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Abstract: Single-cell sequencing is an emerging technology that can effectively identify cell types in tumors. In the 
tumor microenvironment of bladder cancer, macrophages play a crucial role in invasion and immune escape. This 
study aimed to assess the expression of macrophage-related genes (MRGs) in the tumor microenvironment of blad-
der cancer patients and construct a prognostic model based on MRGs using bioinformatics methods. Methods: 
Single-cell sequencing data from bladder cancer patients was downloaded from the GEO. After quality control and 
cell type identification, macrophages in the samples were extracted for re-clustering. Feature genes were then 
identified, and MRGs were assessed. Genetic data from TCGA database bladder cancer patients was also down-
loaded and organized. The intersection of MRGs and the TCGA gene set was determined. Clinical information was 
connected with this intersection, and the data was divided into training and validation sets. The training set was 
used for model construction and the validation set for model verification. A prognostic model based on MRGs was 
built using the LASSO algorithm and Cox regression. Patients were divided into high-risk and low-risk groups based 
on their prognostic features, and survival information in the training and validation sets was observed. The predic-
tive ability of the model was assessed using a ROC curve, followed by a calibration plot to predict 1-, 3-, and 5-year 
survival rates. Results: Four cell types were identified, and after extracting macrophages, three cell subgroups were 
clustered, resulting in 1,078 feature genes. The top 100 feature genes from each macrophage subgroup were 
extracted and intersected with TCGA expressed genes to construct the model. A risk prediction model composed 
of CD74, METRN, PTPRR, and CDC42EP5 was obtained. The survival and ROC curves showed that this model had 
good predictive ability. A calibration curve also demonstrated good prognostic ability for patients. Conclusion: This 
study, based on single-cell data, TCGA data, and clinical information, constructed an MRG-based prognostic model 
for bladder cancer using multi-omics methods. This model has good accuracy and reliability in predicting the sur-
vival and prognosis of patients with bladder cancer, providing a reference for understanding the interaction between 
MRGs and bladder cancer.
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Introduction

Single-cell sequencing is a powerful technique 
to measure gene expression, DNA methylation, 
chromatin accessibility, and various other 
molecular features at the level of individual 
cells. Through single-cell RNA sequencing 
(scRNA-seq), various cell subtypes present in 

bladder cancer can be identified, which includes 
both cancer cells and non-tumor cells within the 
tumor microenvironment. This technique could 
potentially aid in understanding the heteroge-
neity of bladder cancer, as well as the roles of 
different cell subtypes in disease progression. 
Concurrently, with single-cell DNA sequencing 
(scDNA-seq), the evolutionary history of bladder 
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cancer can be depicted, including the accumu-
lation of mutations, variations in gene copy 
numbers, and the expansion of clones. Through 
scRNA-seq, researchers can gain deep insights 
into the cellular components and interactions 
within the tumor microenvironment, such as 
immune cells, fibroblasts, and vascular cells, 
etc. [1]. Furthermore, single-cell sequencing 
can help researchers understand the mecha-
nisms of resistance to chemotherapy or immu-
notherapy in bladder cancer, and how such 
resistance evolves within cell populations [2, 
3].

Bladder cancer is one of the top ten most com-
mon malignant tumors worldwide. The inci-
dence is significantly higher in men, and dis-
ease risk increases with age, with the majority 
of newly diagnosed cases being >65 years old. 
Smoking, occupational exposure (especially to 
aromatic amines and other chemicals), chronic 
cystitis, certain hereditary diseases, and the 
use of certain anticancer drugs or radiation 
therapy are all considered major risk factors for 
bladder cancer [4]. Regarding the treatment 
options for bladder cancer, these mainly de- 
pend on the stage and grade of the tumor, as 
well as the overall health status of the patient. 
Common treatments include surgery, chemo-
therapy, radiotherapy, and immunotherapy. 
Surgery is the primary treatment, including 
transurethral resection of the bladder tumor 
(TURBT) and radical cystectomy. Chemothe- 
rapy can be used before or after surgery, or as 
the main treatment for metastatic bladder can-
cer. Radiotherapy is usually used in patients 
who cannot undergo surgery, or as a supple-
mentary treatment to surgery [5]. More recent-
ly, immunotherapy, particularly immune check-
point inhibitors, has become an important part 
of the treatment for bladder cancer; it has 
shown significant value, especially in the treat-
ment of metastatic bladder cancer [6]. Immu- 
notherapy works by activating the patient’s 
immune system, enabling it to more effectively 
recognize and attack cancer cells. Notably, 
although existing treatments can improve sur-
vival and quality of life in some patients, sever-
al challenges remain in the treatment of blad-
der cancer, including disease recurrence, treat-
ment resistance, and side effects. Therefore, 
basic research and clinical trials are currently 
being conducted to identify more effective and 
safer treatments. This includes the develop-
ment of new drugs and treatment strategies, as 

well as the use of molecular diagnostics and 
precision medicine technologies to treat blad-
der cancer in a personalized manner [6].

Macrophages are an important part of the 
immune system that are capable of engulfing 
and eliminating invading pathogens and dam-
aged cells. Macrophages also participate in 
processes such as the inflammatory response 
and wound healing. In the context of cancer, 
such as the occurrence and development of 
bladder cancer, the role of macrophages be- 
comes much more complex [7]. On the one 
hand, they can eliminate normal cells that have 
transformed into cancer cells, thereby prevent-
ing the development of cancer. However,  
some macrophages can be “hijacked” by can-
cer cells and reprogrammed into “tumor-asso-
ciated macrophages” (TAMs), which promote 
tumor growth and metastasis. Studies have 
shown that a high density of TAMs is often 
associated with disease worsening and a poor-
er prognosis [8]. This is because TAMs can pro-
mote tumor growth and metastasis in multiple 
ways, including promoting angiogenesis, inhib-
iting T cell responses, and altering the tumor 
microenvironment through the secretion of 
various growth factors and cytokines [9].

Given that single-cell sequencing can be used 
to investigate diseases at the level of individual 
cells, and that macrophages play a significant 
role in the onset and progression of bladder 
cancer, our study aimed to analyze the cellular 
composition of single-cell tumor samples from 
patients with bladder cancer. We will identify 
cell types and extract the specific genes of dif-
ferent macrophage subgroups. By combining 
this with clinical data from The Cancer Genome 
Atlas (TCGA), we aimed to construct a prognos-
tic model for bladder cancer patients, which 
could provide new targets and strategies for 
the treatment of bladder cancer.

Materials and methods

Data collection

Single-cell data (GSE135337) was downloaded 
from the Gene Expression Omnibus (GEO) data-
base (GSE135337) [10]. Bulk sequencing data 
and corresponding clinical data for patients 
with bladder cancer were downloaded from 
TCGA. Single-cell analysis was conducted using 
R language. Prior to analysis, the single-cell 
data were quality control-filtered and selected, 
followed by cell type identification.



Prognostic model of BCa

90	 Am J Clin Exp Immunol 2024;13(3):88-104

Selection of highly variable genes

The Seurat package in R language was used to 
identify highly variable genes in the single-cell 
data, and the ElbowPlot function was used to 
determine the number of principal components 
for subsequent dimension reduction in the 
PCA.

Cell type identification and extraction of char-
acteristic genes

After dimension reduction of the single-cell 
data from patients with bladder cancer, cell 
clusters were divided based on PCA numbers. 
The SINGER package in R language was used  
to identify cell types in the cell clusters. After 
filtering out macrophages, new cell clusters 
were further divided. The FindAllMarkers func-
tion was then used to screen characteristic 
macrophage-related genes (MRGs) in the mac-
rophage cluster. Genes with a P-value <0.05 
considered as subgroup-specific genes.

Enrichment analysis of MRGs

For the obtained MRGs, we used the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
REST-style Application Programming Interface 
(API) (https://www.kegg.jp/kegg/rest/keggapi.
html) to obtain the latest gene annotations for 
KEGG Pathways as the background set and 
mapped the genes to the background set. The 
R package cluster Profiler was used for enrich-
ment analysis to obtain the results of gene set 
enrichment. The minimum gene set was set  
to 5, the maximum gene set to 5,000, and 
P<0.05 and a false discovery rate (FDR) <0.25 
were considered significant. Gene Ontology 
(GO) was used to further explore potential 
molecular functions and cellular components 
involved associated with the MRGs. The  
screening conditions for GO analysis were 
P<0.01 and q<0.01.

Construction of the risk prediction model

Initially, a univariate Cox regression analysis 
was employed to assess the prognostic value 
of the MRGs, thereby acquiring as set of  
prognosis-related macrophage genes. Subse- 
quently, the Least Absolute Shrinkage and 
Selection Operator (LASSO) regression was uti-
lized to select predictive variables and to avoid 
overfitting. A multivariate Cox regression analy-
sis was then performed to ascertain the final 

candidates involved in the risk model. Based 
on the final set of MRGs, a risk signature was 
constructed to predict the prognosis of patients 
with bladder cancer. The method for the risk 
score calculation is as follows: 

riskscore = Σcoef gene i × expression level of 
gene i.

The risk value was obtained by weighting the 
regression coefficients and expression levels of 
the MRGs. According to the median value of the 
risk score, patients with bladder cancer in TCGA 
were divided into high-risk and low-risk groups.

Evaluation of the risk prediction model and 
nomogram

The correlation between the risk score and clin-
ical characteristics was analyzed by comparing 
sex, age, and staging by the American Joint 
Committee on Cancer (AJCC) with the risk 
score. We also analyzed the relationship 
between the risk score and patient gene 
expression profiles across different subsets. 
Subsequently, we compared whether there  
was a significant difference in survival time  
and status between high-risk and low-risk 
patients with the same clinical pathological 
characteristics using R software to plot  
Kaplan-Meier survival curves. When then gen-
erated the receiver operating characteristic 
(ROC) curve to observe the diagnostic value  
of the model. Simultaneously, to further verify 
the prognostic value of the model, we divided 
patients into groups according to the stage  
(I-II, III-IV), and used the R package to plot 
Kaplan-Meier survival curves. Furthermore, we 
downloaded the patients’ progression-free sur-
vival time to observe the accuracy of the mod-
el’s prediction in the high and low-risk groups. 
Based on the evaluation of the ROC curve, we 
incorporated clinical data with a significant 
impact on prognosis, constructing a nomogram 
together with the risk score to predict the 1-, 3-, 
and 5-year survival rates. A calibration curve 
was also constructed to evaluate the predictive 
power of the nomogram.

Results

Data collection

Single-cell sequencing data from seven 
patients with bladder cancer were analyzed 
using the Seurat package in R. The criteria for 
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cell inclusion were as follows: the number of 
genes obtained from sequencing was >300, 
the percentage of mitochondrial genes was 
<10%, and the percentage of erythrocyte gen- 
es was <5%. Subsequently, a total of 36,787 
patient cells were included (Figure 1). In addi-
tion, the expression data of patients with blad-
der cancer in TCGA were collated, totaling 392 
individuals. For specific information, please 
refer to Table 1.

Identification of highly variable genes and PCA 
dimension reduction

We used the NormalizeData and ScaleData 
functions to standardize and centralize cell 
data. Subsequently, we integrated the seven 
single-cell datasets using an anchor-based 
method, selecting 2,000 genes for integra- 
tion. Following integration, we used the Find- 
VariableFeatures function to identify highly  
variable genes in the single-cell data, setting 
the number of highly variable genes at 3,000. 
We then applied PCA to perform dimension 
reduction on these highly variable genes and 
generated an ElbowPlot to determine the num-
ber of principal components to retain in the 
PCA dimension reduction process. As the num-
ber of principal components increased, the  
proportion of variance explained gradually 
decreased (Figure 2A). When the variance ex- 
planation ratio shows an obvious inflection 
point on the graph, it can be considered an 
appropriate number of principal components. 
This point is called the “elbow point”. We select-
ed PCA = 20 for subsequent analyses. We next 
used the FindNeighbors and FindClusters func-
tions to classify the cells, and then displayed 
them using t-SNE dimension reduction maps group- 
ed by source after integration (Figure 2B) and 
by cell clusters after integration (Figure 2C). 
After identifying the cell clusters, we used the 
HumanPrimaryCellAtlasData dataset in the 
SingleR package of R language [11] to identify 
the cell types. We finally identified four cell 
types (Figure 2D), namely epithelial cells, endo-
thelial cells, macrophages, and tissue stem 
cells.

Macrophage subgroup and characteristic gene 
extraction

Because the histological origin of bladder can-
cer is comprised almost entirely of epithelial 
cells, we separately extracted macrophages, 
totaling 561 cells. We displayed the cell clus-

ters extracted on a t-SNE map (Figure 3). 
Subsequently, we further classified the macro-
phage subgroups and used the FindMarkers 
function to extract their characteristic genes, 
resulting in a total of 1,078 characteristic 
genes. The names and expression conditions 
of the top 10 genes with the log2FC differential 
expression are shown in Table 2.

GO and KEGG analysis of MRGs

We used R language for GO enrichment analy-
sis and KEGG pathway analysis of the MRGs 
(Figure 4), focusing on biological process (BP), 
cellular component (CC), and molecular func-
tion (MF) subsets. The BP involved chromo-
some segregation, positive regulation of the 
cell cycle process, sister chromatid segrega-
tion, etc. The CC mainly involved chromosomal 
region, condensed chromosome, chromosome, 
centromeric region, etc. The MF mainly involv- 
ed ubiquitin-like protein ligase binding, MHC 
class II protein complex binding, structural con-
stituent of cytoskeleton, etc. In the KEGG  
analysis, we observed that in addition to “path-
ways in cancer”, the following pathways were 
enriched: “cell cycle”, “Th1 and Th2 cell differ-
entiation”, “Th17 cell differentiation”, “cell 
adhesion molecules (CAMs)”, “p53 signaling 
pathway”, and “HIF-1 signaling pathway”. The- 
se results suggest that MRGs are mainly asso-
ciated with cell division, cell cycle genes, and 
ubiquitination, indicating that the macrophag- 
es in bladder cancer samples are active, that 
protein ubiquitination is at an active level and 
has not developed to the terminal stage, and 
that the cells are actively reshaping their struc-
ture. Furthermore, the KEGG analysis showed 
that these cell activities are closely related to 
the occurrence and development of tumors. 
This is because the “pathways in cancer”, “cell 
adhesion molecules (CAMs)”, “p53 signaling 
pathway”, and “HIF-1 signaling pathway” have 
all been found to play a role in the occurrence  
and development of various tumors [12]. In 
addition, the HIF-1 signaling pathway is often 
related to a lack of oxygen in the cellular  
environment, which corresponds to the high 
metabolism and hypoxia of the tumor mi- 
croenvironment.

Prognostic model construction based on MRGs 
and TCGA expression data

The age, gender, pT stage, pN stage, pM stage, 
AJCC staging, survival status, and survival time 
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of TCGA patients were all included in the clini-
cal data (Table 1). Eventually, 392 patients  
with both clinical survival information and  
sample sequencing information were recruited 
and randomly divided into the training set (n = 
186) and validation set (n = 186) using the 
“caret” package in R. Subsequently, we inter-
sected the identified MRGs genes with the 
expression file genes in TCGA, resulting in 207 
intersecting genes. We connected these 207 
genes with the clinical data, and then took the 
log2+1 of their Fragments Per Kilobase of tran-
script per Million mapped reads (FPKM) values 
for normalization. We then associated them 
with the patient’s clinical prognosis outcom- 
es, performed univariate and multivariate Cox 
regression, Lasso regression is used for vari-
able compression (Figure 5A, 5B), and built a 
patient prognostic model composed of four 
genes: CD74, METRN, PTPRR, and CDC42EP5. 
Their corresponding model coefficients, hazard 
ratio, and P values are shown in Figure 5C and 
5D. Furthermore, according to the median risk 
score, they were divided into high-risk and low-
risk groups. A heatmap of the expression differ-

ences of MRGs in the high-risk and low-risk 
groups was drawn (Figure 6A, 6B). The results 
showed that, whether in the training set or the 
validation set, the expression of the four genes 
in the high-risk group was significantly different 
from that in the low-risk group. Subsequently, 
scatter plots and risk curves were used to show 
the survival status and risk scores of each 
patient with bladder cancer (Figure 6E, 6F); the 
overall survival rates of the high-risk and low-
risk patients in the validation and test set were 
significantly different (P<0.05), with the mortal-
ity rate and hazard ratio of the high-risk group 
being higher than those of the low-risk group 
(Figure 6G, 6H).

Validation of the risk model and nomogram 
construction

To assess whether the model score, age, gen-
der, and pathological grade are independent 
prognostic factors for patients with bladder 
cancer, we performed univariate and multivari-
ate Cox regression analyses and generated for-
est plots. The results showed that AJCC stage 

Figure 1. A. Number of genes detected in the seven samples. B. Number of sequencing counts obtained in the seven 
samples. C. Mitochondrial gene ratio in the cells of the seven samples. D. Red blood cell gene ratio in the seven 
samples.

Table 1. Patient clinical information and grouping of clinical information
Covariates Type Total Test Train P-value
Age ≤65 157 (40.05%) 83 (42.35%) 74 (37.76%) 0.4096

>65 235 (59.95%) 113 (57.65%) 122 (62.24%)
Gender Female 103 (26.28%) 45 (22.96%) 58 (29.59%) 0.1685

Male 289 (73.72%) 151 (77.04%) 138 (70.41%)
M M0 188 (47.96%) 90 (45.92%) 98 (50%) 0.1962

M1 11 (2.81%) 8 (4.08%) 3 (1.53%)
Unknown 193 (49.23%) 98 (50%) 95 (48.47%)

N N0 227 (57.91%) 111 (56.63%) 116 (59.18%) 0.8279
N1 46 (11.73%) 26 (13.27%) 20 (10.2%)
N2 74 (18.88%) 37 (18.88%) 37 (18.88%)
N3 6 (1.53%) 3 (1.53%) 3 (1.53%)
Unknown 39 (9.95%) 19 (9.69%) 20 (10.2%)

Stage Stage II 124 (31.63%) 57 (29.08%) 67 (34.18%) 0.5167
Stage III 136 (34.69%) 69 (35.2%) 67 (34.18%)
Stage IV 132 (33.67%) 70 (35.71%) 62 (31.63%)

T T2 115 (29.34%) 54 (27.55%) 61 (31.12%) 0.3744
T3 190 (48.47%) 93 (47.45%) 97 (49.49%)
T4 56 (14.29%) 34 (17.35%) 22 (11.22%)
Unknown 31 (7.91%) 15 (7.65%) 16 (8.16%)
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and risk score were independent prognostic 
factors for patients with bladder cancer 
(P<0.05) (Figure 7A, 7B). This indicates that our 
prognostic model has diagnostic value for 
patient prognosis independent of other clinical 
features. To evaluate the accuracy of the risk 
score and clinical features in predicting the 
prognosis of patients with bladder cancer, we 
plotted ROC curves and time-dependent ROC 
curves for clinical information in the training 
set, validation set, and overall dataset (Figure 
6C, 6D). The training set exhibited an area 
under the curve (AUC) of 0.752 for 1-year sur-
vival, 0.677 for 3-year survival, and 0.606 for 
5-year survival. The test set showed AUC valu- 
es of 0.729, 0.666, and 0.717 for 1-, 3-, and 
5-year survival, respectively. Additionally, we 
plotted the ROC curve for predicting the 1-year 
survival probability using the risk score and 
clinical features in the training and validation 
sets together. The AUC of the model was the 

largest, indicating that our model has a greater 
diagnostic value in assessing prognosis com-
pared to other clinical features (Figure 8A-D).  
In addition, gender, age, and grade were found 
to be unrelated to the risk score (P<0.05). 
Furthermore, we conducted progression-free 
survival analysis (Figure 8E, 8F). The results 
showed that patients with a higher risk score 
had a significantly longer progression-free sur-
vival than those with a lower risk score, indicat-
ing that the genes in our model may impact 
progression-free survival. To further investigate 
the prognostic value of the model, we grouped 
the patients by stage (stage I-II and III-IV) and 
plotted Kaplan-Meier survival curves (Figure 
9A, 9B). The survival curves demonstrated that 
patients with the same AJCC stage had shorter 
survival times and a poorer prognosis as the 
risk score increased (P<0.05). This indicates 
that our model has some diagnostic value for 
predicting patient prognosis. Additionally, we 

Figure 2. A. Elbow plot of variance explained vectors. B. t-SNE visualization of single cells colored by the origin of the 
samples. C. t-SNE visualization of single cells colored by cell clusters. D. t-SNE visualization of single cells colored 
by cell type identification.
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Figure 3. A. Macrophages individually extract-
ed in the t-SNE dimension reduction. B. t-SNE 
dimension reduction displayed according to 
the sample source. C. t-SNE dimension reduc-
tion displayed by cell subpopulations.

found that age, stage, and risk score all had  
an impact on patient prognosis. Therefore, we 
constructed nomograms based on these three 
indicators to assign scores to patients and pre-
dict their 1-, 3-, and 5-year survival probabili-
ties. The calibration curves of the nomograms 
showed that the predicted values were close  
to the actual survival probabilities, indicating 
good diagnostic value for the nomograms and 
the overall model (Figure 9C, 9D).

Discussion

Bladder cancer is a common malignant tumor, 
the occurrence and development of which are 
closely related to the tumor microenvironment 
[13]. Macrophages, as one of the main immune 
cells in bladder cancer, play an important role 
in the tumor microenvironment of bladder can-
cer. Macrophages exhibit diversity and plastici-
ty, differentiating into subgroups with diffe- 
rent functions based on environmental signals. 
Typically, macrophages are divided into two 
types: M1 type (pro-inflammatory) and M2 type 
(anti-inflammatory) [14]. In the bladder cancer 
tumor microenvironment, macrophages tend  

to differentiate into the M2 type, promoting 
tumor growth, metastasis, and angiogenesis by 
secreting growth factors, cytokines, and che-
mokines [15]. Tumors require new blood ves-
sels to supply nutrients and oxygen to maintain 
growth. TAMs promote the formation of new 
blood vessels by secreting various molecules, 
such as vascular endothelial growth factor 
(VEGF) [16]. At the same time, they can sup-
press the immune system, preventing it from 
attacking cancer cells by secreting immuno- 
suppressive molecules such as transforming 
growth factor (TGF)-β and interleukin (IL)-10 
[17, 18]. Furthermore, TAMs can help cancer 
cells penetrate the basement membrane and 
interstitial cells and invade surrounding tissues 
and blood vessels, leading to tumor metasta-
sis, through the secretion of various proteinas-
es and cytokines, such as matrix metallopro-
teinases (MMPs) and epidermal growth factor 
(EGF) [19, 20].

Single-cell sequencing is a high-throughput 
sequencing technology that can measure the 
genome, transcriptome, or epigenome at the 
single-cell level. Single-cell sequencing can 
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Table 2. The top 10 specific genes and their related expression conditions in the three macrophage 
subgroups
Gene p_val avg_log2FC pct.1 pct.2 p_val_adj Cluster
TYROBP 2.96E-62 1.697220889 1 0.966 5.92E-59 0
CD74 1.52E-58 1.685945728 1 0.983 3.04E-55 0
HLA-DRA 3.14E-58 1.828062408 0.997 0.991 6.28E-55 0
HLA-DPB1 3.30E-57 1.795460403 0.988 0.949 6.60E-54 0
CCL4L2 2.84E-26 1.748558902 0.982 0.739 5.69E-23 0
APOE 6.12E-26 2.225427906 0.969 0.868 1.22E-22 0
APOC1 7.37E-24 1.867185273 0.997 0.936 1.47E-20 0
CCL3 6.74E-21 1.86520665 0.92 0.803 1.35E-17 0
CCL4 2.85E-19 1.743460094 0.887 0.705 5.71E-16 0
CXCL8 1.06E-08 1.750896013 0.841 0.791 2.12E-05 0
KRT19 1.64E-74 2.403691076 1 0.938 3.28E-71 1
CD24 1.75E-71 2.683857451 1 0.995 3.51E-68 1
KRT18 6.91E-69 2.92271572 0.995 0.668 1.38E-65 1
CAMK2N1 1.79E-68 2.130147691 0.99 0.751 3.59E-65 1
SNCG 2.36E-67 2.640455738 1 1 4.72E-64 1
ADIRF 8.99E-66 2.473192258 1 1 1.80E-62 1
DHRS2 4.10E-64 2.480354274 0.984 0.635 8.19E-61 1
HPGD 3.99E-61 2.242237934 0.995 0.916 7.98E-58 1
CLDN4 6.09E-60 2.452498569 0.995 0.776 1.22E-56 1
PSCA 1.24E-57 2.105113368 0.979 0.835 2.48E-54 1
H2AFZ 2.52E-23 1.870332237 1 0.992 5.04E-20 2
STMN1 3.42E-23 2.264808355 1 0.888 6.84E-20 2
TUBB 6.71E-23 2.250717786 1 0.992 1.34E-19 2
HMGB2 2.66E-21 2.334086929 0.953 0.643 5.33E-18 2
CKS1B 1.89E-20 1.869258383 1 0.865 3.77E-17 2
TUBA1B 1.69E-19 1.938305196 1 0.969 3.38E-16 2
KIAA0101 3.02E-19 2.098884223 1 0.875 6.04E-16 2
HMGN2 2.57E-18 1.696403128 1 0.988 5.13E-15 2
UBE2C 1.10E-15 1.941262234 0.977 0.876 2.19E-12 2
PTTG1 1.44E-09 1.645495691 0.907 0.795 2.87E-06 2

resolve the heterogeneity between different 
cell types within cancer tissues, providing an 
in-depth understanding of the tumor microenvi-
ronment and intercellular interactions. In addi-
tion, single-cell sequencing can detect cell 
types in the tumor microenvironment, such as T 
cells, B cells, macrophages, NK cells, etc. [21]. 
This has significant implications for cancer 
treatment. Through single-cell sequencing, per-
sonalized genomic information can be provided 
for patients, which can help to identify drug tar-
gets and achieve precision treatment [22]. 
Although single-cell sequencing has many 
advantages in cancer research, it also has cer-
tain limitations, such as high cost and complex 
data processing. Therefore, combining multiple 

technical means for cancer research can help 
us to understand the biological characteristics 
of tumors more comprehensively. This article 
uses a multi-omics analysis method and uses 
bladder cancer single-cell sequencing data. 
After quality control of the data, screening of 
high-variance genes, cell clustering, and cell 
type identification, the results show that  
MRGs are mainly associated with cell division, 
the cell cycle, and ubiquitination, indicating 
that macrophages in bladder cancer samples 
are active and are actively reshaping their 
structure. Furthermore, KEGG analysis showed 
that pathways involved in tumor invasion and 
development include “pathways in cancer”, 
“p53 signaling pathway”, “Th1 and Th2 cell dif-
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Figure 4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of macrophage-related genes. (A) GO analysis of biological processes 
(BP), (B) GO analysis of cellular components (CC), (C) GO analysis of molecular functions (MF), and (D) KEGG pathway analysis.
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Figure 5. A, B. Number of genes selected by LASSO regression. C. Univariate Cox regression. D. Multivariate Cox regression and model coefficients.
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ferentiation”, and “HIF-1 signaling pathway”. 
The analysis results indicate that macrophag- 
es are active and are involved in cell communi-
cation; thus, they actively participate in the 

occurrence and development of bladder can-
cer. Subsequently, we intersected these genes 
with genes contained in the second-generation 
sequencing in TCGA, and after removing the 

Figure 6. A, C, E, G. Heatmaps of gene expression in the training set with respect to risk scores, changes in patient 
risk scores, scatter plot of patient risk scores and survival status, and Kaplan-Meier survival curves for high and 
low-risk groups. B, D, F, H. Heatmaps of gene expression in the validation set with respect to risk scores, changes 
in patient risk scores, scatter plot of patient risk scores and survival status, and Kaplan-Meier survival curves for 
high and low-risk groups.
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low-expression genes, we conducted a progno-
sis study combined with the clinical information 
of patients with bladder cancer, and screened 
out four key prognosis genes: CD74, METRN, 
PTPRR, and CDC42EP5. Based on these four 
genes, we constructed a prognostic model and 
a nomogram. Both the survival analysis and 
ROC curves demonstrated that this model is 
accurate, and the calibration curve indicated 
good consistency between the predicted and 
observed survival rates.

Among the genes involved in the model con-
struction, the protein encoded by CD74 is as- 
sociated with the class II major histocompati- 
bility complex (MHC) and is an important part-
ner in regulating the antigen presentation of 
immune responses. It also serves as a cell sur-
face receptor for the cytokine macrophage 
migration inhibitory factor (MIF). When bound 
to its coding protein, it initiates survival path-
ways and cell proliferation. This is consistent 
with the results of the MF in our previous GO 
analysis, which was found to be associated 
with a better prognosis in immune diseases 
and hepatocellular carcinoma [23]. This is con-
sistent with our study, as the hazard ratio value 
of CD74 in the model was <1, suggesting that 
its high expression may serve as a protective 
factor for patients.

Previous research has shown that METRN  
regulates the differentiation of neuroglial cells 
and promotes the formation of axonal networks 
in neurogenesis [24]. Its study in cancer is rela-
tively limited; however, recent research has 
shown that its high expression is associated 
with poor prognosis in colorectal cancer [25], 

which is consistent with our study results. In 
the model, its hazard ratio value is >1, which is 
a risk factor for patient prognosis.

The protein encoded by PTPRR is a member of 
the protein tyrosine phosphatase (PTP) family. 
PTPs are signaling molecules that regulate a 
variety of cellular processes, including cell 
growth, differentiation, mitotic cycle, and onco-
genic transformation. This PTP possesses an 
extracellular region, a single transmembrane 
region, and a single intracellular catalytic 
domain, and thus represents a receptor-type 
PTP. Silencing of PTPRR has been associated 
with colorectal cancer [26]. Furthermore, exist-
ing studies have shown that the silencing of 
PTPRR is also associated with the metastasis 
and deep infiltration of cervical cancer, which 
can activate MAPK signal transduction and  
promote metastasis [27]. This is consistent 
with our model, that is, the hazard ratio value is 
<1. Furthermore, similar to bladder cancer, the 
prognosis of cervical cancer is clinically poor 
after the occurrence of muscle layer infiltration. 
Therefore, future research can refer to the 
direction of cervical cancer in the hope of dis-
covering specific mechanisms in bladder 
cancer.

The protein encoded by CDC42EP5 is a mem-
ber of the Borg (binder of Rho GTPases) family 
of CDC42 effector proteins. There is limited 
research on this protein; however, some stud-
ies have revealed that it may be a potential 
gene involved in the development of prostate 
cancer and neurosystem tumors. Other re- 
search has proposed that it has a role in the 
migration of macrophages [28]. In our study, its 

Figure 7. A. Univariate Cox regression analysis for independent prognostic factors. B. Multivariate Cox regression 
analysis for independent prognostic factors.
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hazard ratio is <1, indicating that it is a protec-
tive factor for patient prognosis; however, the 
specific mechanism remains to be studied.

In summary, by analyzing the single-cell se- 
quencing data of patients with bladder cancer, 
we identified MRGs and used TCGA bladder 

Figure 8. A, C. Receiver operating characteristic (ROC) curves for the clinical characteristics and the 1-, 3-, and 
5-year survival in the training set. B, D. ROC curves for the clinical characteristics and the 1-, 3-, and 5-year survival 
in the validation set. E. Progression-free survival curve in the training set. F. Progression-free survival curve in the 
validation set.
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Figure 9. A. Survival curve for patients with stage I-II. B. Survival curve for patients with stage III-IV. C. Prognostic nomogram for patients with bladder cancer. D. 
Calibration curve of the prognostic nomogram.
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cancer second-generation sequencing data 
and clinical data to construct a prognostic 
model. This provides a promising approach for 
individualized survival prediction and clinical 
outcome prediction in patients with bladder 
cancer. However, our study has certain limita-
tions as it is based on a public database, with-
out clinical trial research and basic research 
verification. The four genes, CD74, METRN, 
PTPRR, and CDC42EP5, have been found to be 
involved in tumor invasion, heterogeneity, and 
immune regulation in multiple cancers; howev-
er, focused research on bladder cancer is rela-
tively limited. In the future, our research will 
focus on these four genes, with the hope to 
uncover their key biological steps in the devel-
opment of bladder cancer.
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