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Abstract: Background: Glycosyltransferases (GT) play a crucial role in glycosylation reactions, and aberrant expres-
sion of glycosyltransferase-related genes (GTs) leads to abnormal glycosylation, which is associated with tumor 
progression. However, the prognostic value of aberrant expression of GTs in ovarian cancer (OC) and the correlation 
between GTs and tumor microenvironment (TME) remain unknown. Methods: TCGA and GSE53963 databases were 
used to obtain data on OC patient samples. The association of GTs with OC was analyzed. Molecular subtypes were 
identified by consensus unsupervised clustering, followed by immune infiltration and functional enrichment analy-
ses. Survival analysis was performed using Kaplan-Meier curves and log-rank tests. Least Absolute Shrinkage and 
Selection Operator (LASSO) and multifactorial cox regression were used to screen for signature genes associated 
with OC and used to establish prognostic models. Result: OC patients were categorized into 5 GTs clusters using con-
sensus unsupervised cluster analysis. Clusters D and E showed significant differences between survival, signaling 
pathways and immune infiltration. Then, a risk model was developed based on the 12 signature genes, which pro-
vides a more accurate evaluation of the prognosis of OC patients. We categorized patients into high-risk and low-risk 
groups based on the risk score and found that the survival of patients in the high-risk group was significantly lower 
than that in the low-risk group. Moreover, the risk score was significantly correlated with tumor microenvironment, 
immune infiltration, and chemotherapy sensitivity. Conclusion: Overall, we performed a comprehensive analysis of 
GTs in OC patients and developed a risk model for OC. Our findings will provide a new insight to OC prognosis and 
treatment.
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Introduction

Ovarian cancer (OC) is one of the most common 
and lethal malignancy among gynecological 
tumors with an incidence of 3.4% and a mortal-
ity rate of 4.7% [1, 2]. Characterized by late  
presentation and poor prognosis, OC poses a 
significant challenge [3, 4]. This challenge is 
mainly due to the lack of specific biomarkers 
and early effective screening tools, resulting  
in more than 70% of patients not being diag-
nosed until advanced stages [5, 6]. Despite  
the implementation of various therapeutic 
strategies such as chemotherapy, radiotherapy 
and immunotherapy, the survival rates of OC 

patients have shown limited improvement [7]. 
Therefore, the identification of reliable prognos-
tic biomarkers for OC patients is of paramount 
importance to improve survival and prognosis.

Glycosylation is a common process for modify-
ing lipids and proteins, catalyzed primarily by 
glycosyltransferases (GT) to produce various 
glycoconjugates. These glycoconjugates are 
actively involved in various biological process-
es, including cell growth, adhesion, signal trans-
duction, and immune response [8, 9]. Abnormal 
glycosylation, on the other hand, is associated 
with numerous pathologies, such as cancer, 
viral infections, and autoimmune diseases, and 
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is recognized as a hallmark of tumors [10].  
GT, a large family of enzymes located in the 
endoplasmic reticulum and Golgi apparatus, 
play a crucial role in the glycosylation process 
[8]. Accumulating evidence indicates that aber-
rant expression of glycosyltransferase-related 
genes (GTs) directly influences tumorigenesis, 
progression and chemotherapy resistance [11]. 
Despite the abundance of studies on GTs in 
various contexts, there is a notable lack of 
research focusing on GTs in OC. Therefore, fur-
ther investigation is essential to elucidate the 
specific mechanisms involved.

In this study, we evaluated the diagnostic, prog-
nostic, and therapeutic potential of GTs in OC. 
Risk scores were constructed based on differ-
ential genes associated with prognosis by 
molecular typing, which showed high accuracy 
in predicting clinical prognosis, immune infiltra-
tion, and pharmacotherapeutic response.

Materials and methods

Data acquisition

Gene expression profiles and corresponding 
clinical information of OC samples were ob- 
tained from The Cancer Genome Atlas (TCGA) 
and GSE53963. We extracted 185 GTs based 
on previous research [12]. Subsequent analy-
sis was conducted using R software (version 
4.3.1).

Cluster and principal component analysis 
(PCA)

According to the expression levels of GTs, we 
performed an unsupervised cluster analysis 
using the R package “ConsensusClusterPlus” 
to categorize OC patients into different glyco- 
syltransferase-related clusters (GTs clusters) 
[13]. In addition, based on the expression of 
typing-related genes and cluster data of OC 
patients, PCA was performed using the R pack-
age (limma, ggplot2).

Functional enrichment analysis

The cluster data of OC patients were obtained 
from cluster analysis. R package “GSVA” was 
utilized for gene set variation analysis (GSVA), 
performed with “c2.cp.kegg.symbols” and “c5.
go.symbols”, and heatmaps of GSVA were plot-
ted using R software. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were performed 

by R packages (clusterProfiler, org.Hs.eg.db, 
enrichplot, ggplot2) [14].

Immune cell infiltration analysis

The degree of immune infiltration of immune 
cells in OC Tumor microenvironment (TME) was 
quantified using single-sample gene-set enrich-
ment analysis (ssGSEA) in the “GSVA” package 
[15].

Prognostic risk model construction

Prognostic risk models were constructed  
using the R packages (survival, caret, glmnet, 
survminer, and timeROC). The Least Absolute 
Shrinkage and Selection Operator (LASSO)  
was applied to screen signature genes for the 
construction of the prognostic risk model. OC 
patients were randomly assigned to training 
and test groups. Prognostic risk scores, derived 
from gene expression and correlation coeffi-
cients, categorized patients into high-risk and 
low-risk groups based on the median risk score. 
Kaplan-Meier analysis was used to compare 
the probability of survival between the two 
groups, and a Receiver Operating Characteristic 
(ROC) curve was plotted using “timeROC” R 
package.

TME, immune infiltration, and chemotherapeu-
tic sensitivity

TME scores for each OC sample were assessed 
using the R package (ESTIMATE) [16]. The R 
software package (CIBERSORT) was used to 
analyze the immune cell infiltration states [17]. 
Additionally, the R packages (limma, ggplot2, 
and ggpubr) were employed to calculate the 
IC50 of the chemistries and compare differ-
ences between the two groups.

Statistical analysis

Statistical analyses were analyzed with RStudio 
and Perl. Survival analysis was performed using 
the Kaplan-Meier method, and significance of 
differences was determined by the log-rank 
test. Group comparisons were conducted using 
the Wilcoxon test, with P<0.05 considered sta-
tistically significant.

Result

Genetic and transcriptional variations of GTs 
in OC

Based on published articles, we obtained a list 
of 185 GTs [12]. Subsequently, the expression 
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levels of GTs in OC were evaluated using the 
TCGA database. Among them, 163 GTs exhibit-
ed differential expression, initially suggesting 
abnormal regulation of GTs in OC. To further 
confirm the relationship between the 163 GTs 
and OC, the GSE53963 and TCGA datasets 
were merged to analyze the correlation between 
the 163 GTs and the hazard ratio (HR) of OC 
patients, and 26 GTs associated with HR were 
identified by univariate cox analysis (Figure 
1A). The mutation status of these genes in OC 
patients is illustrated in the waterfall plot 
(Figure 1B), with a mutation frequency of 8.23% 
(38 out of 462 samples) in the TCGA dataset. 
Among these mutations, B4GALT5 had the 
highest mutation frequency (1%). Next, we 
examined the Copy number variation (CNV) fre-
quencies of 26 GTs (Figure 1C). We found that 

DPY19L4 displayed the highest increase in 
CNV, while GYS1 had the highest deletion. 
Prognostic network diagram reveals the rele-
vance of GTs to OC prognosis (Figure 1D). 

Cluster analysis and PCA

According to GTs expression, OC patients were 
categorized into 5 subtypes via unsupervised 
consensus clustering (Figure 2A). PCA results 
distinctly illustrated the demarcation between 
GTs clusters D and E (Figure 2B). To elucidate 
the functional disparities between GTs clusters 
D and E, GO and KEGG enrichment analyses 
were performed using GSVA for GTs clusters  
D and E. The GSVA results revealed that GTs 
cluster E exhibited notable enrichment in trans-
port-related processes (including Golgi vesicle 

Figure 1. Summary of genetic and transcriptional variations of GTs in OC. A. Univariate cox analysis of 26 GTs associ-
ated with HR in patients with OC. B. Genetic variants of 462 OC patients in TCGA cohort. C. CNV amplifications and 
deletions in GTs in OC patients. D. Network diagram reveals interactions between GTs in OC.
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transport and vesicle targeting, etc.) and can-
cer-associated pathways (including endometri-
al, colorectal, prostate, and renal carcinomas, 
etc.) compared to GTs cluster D (Figure 2C,  
2D). In addition, 2431 differentially expressed 
genes (DEGs) were selected between GTs clus-
ters D and E. Subsequently, the physiological 
functions and pathways affected by these 
DEGs were analyzed by GO analysis and KEGG 
analysis (Figure 3A, 3B). The results highlight-
ed the significant regulation of immune-related 
processes and pathways, including PI3K-AKT 
signaling pathway and MAPK signaling path-
way. To further explore the immune landscape, 
ssGSEA was performed to assess immune cell 
infiltration in GTs clusters D and E. The results 
indicated significant differences between the 
two clusters (Figure 3C). Cluster E displayed 
lower levels of activated CD4 T cells, activated 
CD8 T cells, CD56bright natural killer cells, and 
type 17 T helper cells, while macrophages, 
mast cells, natural killer cells, neutrophils and 
eosinophilic T cells, follicular helper cells, and 
type 1 T helper cells showed higher levels.

Identification of GTs gene clusters in OC and 
construction of GTs prognostic model

Univariate Cox regression analysis was utilized 
to assess the prognostic value of 2431 DEGs 
associated with GTs cluster D and cluster E, 
and finally 666 DEGs associated with overall 
survival (OS) were screened (P<0.05). On the 
basis of the expression levels of OS-related 
DEGs, OC patients were categorized into three 
gene clusters using a consensus clustering 
algorithm (Figure 4A). Via Kaplan-Meier analy-
sis, it was confirmed that patients in gene clus-
ter C exhibited a worse prognosis than those in 
gene clusters A, B (P<0.001) (Figure 4B). After 
that, we constructed a prognostic risk model by 
screening 12 characterized genes using Lasso 
(KCTD20, VANGL1, BLOC1S1, VSIG4, WNT11, 
FAM102A, EPHA4, LYVE1, TMEM181, NSF, 
SUSD5, and ZNF12) (Figure 4C-E). Then we 
investigated the relationship between GTs clus-
ters and gene clusters with prognostic model 
risk scores, and we found that GTs cluster E 
and DEGs cluster C had higher risk scores 

(Figure 4F, 4G). Finally, we found that high-risk 
patients had higher expression in 26 GTs 
(Figure 4H). Additionally, by analyzing the three 
cohorts (all, training and test), we observed 
that high-risk patients were associated with 
more deaths and shorter survival times, and 
the heatmap displayed the differential expres-
sion of 12 prognostic signature genes between 
the high-risk and low-risk groups in the three 
cohorts (Figure 5A-C). The Kaplan-Meier sur-
vival analyses demonstrated that, compared to 
the low-risk group, the high-risk group of 
patients had a worse survival time (Figure 
5D-F). ROC curves revealed 1-, 3-, and 5-year 
AUC values for all group (0.631, 0.653, 0.731), 
training group (0.679, 0.705, 0.795), and test 
group (0.591, 0.599, 0.636), respectively 
(Figure 5G-I).

TME, immune infiltration, and chemotherapeu-
tic sensitivity

Next, we explored the mutation burden within 
the prognostic risk model, and the mutation 
waterfall plot showed that there was no signifi-
cant difference in the proportion of mutations 
between the high- and low-risk groups (Figure 
6A, 6B). To further elucidate the relationship 
between the prognostic risk model and TME 
scores along with immune cell infiltration, we 
examined TME scores, which indicated higher 
stromal scores and estimated scores in the 
high-risk group (Figure 6C). Furthermore, we 
evaluated the links between immune infiltra-
tion with 12 signature genes and risk scores. 
The results revealed that resting CD4 memory 
T cells, monocytes, activated mast cells, M0 
macrophages, and naive B cells were positively 
linked to the risk score, whereas follicular help-
er T cells, CD8 T cells, activated CD4 memory T 
cells, activated NK cells, M1 macrophages, 
activated dendritic cells, and memory B cells 
were negatively linked to the risk score (Figures 
6D, S1). Later, through drug sensitivity analysis, 
we observed that high-risk patients had lower 
IC50 for Cediranib, Dasatinib, Foreinib, and 
AZD8186, while low-risk patients had lower 
IC50 for cisplatin and Niraparib (Figure 6E).

Figure 2. Cluster analysis and functional enrichment of DEGs among GTs clusters. A. Cluster analysis categorized OC 
patients into five clusters (k=5) based on the transcriptome of GTs. B. PCA revealed a clear demarcation between 
GTs clusters D and E. C, D. GSVA showed significant differences in GO and KEGG pathway enrichment between GTs 
clusters D and E. 
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Figure 3. Function analysis and immune cell infiltration. A, B. GO analysis and KEGG analysis illuminated physiologi-
cal functions and pathways influenced by DEGs between GTs clusters D and E. C. Correlation between immune cell 
infiltration with GTs clusters.
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Discussion

OC is a severe disease associated with high 
morbidity and mortality rates, posing a serious 
threat to women’s health. Abnormal glycosyl-
ation, recognized as a cancer marker, has gar-
nered increasing attention, offering a novel per-
spective for the prognosis and treatment of OC 
[8]. Abnormal glycosylation mainly caused by 
abnormal expression of GT. Given the limited 
understanding of the role of GTs in OC, this 
study employed various machine learning algo-
rithms to investigate their impact. Prognostic 
signature genes were meticulously screened to 
establish an OC risk model, and the accuracy of 
this model was rigorously evaluated through 
considerations of immune infiltration, tumor 
microenvironment scores, and sensitivity to 
chemotherapeutic drugs. 

OC patients were stratified into 5 clusters 
based on the distinct gene expression patterns 
of GTs (Figure 2A). Subsequent analyses, 
including PCA, GSVA, GO, KEGG revealed signifi-
cant differences between Clusters D and E, 
with cluster D exhibiting a worse prognosis 
(Figures 2, 3). Following DEGs clustering, LA- 
SSO regression, and Cox multifactorial analy-
sis, a prognostic risk model consisting of 12 
genes (KCTD20, VANGL1, BLOC1S1, VSIG4, 
WNT11, FAM102A, EPHA4, LYVE1, TMEM181, 
NSF, SUSD5, and ZNF12) was constructed 
(Figure 4C-E). Among these signature genes, 
VSIG4, a novel member of the immunoglobulin 
superfamily, showed specific expression in tis-
sue macrophages. While it enhanced macro-
phage phagocytosis and maintained immune 
homeostasis, its immunosuppressive role in 
the microenvironment contributed to tumor 
progression [18, 19]. Recent studies have also 
implicated VSIG4 in the modulation of OC cell 
proliferation and migration [19]. Another nota-
ble gene, WNT11, a non-canonical member of 
the Wnt family, played a pivotal role in tumor 
progression by promoting proliferation, inva-
sion and metastasis in various cancers, includ-
ing ovarian [20], breast [21] and colorectal can-
cers [22]. Similarly, high expression of EPHA4 

promotes tumor progression and is linked to 
poor prognosis in patients with breast cancer 
[23]. LYVE1, identified as a type I integral mem-
brane glycoprotein, was associated with the 
promotion of ovarian tumor growth [24]. Which 
are consistent with our research. TMEM181  
is a regulator of the Wnt signaling pathway, 
which plays an essential role in cell prolifera-
tion [25]. However, its role in OC remains elu-
sive. KCTD20, implicated in non-small cell lung 
cancer progression, activated the FAK/AKT 
pathway and predicted poor prognosis [26]. 
VANGL1, whose expression varied in different 
cancers, its high expression has been correlat-
ed with a poor prognosis in patients with differ-
ent cancers, including breast cancer, bladder 
cancer [27, 28]. Contrary to these findings, 
KCTD20 and VANGL1 were a protective factor 
in this study, suggesting diverse mechanisms 
across different cancer types. KCTD20 and 
VANGL1 may play a unique role in different can-
cer types. Furthermore, Kaplan-Meier survival 
analysis, risk score and ROC analysis collec-
tively indicate that our model has a great pre-
dictive performance for OC (Figure 5).

The tumor microenvironment, intricate and 
dynamic, plays a pivotal role in tumor genera-
tion, progression and treatment resistance 
[29-31]. Tumor microenvironment scoring re- 
vealed that the high-risk group had a signifi-
cantly higher stroma score, whereas the 
immune score was not significantly different 
(Figure 6C). Further analysis of immune cell 
infiltration showed that resting CD4 memory T 
cells, monocytes, activated mast cells, M0 
macrophages, and naive B cells were positively 
linked to the risk score, whereas follicular help-
er T cells, CD8 T cells, activated CD4 memory T 
cells, activated NK cells, M1 macrophages, 
activated dendritic cells, and memory B cells 
were negatively linked to the risk score (Figure 
S1). These immune cells actively engage in 
both the development of the tumor immune 
microenvironment and tumor progression. 
Evidence has shown that these cells play a cru-
cial role in OC. M1 macrophages produce pro-
inflammatory factors and chemokines to exert 

Figure 4. Identification of gene clusters and construction of OC prognostic models. A. OC patients were categorized 
into 3 gene clusters (k=3) according to the expression of OS related DEGs. B. Kaplan-Meier survival curves for OC 
patients in the three gene clusters. C-E. LASSO analysis and multivariate Cox regression analysis screened for 12 
signature genes. F. Differences in risk scores between GTs cluster A to E. G. Differences in risk scores between gene 
cluster A and C. H. Differences in the expression levels of 26 GTs between high-risk and low-risk groups. P-values 
were shown as: *P<0.05; **P<0.01; ***P<0.001.
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Figure 5. Evaluation of 3 cohort prognostic models. A-C. Risk point plots of survival time and survival status, distribution of risk scores, and heat maps of differential 
expression of prognostic genes between high- and low-risk groups for all, training and test cohorts. D-F. Kaplan-Meier curves for patients in the high-risk and low-risk 
groups in the all, training, and test cohorts. G-I. ROC curves display prognostic performance of the risk model in the all, training, and test cohorts.
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Figure 6. Correlation between risk score and TMB, TME score, immune cell infiltration, and drug sensitivity. A, B. 
Mutations of OC patients in high and low risk groups. C. Correlation between risk score and TME. D. Correlation 
between immune cells and 12 signature genes. E. Differences in chemotherapy sensitivity between high and low 
risk groups. 
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anti-tumor effects. While M2 macrophages 
have immunosuppressive effects, participate 
in angiogenesis and promote tumorigenesis 
and metastasis [32]. Notably, in OC, increased 
expression of M0 and M1 macrophages is 
strongly linked to a better prognosis, whereas 
increased expression of M2 macrophages is 
associated with an adverse prognosis [33]. The 
proportion of M1/M2 macrophages was higher 
in patients with low-grade OC compared with 
high-grade OC [34]. CD8 T cells play a critical 
role in eliminating cancer cells and exerting 
anti-tumor effects [35]. NK cells contribute to 
the elimination of circulating tumor cells, pre-
vention of cancer metastasis, and participation 
in anti-tumor immunity [36]. Moreover, the cor-
relation analysis between CTs prognostic signa-
ture genes and immune cell infiltration revealed 
that BLOC1S1 expression was positively corre-
lated with CD8 T cells, M1 macrophages, sug-
gesting that high expression of BLOC1S1 was 
accompanied by a corresponding increase in 
the content of CD8 T cells, M1 macrophages, 
which act as a protective factor and exert an 
anti-tumor effect, leading to a favorable prog-
nosis for OC patients. VSIG4 and LYVE1 expres-
sions correlated positively with M2 macro-
phages, neutrophils and monocytes, whereas 
ZNF12, NSF, FAM102A, TMEM181 and LYVE1 
correlated negatively with NK cell activation 
(Figure 6D). Taken together, these findings sug-
gest that the expression of these signature 
genes is associated with immune suppression 
in OC, consistent with previous analyses and 
suggesting a strong link between GTs and the 
formation and prognosis of the immunosup-
pressive microenvironment in OC.

In addition, patients with low- and high-risk 
scores showed significant differences in 
response to chemotherapy (Figure 6E). Nira- 
parib is a PARP inhibitor that has been approved 
for the treatment of advanced OC patients with 
a high rate of recurrence with greater effective-
ness and safety [37]. In our study, we discov-
ered that patients with low-risk scores were 
more susceptive to the cisplatin and Niraparib, 
suggesting a higher response to treatment and 
better clinical outcomes. According to our find-
ings, some of the commonly used anticancer 
drugs were more effective when they were used 
in high-risk patients, such as AZD8186, cedira-
nib, dasatinib, and foretinib. Thus, predicting 
drug sensitivity in OC patients with different 
risks may provide new perspectives for the cus-

tomization of personalized treatment approach-
es. Nevertheless, our research possesses cer-
tain limitations. The experimental data come 
from public databases. Consequently, it is inev-
itable that our results will be biased compared 
with the actual situation. Therefore, confirming 
the accuracy of our results through deeper 
investigation and experimental testing will be 
the direction of our future research.

Conclusion

In conclusion, with a comprehensive analysis of 
GTs in OC patients, we established a prognostic 
model for OC, and determined the validity of 
this prognostic risk model in predicting OC 
prognosis, tumor immune infiltration, and che-
motherapeutic response. These findings pro-
vide a new perspective on OC prognosis and 
treatment, highlighting GTs as a promising ther-
apeutic target for individuals with OC. 
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Figure S1. Correlation between immune cell and risk score. A-L. Resting CD4 memory T cells, monocytes, activated mast cells, M0 macrophages, naive B cells, fol-
licular helper T cells, CD8 T cells, activated CD4 memory T cells, activated NK cells, M1 macrophages, activated dendritic cells, and memory B cells.


