
ficits and sustain skeletal muscle function. 
Future research endeavors should investigate 
modalities such as caloric restriction, exercise 
regimens, and specific antioxidants for their 
potential to safeguard mtDNA and enhance 
mitochondrial protein synthesis in aged skele-
tal muscle tissue.

Unbalance of mitochondrial dynamics

The form and configuration of mitochondria are 
pivotal in defining their functionality. Notably, 
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within myocytes, mitochondria exhibit intricate 
structural complexity [98]. Alterations in these 
structural parameters may precipitate a spec-
trum of mitochondrial pathologies [99]. Mito- 
chondria are characterized by their dynamism, 
perpetually engaging in fusion and fission pro-
cesses to preserve their form and ensure physi-
ological function [54, 100]. Fusion facilitates 
the intermingling of mitochondrial contents and 
augments the mitochondrial network. In con-
trast, fission is indispensable for segmenting 
this network into discrete units, a process 
essential for the selective catabolism and recy-
cling of impaired mitochondria via the mito- 
phagy-lysosome pathway [54]. Key proteins 
governing mitochondrial fusion in myocytes are 
mitofusin 1 and 2 (Mfn1/2), which serve to 
tether adjacent outer mitochondrial mem-
branes (OMs), and optic atrophy proteins 1 and 
2 (Opa1/2), which are involved in the fusion of 
the inner mitochondrial membranes (IM) [101]. 
Analogous to Mfn2’s role, dynamin-related pro-
tein 1 (Drp1) localizes to the OM and collabo-
rates with mitochondrial fission factor (Mff) and 
fission protein 1 (Fis1) to encircle and constrict 
mitochondria, facilitating organelle separation 
[102].

The preservation of mitochondrial structural 
integrity is essential for muscular health [14]. 
Recent empirical research has underscored 
the importance of mitochondrial dynamics in 
sustaining muscular and mitochondrial func-
tion as well as structural integrity. It has been 
demonstrated that mutations in MFN2 influ-
ence mtDNA replication processes, engender-
ing modifications in mitochondrial oxidative 
phosphorylation [103]. Conditional ablation of 
Mfn1 and Mfn2 in murine skeletal muscle 
induces profound dysfunction, characterized  
by cellular proliferation, atrophy, depletion of 
mtDNA, and an accumulation of mutations, 
thereby underlining the significance of fusion 
mechanisms in maintaining mtDNA integrity 
[104]. Additionally, deletion of MfnD1 is corre-
lated with reduced activity in the electron tr- 
ansport chain and diminished physical perfor-
mance [105].

Fission of mitochondria is equally vital for mus-
cular and mitochondrial well-being. In seden-
tary individuals-as opposed to those who are 
active-an age-related decrease in OPA1 corre-
lates with sarcopenia [106]. The immediate 
loss of Opa1 and Drp1 in adult musculature 

precipitates aberrant mitochondrial aggrega-
tion, endoplasmic reticulum (ER) stress, and 
disrupts autophagic and mitophagic pathways, 
culminating in muscle degradation and com-
promised force production [107]. Moreover, 
several studies have illuminated the physiolo- 
gical relevance of mitochondrial fission in the 
upkeep of skeletal muscle condition. Over- 
expression of muscle-specific Dro1 has been 
implicated in the impairment of muscular devel-
opment in murine models [108].

In essence, the equilibrium between mitochon-
drial fusion and fission is imperative for main-
taining mitochondrial efficacy and overall ske- 
letal muscle fitness. The aging process in skel-
etal muscle is associated with disruptions in 
these dynamic processes, potentially leading 
to muscle atrophy and weakness. It is posited 
that a harmonious balance between these two 
processes, rather than the dominance of one 
over the other, is critical for the preservation of 
skeletal muscle health.

Decreased mitochondrial autophagy

Mitochondrial autophagy, termed mitophagy, 
constitutes a specialized autophagic process 
that orchestrates the catabolic removal of com-
promised or non-functional mitochondria. The 
precise modulation of this process is critical for 
the preservation of cellular viability and the 
maintenance of homeostasis [109]. Within the 
milieu of healthy skeletal muscle, mitophagy 
selectively targets and excises damaged and 
depolarized mitochondria [110], thus maintain-
ing mitochondrial integrity by precluding the 
accrual of non-functional organelles. A correla-
tion has been established between the disrup-
tion of mitophagy and the pathogenesis of 
myopathies as well as muscle wasting [111], 
signifying the essential role of mitophagic pro-
cesses in the maintenance of skeletal muscle 
health.

The PINK1/Parkin axis is the most extensively 
elucidated pathway in mitophagy. This cas- 
cade facilitates the polyubiquitination of pro-
teins within compromised mitochondria, there-
by marking them for autophagic engulfment 
[112-114]. Under normative conditions, PINK1 
is subject to proteolytic cleavage and subse-
quent degradation by PARL when translocated 
into intact mitochondria. Conversely, mitochon-
drial damage precipitates the stabilization of 
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PINK1 on the outer mitochondrial membrane, 
which in turn activates Parkin’s E3 ubiquitin 
ligase function through phosphorylation. Par- 
kin’s activity leads to the ubiquitination of outer 
mitochondrial membrane proteins, earmarking 
the impaired mitochondria for sequestration by 
autophagosomes [115]. These ubiquitinated 
mitochondria are then recognized by autopha-
gy receptors that link to LC3 on the autophago-
somal membrane [116]. Modulating the PINK1/
Parkin pathway has been shown to enhance 
mitochondrial functionality and mitigate mus-
cle degradation in atrophic conditions [117], 
suggesting that the activation of Parkin-me- 
diated mitophagy may offer a therapeutic ave-
nue to combat sarcopenia.

Mitophagic flux within skeletal muscle is regu-
lated by a cohort of autophagy-related proteins 
such as LC3, ATG7, P62, Beclin 1, and Bnip3 
[118, 119]. Age-related changes in the expres-
sion of these proteins have been linked to 
diminished mitophagic capacity [120]. In mice, 
muscle-specific deletion of Atg7 results in pro-
nounced atrophy, neuromuscular deficits, and 
a shortened lifespan [120]. Mutations in the 
human ATG7 gene have been associated with 
neurodevelopmental anomalies accompanied 
by neuromuscular impairments [121]. An accu-
mulation of P62/SQSTM1 has been detected in 
aged skeletal muscle, suggesting a decline in 
autophagic processes contributes to the etiol-
ogy of sarcopenia [122]. Therefore, maintaining 
the expression and functionality of mitophagy-
related factors may present a strategy to alle- 
viate muscle degeneration associated with 
aging.

Lysosomal dysfunction is a contributing factor 
to the reduced efficacy of mitochondrial au- 
tophagy observed in aging skeletal muscle. In 
aged rats, an accumulation of lipids within lyso-
somal structures has been associated with 
decreased activity of lysosome-associated 
membrane protein 2 (Lamp2) and a corre-
sponding reduction in mitophagic capability 
[120]. A deficiency in Lamp2 within murine 
models leads to an aberrant build-up of mito-
chondria and muscular weakness [120], impli-
cating suboptimal lysosomal degradation in 
mitochondrial autophagy impairments. Thus, 
ensuring robust lysosomal degradative capaci-
ty and Lamp2 expression could serve as a pro-
tective measure against sarcopenia.

A diminution in mitophagic capacity has been 
implicated in the age-associated decline in 
skeletal muscle function and mass. Investiga- 
tions have revealed a suppressed mitophagic 
flux in the skeletal muscle of aged rodents 
[120], with a noted decrease in the expression 
of mitophagic regulators such as Parkin in 
elderly mice and rats [58, 123]. These observa-
tions indicate that reduced mitophagy signaling 
may play a role in mitochondrial dysfunction 
and the consequent loss of muscular mass 
observed with advancing age. The impaired 
elimination of dysfunctional mitochondria may 
disrupt mitochondrial quality control and turn-
over, which are normally sustained through a 
balance with mitochondrial biogenesis. Further 
investigative efforts are necessary to elucidate 
the interplay between altered mitochondrial 
dynamics and compromised mitophagy in the 
development of sarcopenia.

Changes in mitochondrial biogenesis

Mitochondrial biogenesis represents a com- 
plex intracellular process involving the genera-
tion and integration of nascent mitochondria 
within the cellular matrix. This process is es- 
sential for the maintenance of mitochondrial 
efficacy, adenosine triphosphate (ATP) genera-
tion, and overall cellular equilibrium [83]. In the 
context of senescent skeletal musculature, 
perturbations in mitochondrial biogenesis are 
implicated in the onset of mitochondrial impair-
ments, which in turn are contributory to the 
pathogenesis of sarcopenia [50, 58].

The orchestration of mitochondrial biogenesis 
is subject to regulation by a cadre of transcrip-
tional modulators. Among these, peroxisome 
proliferator-activated receptor gamma coacti-
vator 1-alpha (PGC-1α) stands out as a pivotal 
regulator, which initiates and augments the 
transcription of genes fundamental to mito-
chondrial biosynthetic pathways [124]. Addi- 
tionally, PGC-1α contributes to an increase in 
mitochondrial volume by mitigating reactive 
oxygen species and facilitating mitochondrial 
autophagy mediated by FoxO1 [125]. Research 
involving PGC-1α deficient murine models has 
demonstrated an upsurge in the accumulation 
of dysfunctional organelles and the expression 
of genes associated with muscular atrophy 
[126]. Moreover, mitochondrial dysfunction has 
been linked to age-associated remodelling of 
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the neuromuscular junction (NMJ), resulting in 
a selective decrement of motor units within 
type II fibers, culminating in atrophy [127]. 
Conversely, the overexpression of PGC-1α has 
been observed to preserve NMJ structure with 
advancing age, whereas oxidative damage at 
the NMJ has been associated with a decline in 
skeletal muscle proteostasis [128]. A decline in 
both the expression and functionality of PGC-
1α, alongside other mitochondrial biogenesis 
mediators, is characteristic of aging, leading to 
a concomitant reduction in mitochondrial bio-
synthesis [129].

Inter-mitochondrial communication is integral 
to the preservation of mitochondrial biogene-
sis. In senescent musculature, disturbances 
within this communicative network compro-
mise the coordination necessary for effective 
biogenesis, engendering dysfunction [130]. 
The accrual of impaired mitochondria that cir-
cumvent quality control mechanisms also con-
tributes to a decrease in mitochondrial turn- 
over and biogenesis [131]. Moreover, aging is 
accompanied by elevated oxidative stress and 
persistent inflammation, which negatively influ-
ence both mitochondrial functionality and bio-
genesis signaling pathways [132].

The alteration of mitochondrial biogenesis 
yields multiple detrimental outcomes in rela-
tion to mitochondrial dysfunction and sarcope-
nia, including a diminution in mitochondrial 
quantity and density, a decline in ATP produc-
tion with subsequent energy deficits [24], com-
promised oxidative phosphorylation coupled 
with suboptimal ATP synthesis [133], and per-
turbations in substrate handling and metabolic 
processes [134]. The elucidation of the under-
lying mechanisms responsible for changes in 
mitochondrial biogenesis associated with dys-
function and sarcopenia is vital for the deve- 
lopment of therapeutic interventions. Future 
research endeavors should aim to disentangle 
the intricate interplay between mitochondrial 
biogenesis, dysfunction, and sarcopenia. The 
insights gleaned from such studies could pave 
the way for innovative approaches to foster 
healthy senescence and preserve muscular 
functionality in the aging population.

Interaction between inflammaging and age-
related mitochondrial dysfunction

The senescence process is frequently con- 
comitant with persistent, subdued inflammato-

ry states, colloquially termed “inflammaging” 
[45, 46]. Such a state is contributory to the 
deterioration of tissue integrity and the emer-
gence of age-correlated pathologies, including 
type 2 diabetes mellitus, osteoarthritis, and 
sarcopenia [47]. Inflammaging exerts deleteri-
ous effects on glucose homeostasis [48], 
potentiates insulin resistance [49], and exacer-
bates oxidative stress [44], further enhancing 
the secretion of pro-inflammatory cytokines. 
The principal molecular entities implicated in 
inflammaging encompass TNF-α, IL-6, IL-1, and 
various chemokines, which facilitate the re- 
cruitment of inflammatory cells that exacer- 
bate muscular degradation via the NF-κB path-
way [135].

The intersection of chronic inflammation with 
mitochondrial dysfunction is implicated in the 
pathogenesis of age-related maladies [136, 
137]. This discourse delineates the interrelated 
mechanisms of inflammation and mitochondri-
al dysfunction, with a focus on their impact on 
sarcopenia, cachexia, and other disorders 
related to aging.

Nitric oxide (NO) signaling emerges as a critical 
intermediary in the interplay between inflam-
matory processes and mitochondrial function-
ality within skeletal muscle. NO challenges oxy-
gen for binding at complex IV of the electron 
transport chain (ETC), thus influencing electron 
flow. The repercussions of this competition are 
contingent upon the isoforms of nitric oxide 
synthase (NOS) present and the concentration 
of NO [138]. Endothelial and neuronal NOS 
(eNOS/nNOS) are known to refine oxygen distri-
bution among subsarcolemmal and intermyofi-
brillar mitochondria [139], whereas inducible 
NOS (iNOS), when activated by pro-inflammato-
ry cytokines such as TNF-α, may lead to exces-
sive inhibition of the ETC, an upsurge in oxi-
dants, and increased permeability of the mi- 
tochondrial outer membrane [140].

TNF-α not only impedes the ETC but also insti-
gates apoptotic signaling cascades. It triggers 
the caspase-8-mediated extrinsic apoptotic 
pathway and enhances the intrinsic pathway 
through the cleavage of Bid, a process that 
results in Bid’s translocation to the mitochon-
dria and subsequent permeabilization of the 
outer membrane, culminating in the release of 
pro-apoptotic factors [141]. An increase in Bid 
presence and caspase activity has been docu-
mented in senescent musculature, contributing 
to muscular atrophy [142].
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In addition, inflammatory processes are known 
to inhibit mitochondrial biogenesis. TNF-α me- 
diates a reduction in PGC-1α and other regula-
tory proteins through the NF-κB pathway, lead-
ing to diminished mitochondrial density as ob- 
served in conditions such as cachexia associ-
ated with chronic obstructive pulmonary dis-
ease [143, 144]. This results in hindered regen-
erative capacity and further aggravation of 
mitochondrial dysfunction.

In summary, inflammation perpetuates mito-
chondrial dysfunction through modulations in 
NO signaling, apoptotic induction, and the sup-
pression of mitochondrial biogenesis (Figure 
2). Unraveling these intricate mechanisms 
affords a deeper understanding of sarcopenia, 
cachexia, and other age-related ailments, 
thereby identifying potential targets for inter-
ventions aimed at preserving muscular health 
during aging. Prospective studies should inves-
tigate these complex interrelations and their 
tissue-specific manifestations to devise com-
prehensive therapeutic approaches.

Conclusions

Sarcopenia, alongside the concomitant decline 
in muscular mass attributable to aging, exerts 
a pronounced influence on the physical capa-
bilities and overall life quality of the geriatric 
population. Unraveling the fundamental pro-
cesses responsible for these conditions is cru-
cial for the innovation of effective therapeutic 
interventions. Mitochondrial dysfunction has 
been identified as a contributing factor to mus-

cular debilitation. A spectrum of mitochondrial 
dysfunctions associated with aging-including 
compromised proteostasis, augmented oxida-
tive stress, disturbed mitochondrial dynamics, 
attenuated mitophagy, and diminished biogen-
esis-collectively impairs muscular functionality. 
Furthermore, it is postulated that inflammation 
may act as an intermediary in the pathogenesis 
of mitochondrial dysfunction and sarcopenia, 
with intensified inflammatory responses aggra-
vating these impairments. The modulation of 
inflammatory processes may present a viable 
strategy to alleviate muscle atrophy. Intensive 
investigation into the inflammatory pathways 
that correlate with functional decline is impera-
tive to devise interventions that preserve mus-
cular function in the aging population. A de- 
tailed examination of the interplay between 
mitochondrial function and inflammation in the 
context of sarcopenia is essential to develop 
precise therapeutic approaches.
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