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Abstract: Objective: This study aimed to utilize single-cell RNA sequencing (scRNA-seq) to elucidate the autophagic 
landscape in breast cancer and to develop a prognostic model for breast cancer patients based on traditional high-
throughput RNA sequencing (bulk RNA-seq). Methods: We analyzed scRNA-seq data from the GSE75688 dataset 
to explore the expression patterns of autophagy-related genes (ARGs) across distinct cellular clusters. ARGs were 
retrieved from the GeneCards database, and bulk RNA-seq data were obtained from The Cancer Genome Atlas 
(TCGA). Cox proportional hazards regression was employed to construct a prognostic risk model based on ARGs. 
Patients were subsequently stratified into high-risk and low-risk groups according to their risk scores. For external 
validation, we used gene expression data from the GSE20685 and GSE48390 datasets. Receiver operating char-
acteristic (ROC) curve analysis was performed to evaluate the performance of the 3-gene signature. Results: Using 
the FindClusters function in Seurat, all cells were grouped into four distinct clusters, highlighting the intratumoral 
heterogeneity within the samples. Significant differences in autophagy scores were observed among the clusters. 
Fifteen differentially expressed autophagy-related genes were identified, and a prognostic signature consisting of 
three autophagy-related genes - FEZ1, STX11, and ADAMTSL1 - was developed. Based on this model, patients were 
classified into high- and low-risk groups, with a statistically significant difference in survival between the two groups 
(log-rank test, P = 0.0011). The model demonstrated robust predictive performance with an AUC of 0.761 in the 
external validation dataset. A nomogram incorporating the 3-gene signature and clinical factors showed strong prog-
nostic discrimination. Conclusion: This study uncovered significant variation in autophagy levels among different 
breast cancer cell clusters. Furthermore, we established a novel 3-gene autophagy-related prognostic model that 
effectively stratifies patient risk and provides a potential tool for personalized prognosis in breast cancer.
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Introduction

Breast cancer is one of the most prevalent 
malignant tumors among women worldwide, 
with a steadily increasing incidence rate [1, 2]. 
Timely detection and appropriate treatment 
significantly enhance the chances of survival, 
with the overall 5-year relative survival rate 
reaching approximately 90% [2]. The American 
Joint Committee on Cancer (AJCC) has tra- 
ditionally utilized the tumor-node-metastasis 
(TNM) staging system for breast cancer classifi-
cation. However, despite its prognostic utility, 
clinical outcomes can differ significantly among 
patients with the same TNM stage. This high-

lights the limitations of the TNM system in accu-
rately predicting breast cancer prognosis.

In addition to TNM staging, various other fac-
tors - such as tumor pathological grade, molec-
ular subtype, and the Ki67 labeling index - play 
critical roles in determining prognosis. Recent 
advances in cancer genomics, particularly in 
high-throughput sequencing technologies, have 
further refined prognostic evaluation. Gene 
expression profiling tools like the Oncotype  
DX 21-gene signature and the MammaPrint 
70-gene signature have been employed to iden-
tify biomarkers that inform breast cancer prog-
nosis and guide treatment decisions [3, 4].

https://doi.org/10.62347/XPCM9169
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Autophagy is an intracellular degradation pro-
cess that maintains cellular homeostasis by 
lysosomal degradation of macromolecules and 
damaged organelles. Dysfunction in autophagy 
is now recognized as a hallmark of cancer, 
though its role remains paradoxical [5, 6]. 
Multiple studies suggest that autophagy sup-
presses tumor initiation in early stages, while 
later supporting tumor progression and surviv-
al. Specifically, in breast cancer, autophagy has 
shown this dual nature. For instance, autopha-
gic cell death induced by Bcl-2 in MCF-7 breast 
cancer cells has shown potential as a therapeu-
tic strategy [7]. Conversely, inhibiting autopha-
gy has been reported to enhance the efficacy of 
tamoxifen in ER-positive breast cancer [8], and 
to increase the cytotoxicity of epirubicin by pro-
moting apoptosis [9]. Clearly, autophagy plays 
a complex and significant role in breast cancer 
progression.

Given this, autophagy-related genes (ARGs) 
may serve as potential prognostic markers  
for breast cancer - a disease known for its hi- 
gh heterogeneity. Unlike previous studies, we 
sourced the autophagy-related gene set from 
the GeneCards database and performed a 
comprehensive analysis to investigate the role 
of autophagy in prognosis. Using bioinformati- 
cs approaches and single-cell analysis, we ex- 
plored tumor heterogeneity and autophagy sta-
tus at the cellular level. Based on these find-
ings, we constructed a prognostic model using 

ARGs to predict outcomes in breast cancer 
patients.

Methods

As shown in Figure 1, the study flowchart illus-
trates the overall research process. The single-
cell sequencing dataset GSE75688, derived 
from breast cancer samples, was downloaded 
from the Gene Expression Omnibus (GEO) data-
base [10]. This dataset includes a total of 326 
breast cancer cells, as annotated by Chung et 
al., and was used for all single-cell analyses.

RNA sequencing data and corresponding clini-
cal information were obtained from The Cancer 
Genome Atlas (TCGA) database (http://tcga-
data.nci.nih.gov/tcga), comprising 1,104 breast 
cancer samples and 113 normal breast tissue 
samples. Additionally, two datasets - GSE20685 
[11] and GSE48390 [12] - were retrieved from 
the GEO database for use as validation cohorts. 
Both datasets were derived from primary hu- 
man breast cancer tissues and were generated 
using the same platform (GPL570).

To correct for batch effects across datasets, we 
applied the ComBat function from the SVA 
package in R. The sample sizes for GSE20685 
and GSE48390 were 327 and 81, respectively. 
Furthermore, we obtained a list of 7,242 pyrop-
tosis-related genes from the GeneCards data-
base [13].

Figure 1. The flowchart of this study.
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Single-cell analysis

We identified highly variable genes using the 
FindVariableFeatures function of the Seurat 
package [14]. Dimensionality reduction was 
then carried out using principal component 
analysis (PCA), and statistically significant prin-
cipal components were determined using both 
the JackStraw and Elbow methods. Unsuper- 
vised clustering of cells was subsequently per-
formed with Seurat’s FindClusters function.

To identify significantly expressed genes within 
each cell cluster, we used the FindAllMarkers 
function with its default parameters, applying a 
cutoff of |log2FC| > 1 and an adjusted P-value 
< 0.05. Differentially expressed genes (DEGs) 
were intersected with autophagy-related genes 
(ARGs) obtained from the GeneCards databa- 
se to identify relevant autophagy-associated 
expression patterns.

To evaluate the autophagy activity across dif-
ferent cell clusters, we calculated AUCell scores 
using the AUCell package. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genom- 
es (KEGG) pathway enrichment analyses were 
then performed on the DEGs from the cluster 
exhibiting the highest autophagy level.

To explore potential relationships between the 
different cell clusters, we conducted pseudo-
time trajectory analysis using the Monocle pa- 
ckage [15]. Furthermore, intercellular commu-
nication analysis was performed using Cell- 
PhoneDB [16], providing insights into ligand-
receptor interactions among the cell popula- 
tions.

Bulk RNA-seq analysis

Among the 7,242 autophagy-related genes 
(ARGs) retrieved from the GeneCards database 
(Table S1), 7,063 overlapped with the gene 
expression profiles from TCGA. Key genes were 
identified through the intersection of three cri-
teria: (1) significant differential expression be- 
tween normal and cancer tissue samples; (2) 
strong correlation of ARGs with overall survival; 
and (3) membership in gene modules highly 
correlated with the cancer phenotype.

Differentially expressed genes (DEGs) between 
normal and tumor samples were identified 
using the DESeq2 package in R, with the th- 
resholds set at |fold change| > 1 and adjusted 
p-value < 0.05 [17]. Prognosis-related genes 
were identified through univariate Cox regres-

sion analysis (P < 0.05). To identify functionally 
relevant gene modules, we conducted weight-
ed correlation network analysis (WGCNA) [18] 
using the WGCNA package [19], allowing us to 
detect ARG modules significantly associated 
with the cancer phenotype. Based on the ex- 
pression patterns of the resulting key genes, 
we performed unsupervised clustering of can-
cer samples to verify their ability to distinguish 
autophagic states.

Next, we applied univariate Cox regression fol-
lowed by least absolute shrinkage and selec-
tion operator (LASSO) regression to further nar-
row down prognostic ARGs. A multivariate Cox 
regression analysis was then used to construct 
the final prognostic model. The model’s perfor-
mance was validated using preprocessed ex- 
ternal test datasets. Based on the model-de- 
rived risk scores, patients were stratified into 
high-risk and low-risk groups.

We further analyzed the DEGs between these 
two risk groups, including protein - protein inter-
action (PPI) network analysis, immune infiltra-
tion profiling, and mutational signature analy-
sis. To evaluate the model’s clinical indepen- 
dence, we integrated it with other clinical vari-
ables and constructed a nomogram using the 
rms package. The nomogram was validated 
through calibration curves and decision curve 
analysis to assess its predictive accuracy and 
clinical utility.

Statistical analysis

All statistical analyses were conducted using  
R Language for Statistical Computing (version 
4.1). Wilcoxon rank-sum tests were applied 
when variables were non-normally distributed. 
P values were two-sided, and a p value < 0.05 
was considered statistically significant.

Results

A total of 326 breast cancer cells were screened 
to identify highly variable genes, resulting in 
1,270 high-variance genes selected from an 
initial pool of 55,823 genes for subsequent 
analysis. Based on the selected principal com-
ponents, all cells were grouped into four dis-
tinct clusters using unsupervised clustering 
methods. Visualization through UMAP and t- 
SNE dimensionality reduction techniques re- 
vealed clear boundaries between the cell clus-
ters (Figure 2A, 2B).

https://e-century.us/files/ajcei/14/2/ajcei0159295suppltab1.xlsx
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Figure 2. Cell clusters. (A) UMAP dimensionality reduction illustrating clustering results. The X and Y axes represent 
the two UMAP dimensions. Each point denotes a cell, color-coded by cluster label. (B) t-SNE dimensionality reduc-
tion showing clustering results. The X and Y axes correspond to the two t-SNE dimensions. Cells are color-coded by 
cluster label, consistent with (A). (C) UMAP-based gene expression distribution. Axes represent UMAP dimensions. 
Cells are colored by gene expression levels, with darker shades indicating higher expression. Clusters correspond 
to those in (A). (D) t-SNE-based gene expression profile. Axes represent t-SNE dimensions. Cells are colored accord-
ing to gene expression, with darker colors indicating higher levels. Clusters correspond to those in (B). (E) Cluster-
specific gene expression. The X-axis indicates cell clusters, and the Y-axis shows expression levels. Only significantly 
differentially expressed genes with the highest log2 fold change (log2FC) in each cluster are shown. (F) Heatmap of 
cluster-specific gene expression. Displayed are the top log2FC genes per cluster. Upper bars represent individual 
clusters. (G) Cumulative histogram of cluster proportions across samples. The X-axis represents samples, and the 
Y-axis indicates the proportion of cells. Colors distinguish different clusters.

Following statistical screening, we identified 
128 differentially expressed genes (DEGs) 
across the four clusters (Table S2), with 41 
DEGs in cluster 1, 15 in cluster 2, 35 in cluster 
3, and 37 in cluster 4. As shown in Figure 2E, 
the expression of specific genes within each 
cluster - such as IGHG1, DCD, HIST1H4C, and 
CRYAB - differed significantly compared to other 
clusters. These gene expression patterns were 
spatially confirmed through distribution plots in 
the reduced dimensional space (Figure 2C, 
2D), illustrating that the identified genes were 
predominantly expressed in their respective 
cell clusters.

To further explore DEG expression, we visual-
ized the top 10 DEGs per cluster using a heat-
map (Figure 2F), which demonstrated a strong 
correspondence between the DEGs and their 
respective clusters.

To evaluate the sample-specific distribution of 
cell clusters, we generated a histogram display-
ing the proportion of each cluster within each 
individual sample (Figure 2G). The results re- 
vealed substantial variability in cluster compo-
sition among different samples, with each sam-
ple containing at least two distinct cell clusters. 
This finding highlights the presence of notable 
intratumoral heterogeneity within the breast 
cancer samples.

Expression characteristics of autophagy genes 
in each cell cluster

A total of 7,242 autophagy-related genes were 
obtained from the GeneCards database. These 
genes were intersected with the differentially 
expressed genes (DEGs) identified from each 
cell cluster, resulting in 73 cluster-specific au- 
tophagy genes (Table S3). To visualize their 
expression patterns, violin plots and heatmaps 
were generated for the top 10 genes in each 
cluster - or all genes if fewer than 10 were avail-

able (Figure 3A, 3C). Additionally, we assessed 
the expression correlation among the 73 au- 
tophagy-related genes across all cells (Figure 
3B). Most genes showed either no correlation 
or positive correlations with one another, such 
as PMAIP1 and B2M. However, a few genes 
demonstrated negative correlations, including 
RPL23 and RBP1.

To quantify autophagy activity in each cluster, 
we used the AUCell package to calculate au- 
tophagy scores based on the expression of 
these 73 genes. As shown in Figure 4A and 4B, 
autophagy scores varied significantly among 
the clusters. Cluster 3 had the highest autoph-
agy score, indicating elevated autophagic activ-
ity, while cluster 2 exhibited the lowest score.

We then performed Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses using the 35 DEGs 
from cluster 3 (Figure 4C, 4D). GO analysis re- 
vealed significant enrichment of 244 biologi- 
cal processes (Table S4), with the top five ter- 
ms including chromosome segregation, nucle-
ar division, organelle fission, nuclear chromo-
some segregation, and sister chromatid seg- 
regation. Similarly, KEGG analysis identified 
seven significantly enriched pathways (Table 
S5), with the top five being cell cycle, oocyte 
meiosis, p53 signaling pathway, progestin-me- 
diated oocyte maturation, and base excision 
repair. These findings were consistent with the 
GO results and collectively underscored the 
strong association between cluster 3 and cell 
cycle - related processes.

Pseudotime trajectory analysis (Figure 5A, 5B) 
revealed a non-linear differentiation trajectory 
among the clusters, forming an approximately 
triangular structure divided by a central branch 
point. Further analysis of this branch point 
(Figure 5C, 5D) showed that 43 autophagy-
related genes - two of which are highlighted in 

https://e-century.us/files/ajcei/14/2/ajcei0159295suppltab2.xlsx
https://e-century.us/files/ajcei/14/2/ajcei0159295suppltab3.xlsx
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https://e-century.us/files/ajcei/14/2/ajcei0159295suppltab5.xlsx
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Panel D - exhibited bifurcated expression tr- 
ends near this branching event, suggesting 
functional transitions between cellular states.

To investigate intercellular communication, we 
used CellPhoneDB to generate heatmaps (Fi- 
gure 6A) and interaction network plots (Figure 
6B-F). This analysis revealed that clusters 1 
and 4 had the strongest intercluster communi-
cation, suggesting similar biological functions 
or coordinated activity. In contrast, clusters 2, 
3, and 4 showed fewer receptor-ligand interac-
tions, indicating relatively weaker communica-
tion among these clusters.

Differentially expressed ARGs in Bulk RNA-seq 
analysis

Following statistical threshold filtering, a total 
of 1,389 genes were retained for further analy-
sis (Figure 7A). These genes demonstrated sig-
nificant differential expression between normal 
and tumor tissue samples (Figure 7B). Inte- 
gration with clinical survival data from TCGA 
identified 552 genes significantly associated 
with overall survival. Based on the expression 
profiles of these 552 genes, all breast cancer 
samples were stratified into high-risk and low-
risk groups. Survival analysis using the log-rank 

Figure 3. Autophagy gene expression. A. Expression of autophagy-related genes across cell clusters. The X-axis 
represents expression levels, and the Y-axis lists individual autophagy genes. Cell clusters are color-coded in align-
ment with Figure 2A. B. Correlation matrix of autophagy gene expression. Colors and square sizes represent the 
strength and direction of correlations: red indicates positive correlation, blue indicates negative correlation, and 
larger squares denote higher correlation magnitudes. C. Heatmap of autophagy gene expression across clusters. 
The top three most highly expressed autophagy genes in each cell cluster are labeled.
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Figure 4. Autophagy score and functional enrichment analysis. A. Autophagy scores across cell clusters. The X-axis 
represents cell clusters, and the Y-axis shows autophagy scores. Data points are centered within the plot by clus-
ter. B. UMAP plot of autophagy scores. Axes represent the two UMAP dimensions. Cells are color-coded based on 
autophagy scores, with darker colors indicating higher scores. Cell cluster identities correspond to those in Figure 
2A. C. Bar chart of GO enrichment results. The X-axis displays the negative log10 of the adjusted p-value, and the 
Y-axis lists enriched Gene Ontology (GO) terms. The top 10 most significant terms from Biological Process (BP), Cel-
lular Component (CC), and Molecular Function (MF) categories are shown (if fewer than 10, all are displayed). D. 
Bubble plot of KEGG pathway enrichment. The X-axis indicates the proportion of genes enriched in each pathway 
(enriched genes/total differentially expressed genes), and the Y-axis shows pathway names. Dot size corresponds 
to the number of enriched genes, while color represents corrected p-values - redder colors indicate higher statistical 
significance.

test revealed a highly significant difference in 
survival outcomes between these groups (P < 
0.0001; Figure 7C), confirming the strong prog-
nostic value of these genes.

To further explore autophagy-related gene ex- 
pression patterns, weighted gene co-expres-
sion network analysis (WGCNA) was applied to 
the 7,063 autophagy-related genes, resulting 
in the identification of five distinct gene mod-
ules (Figure 7D). Correlation analysis between 
these modules and the clinical phenotype 
(tumor vs. normal) revealed two modules with 
strong positive and negative associations wi- 
th the disease state (Figure 7E). Genes from 
these significantly correlated modules were se- 
lected as candidates for further investigation.

By intersecting the genes identified through dif-
ferential expression analysis, survival correla-
tion, and WGCNA module membership, a final 

set of 15 key autophagy-related genes was 
obtained (Figure 7F). These genes included: 
DCAF13, SLC35A2, FREM1, SLC7A5, CCND2, 
TUBA1C, MTHFD2, SQLE, NT5E, IL33, FEZ1, 
CDK5R1, STX11, ADAMTSL1, and FBLN5.

Panorama of key genes

As shown in Figure 8A, the expression levels of 
the 15 key autophagy-related genes differed 
significantly between normal and tumor sam-
ples, with all comparisons yielding P < 0.0001 
according to the Wilcoxon rank-sum test. Cor- 
relation analysis further revealed that most of 
these genes were strongly positively correlated 
with one another (Figure 8B). A mutation analy-
sis using a waterfall plot (Figure 8C) indicat- 
ed that among the 15 genes, FREM1 exhibited 
the highest mutation frequency, followed by 
ADAMTSL1, both showing notably higher muta-
tion rates than the remaining genes.
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To explore whether these key genes could clas-
sify tumors based on autophagy status, unsu-
pervised clustering was performed using their 
expression profiles across all cancer samples. 
The optimal number of clusters was first deter-
mined (Figure 8D), and clustering was conduct-
ed using the K-means algorithm. Principal com-
ponent analysis (PCA) was then used to visu- 
alize the clustering outcome, showing a clear 
separation of samples into two distinct groups 
(Figure 8E).

To validate the biological relevance of the clus-
tering, survival analysis was performed. A log-
rank test comparing overall survival between 
the two groups revealed a statistically signifi-
cant difference (P = 0.016; Figure 8F), suggest-
ing that the clustering based on autophagy-
related gene expression may reflect underlying 
differences in autophagy status that are asso-
ciated with patient prognosis.

Prognostic prediction model based on key 
genes

To develop a clinically applicable prognostic 
prediction model, univariate Cox regression 
and the Least Absolute Shrinkage and Selec- 
tion Operator (LASSO) regression were appli- 
ed to identify key prognostic genes. This screen-
ing process narrowed the list down to 10 candi-
date genes (Figure 9A, 9B). Subsequently, mul-
tivariate Cox regression analysis was perform- 
ed to further refine the model, ultimately iden- 
tifying three key genes: FEZ1, STX11, and 
ADAMTSL1 (Figure 9C).

Based on this three-gene model, risk scores 
were calculated for all samples, and patients 
were stratified into high- and low-risk groups. 
Kaplan-Meier survival analysis revealed a high-
ly significant difference in survival outcomes 
between these two groups (P = 0.0011; Figure 

Figure 5. Cell trajectory. (A) Cell trajectory with cell clusters distinguished by different colors, corresponding to previ-
ous clustering results. (B) Pseudo-time values of cell loci. Pseudo-time values reflect the developmental trajectory, 
displayed using gradient colors, where darker shades represent earlier stages and lighter shades indicate later 
stages. (C) Heat map of gene expression at branch points, with “pre-branch” indicating stages before branching, 
and “cell fate 1” and “cell fate 2” denoting the two developmental paths following the branch, corresponding to the 
tracks in ( A and B). (D) Gene expression trends at branch sites, where the X-axis represents pseudo-time values, the 
Y-axis represents expression values, points represent cells, cell clusters are differentiated by colors, and “branch” 
indicates the point at which gene expression trends diverge, influencing the development of cell trajectory in differ-
ent directions.
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9D), supporting the prognostic value of the 
model. Receiver operating characteristic (ROC) 
analysis for 3-year survival prediction yielded 
an area under the curve (AUC) of 0.585, indicat-
ing moderate predictive performance (Figure 
9E).

A risk assessment plot (Figure 9F) illustrated 
the distribution of patient survival status acro- 
ss the risk spectrum, with clear distinctions be- 
tween high- and low-risk groups. Notably, the 
expression patterns of the three model genes 
showed consistent trends with the calculated 
risk score: risk-associated genes were upregu-
lated, while protective genes were downregu-
lated as risk increased, aligning with their res- 
pective hazard ratios (HRs) in the model.

To validate the model externally, two datasets 
from the GEO database were integrated, and 
batch effects were corrected to ensure con- 
sistency across datasets (Figure 10). Survival 

analysis on the external validation cohort sh- 
owed a significant difference in survival out-
comes between the high-risk and low-risk gr- 
oups, with a log-rank p-value of 0.0043 (Figure 
9G). Furthermore, the area under the ROC 
curve (AUC) for the model in the external data-
set was 0.761, significantly surpassing the 
threshold of 0.5 (Figure 9H), further confirming 
the model’s accuracy and robustness in pre-
dicting patient prognosis.

Analysis of biological characteristics of the 
model

To further investigate the biological differences 
between the high-risk and low-risk groups, we 
performed a differential expression analysis  
of genes. After statistical screening, a total of 
1,468 differentially expressed genes (DEGs) 
were identified, including 454 upregulated 
genes and 1,014 downregulated genes (Figure 
11A, 11B). These DEGs were subjected to Ge- 

Figure 6. Cell communication. A. Heat map displaying cell communication, with colors representing the number of 
receptor-ligand pairs between clusters; larger numbers signify stronger interactions between clusters. B. Cell com-
munication network diagram, wherein the edge thickness reflects the strength of interactions between cell clusters, 
with thicker edges indicating stronger interactions. C-F. Sectional diagrams of cell communication networks cen-
tered on each cell cluster.
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Figure 7. Key genes. A. Volcano map depicting differentially expressed genes, with the X-axis representing log2 (fold 
change) and the Y-axis representing -log10 (p value-adjust). Genes are represented by dots, green denotes down-
regulated genes, red indicates up-regulated genes, and gray marks genes with no significant expression Changes. 
B. Heat map displaying differentially expressed genes. C. Survival curve illustrating the high-low risk group, with the 
top section presenting the survival curve (X-axis: survival time in days, Y-axis: survival rate), and the lower part con-
taining the risk table (X-axis: survival time, Y-axis: group labels, color-coded to match the survival curve, and table 
data indicating the number of surviving samples and their percentage in the total sample count in each group). D. 
WGCNA hierarchical clustering, with the top section showing the hierarchical clustering tree and the bottom sec-
tion displaying modules corresponding to genes, where each color represents a module, and the gray module is an 
ineffective module lacking significant co-expression characteristics. E. WGCNA phenotypic association heat map, 
revealing the association of each gene module with the disease, with correlation values within the figure and sta-
tistical significance P-values in parentheses. F. Venn diagram displaying the intersection of key genes, identifying a 
total of 15 genes for further study.
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Figure 8. Landscape of key genes. A. The X-axis represents the sample type, and the Y-axis displays the average 
expression value of key genes. In the box plot, the median value is shown as the central line, the upper and lower 
quartiles are depicted by the upper and lower frame lines, and any outlier data points are indicated as individual 
dots. The statistical analysis employed the Wilcoxon rank sum test, with significance levels denoted by symbols (* 
for less than 0.05, ** for 0.01, *** for 0.001, **** for 0.0001), and no symbol indicates no significant difference. 
B. Bubble map illustrating the correlation among key genes. Red indicates a positive correlation, while blue repre-
sents a negative correlation. C. Waterfall plot displaying key gene mutations. D. Selection of the optimal number 
of clusters. The X-axis represents the number of clusters, and the Y-axis depicts the average silhouette score. The 
optimal number of clusters is identified as the value associated with the largest silhouette score, marked by the 
red dashed line. E. Dimensionality reduction plot of k-means clustering results. The X and Y-axes represent two di-
mensions, with each point representing a patient sample assigned to one of two groups, color-coded to distinguish 
between subgroups. F. Survival curves for inter-subgroup analysis.

ne Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analy-

ses. GO analysis revealed significant enrich-
ment in 182 terms, with the top five terms in- 
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cluding extracellular matrix structural consti- 
tuent, collagen-containing extracellular matrix, 
extracellular matrix organization, extracellular 
structure organization, and external encapsu-
lating structure organization (Figure 11C). The- 
se processes are closely associated with extra-
cellular matrix activities, which may be linked to 
cancer cell metastasis.

KEGG pathway analysis identified 15 signifi-
cantly enriched pathways, with the top five in- 
cluding protein digestion and absorption, cy- 
tokine-cytokine receptor interaction, neuroac- 
tive ligand-receptor interaction, IL-17 signaling 

pathway, and ECM-receptor interaction (Figure 
11D, 11E). These pathways are predominantly 
involved in cell signaling, transduction, and pro-
tein activities, and may also implicate immune-
related processes, particularly through cyto-
kine- and chemokine-related pathways such as 
the IL-17 signaling pathway.

Further Gene Set Enrichment Analysis (GSEA) 
focused on autophagy-related pathways reve- 
aled that six pathways were significantly en- 
riched among autophagy-related genes, collec-
tively representing over 75% of the enrichment 
(Figure 12). These pathways included allograft 

Figure 9. Model. A. LASSO regression curve, depicting the convergence screening process of lasso regression for 
gene features. The X-axis shows the log lambda value, while the Y-axis represents the regression coefficient. Dif-
ferent features are depicted with lines of varying colors. B. Lambda value selection curve, used to determine the 
best lambda value for the regression model. Typically, the lowest point, indicated by the dotted line in the graph, is 
chosen as the best lambda value. C. Model forest plot, displaying genes comprising the model, hazard ratios (HR), 
95% confidence intervals for HR, HR visualization, and statistical P-values. D. Survival curve for high-low risk groups, 
with the upper section presenting the survival curve (X-axis: survival time in days, Y-axis: survival rate) and the lower 
section displaying the risk table (X-axis: survival time, Y-axis: group labels). Colors in the table correspond to the 
survival curve, and table data includes the number of surviving samples and their percentage in the total sample 
count in each group. E. ROC curve for 3-year survival prediction. F. Risk triad. The upper figure is a scatter plot of risk 
groups, with the X-axis representing samples and the Y-axis representing the risk score. High and low-risk groups 
are differentiated by color. The middle figure is a scatter plot of risk outcomes, with the X-axis representing samples 
and the Y-axis representing survival time. Survival status is distinguished by color. The lower figure is a heat map 
of model gene expression. G. Validation of survival curves with external datasets. H. Validation of ROC curves with 
external datasets. 

Figure 10. Validation data. The X-axis represents the data set, while the Y-axis represents gene expression values. 
In the box plots, the central line signifies the median value, the upper frame line represents the upper quartile, 
and the lower frame line indicates the lower quartile. A. Expression profiles without log standardization and with-
out batch effect correction. B. Expression profiles normalized by log without batch effect correction. C. Expression 
profiles corrected for batch effect without log standardization. D. Expression profiles corrected for batch effect and 
standardized by log.
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Figure 11. Biological characteristic of the model. (A) Volcano plot depicting differentially expressed genes in high 
and low-risk groups, with the x-axis representing log2 (fold change) and the y-axis representing -log10 (p value-
adjust). Genes are represented by dots, with green indicating down-regulated genes, red for up-regulated genes, 
and gray for genes with no significant expression changes. (B) Heat maps displaying differentially expressed genes. 
(C) Bar chart of GO enrichment results, with the X-axis representing -log10 (p value-adjust) and the Y-axis listing 



Autophagy-related prognostic genes for breast cancer

59 Am J Clin Exp Immunol 2025;14(2):45-67

rejection, cell cycle, EGFR tyrosine kinase inhib-
itor resistance, IL-17 signaling pathway, microR-
NAs in cancer, and proteoglycans in cancer, all 
of which align with the findings from the GO and 
KEGG analyses.

To assess the semantic similarity between GO 
terms, we calculated the semantic correlations 
among the identified genes. The results (Figure 
11F) showed that genes such as ECRG4, 
ODAM, and MUC16 exhibited a high degree of 
correlation with other genes. Additionally, we 
explored the relationship between these genes 
and the calculated risk score. Notably, genes 
like SFRP4 and FGF1 showed a highly signi- 
ficant positive correlation with the risk score 
(Figure 11G, 11H), suggesting their potential 
role as risk factors.

Protein interaction network

The STRING database was utilized to construct 
a protein-protein interaction (PPI) network. 
Initially, the CytoHubba plug-in was employed 
to identify the top 100 hub genes based on 
node degrees, facilitating the construction of 
an interaction network for these hub genes. 
Visualization of the network was performed us- 
ing Cytoscape software (Figure 13A). To gain a 
deeper understanding of the functional roles of 
these hub genes, we further investigated their 
associated miRNAs using the miRNet data-
base, which provided insights into the genetic 
background and regulatory networks of the hub 
genes (Figure 13B). The results revealed that 
these hub genes were associated with bo- 
th unique miRNAs and shared miRNA interac-
tions, suggesting their involvement in similar 
regulatory processes and reflecting analogous 
biological characteristics.

Immune infiltration analysis

To further evaluate the extent of immune infil-
tration in the high-risk and low-risk groups, we 
applied the single-sample Gene Set Enrichment 

Analysis (ssGSEA) method to calculate immune 
cell scores for 28 immune cell types across  
all samples. Visualization of the results was 
achieved through heatmaps and box plots 
(Figure 14A, 14B). The analysis revealed sig-
nificant differences in the abundance of most 
immune cell types between the two groups. 
Notably, activated CD8 T cells, central memory 
CD8 T cells, activated CD4 T cells, central me- 
mory CD4 T cells, effector memory CD4 T cells, 
T follicular helper cells, gamma delta T cells, 
type 1 T helper cells, activated B cells, imma-
ture B cells, memory B cells, natural killer cells, 
CD56bright natural killer cells, activated den-
dritic cells, plasmacytoid dendritic cells, imma-
ture dendritic cells, and mast cells exhibited 
notable differences. Among these, key cell 
types such as activated CD8 T cells and acti-
vated CD4 T cells showed highly significant dif-
ferences (P < 0.0001). These findings highlight 
substantial variations in the tumor microenvi-
ronment and immune landscape between the 
high-risk and low-risk groups.

Furthermore, we investigated the correlations 
between gene expression and immune cell in- 
filtration levels, uncovering significant and str- 
ong associations between the GZMB gene, the 
CXCL family genes, and specific immune cell 
populations (Figure 14C-F). Notably, GZMB 
showed a strong positive correlation with both 
activated CD8 T cells and activated CD4 T cells. 
Similarly, CXCL9 was positively correlated with 
activated CD8 T cells, while CXCL10 exhibited a 
positive correlation with activated CD4 T cells. 
These findings suggest that these genes may 
play crucial roles in immune regulation within 
the tumor microenvironment.

Mutation characteristics analysis of risk 
groups

The gene mutation waterfall diagram (Figure 
15A, 15B) revealed differences in the frequen-
cy of mutated genes between the high-risk and 

enriched GO terms. Only the top 20 most significant GO terms for BP, CC, and MF are displayed. (D) Bubble diagram 
illustrating KEGG enrichment results, with the X-axis representing the gene proportion (total number of genes en-
riched into a pathway/differentially expressed genes), the Y-axis listing pathway names, and dot size reflecting the 
number of genes enriched in each pathway. Color indicates the corrected P-value, with smaller P-values appearing 
redder, indicating higher significance. (E) Bar chart of KEGG enrichment results, with the X-axis indicating the num-
ber of genes and the Y-axis listing pathway names. Color represents the corrected P-value, with smaller P-values 
appearing redder, indicating higher significance. (F) Scatter plot of GO semantic similarity between genes and other 
genes, with the X-axis representing GO semantic similarity and the Y-axis showing the top 20 genes with the highest 
semantic similarity. (G, H) Scatter plot of the correlation between gene expression and risk score. The X-axis repre-
sents gene expression values, the Y-axis indicates the risk score, and the curve is the correlation fitting curve. The 
shaded area represents the confidence interval, while histograms and density curves are depicted outside the (G 
and H) correspond to SFRP4 and FGF1 genes, respectively.
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Figure 12. The axis of GSEA enrichment. The X-axis displays the rank of genes in the list of differentially expressed 
genes, where up-regulated genes are > 0 and down-regulated genes are < 0. The upper Y-axis represents the enrich-
ment fraction, and the lower Y-axis depicts the logFC value. Six biological pathways highly correlated with autophagy 
are shown: Proteoglycans in cancer, EGFR tyrosine kinase inhibitor resistance, MicroRNAs in cancer, IL-17 signaling 
pathway, allograft rejection, and cell cycle.

low-risk groups. The high-risk group exhibited a 
higher frequency of PIK3CA mutations, where-
as TP53 mutations were more prevalent in the 
low-risk group. This discrepancy may reflect dis-
tinct genomic mutation profiles between the 
two groups. Copy number variation (CNV) analy-
sis showed general concordance in the amplifi-
cation and deletion sites across the two groups, 
although variations in the extent of amplifica-

tion or deletion were observed (Figure 15C, 
15D).

To further link genomic mutation status to 
tumor characteristics, we calculated the tumor 
mutation burden (TMB) for each sample and 
visualized the results using a box plot (Figure 
15E). The high-risk group demonstrated signifi-
cantly higher TMB compared to the low-risk 
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Figure 13. A. PPI network formed by 100 hub 
genes. Node color depth represents the size 
of each gene in the original PPI network. B. 
miRNA interaction network of hub genes, 
with red nodes representing hub genes and 
green nodes representing miRNAs.
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Figure 14. A. Heat map illustrating immune infiltration, with 28 types of immune cells listed as samples. B. Box plot 
showing immunization scores, with the X-axis representing 28 types of immune cells and the Y-axis indicating the 
level of immune infiltration. Each color represents a sample group. The statistical test employed the Wilcoxon rank 
sum test, with significance levels indicated by symbols (* for less than 0.05, ** for 0.01, *** for 0.001, **** for 
0.0001), and no symbol denotes no significant difference. C-F. Scatter plots depicting the correlation between gene 
expression and immune cell infiltration. The X-axis represents gene expression values, while the Y-axis indicates the 
immune cell infiltration score. The curve represents the correlation fitting curve, and the shaded area represents 
the confidence interval. Histograms and density curves are displayed outside the figure.

group (P < 0.0001, Wilcoxon rank sum test), 
indicating a greater tumor burden and poor- 
er prognostic outcomes, consistent with earli- 
er findings. Similarly, microsatellite instability 
(MSI) analysis (Figure 15F) revealed a signifi-
cantly higher proportion of MSI-high samples in 
the high-risk group, suggesting increased mic-
rosatellite instability in this group, which aligns 
with previous observations.

Finally, to evaluate potential differences in the 
response to immunotherapy, we performed 

TIDE analysis (Figure 15G, 15H). The results 
showed no significant disparity in immunother-
apy response between the high-risk and low-
risk groups.

Establishment of a predictive nomogram

To integrate the risk model with other clinical 
factors, we constructed a nomogram that incor-
porated the risk score along with additional 
clinical variables. The results (Figure 16A) dem-
onstrated strong alignment between the risk 
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Figure 15. Mutation characteristic of the model. (A, B) Mutation characteristic of the model, (C, D) CNV peak plots, 
with the X-axis representing the variation level and the Y-axis indicating chromosome position. Red denotes am-
plification, while blue represents deletion. (C) corresponds to the high-risk group, and (D) represents the low-risk 
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score and clinical factors such as patient age, 
disease stage, and T, N, and M stages, accu-
rately reflecting prognosis.

Next, we validated the nomogram using calibra-
tion curves and clinical decision curves. The 
calibration curve showed a close match to actu-
al outcomes, with a predominantly diagonal di- 
stribution, indicating excellent predictive accu-
racy (Figure 16B). The decision curve (Figure 
16C) revealed a higher net benefit for interven-
tions based on the nomogram compared to 
simplistic approaches at 1, 3, and 5 years, un- 
derscoring the clinical relevance and utility of 
the model.

Discussion

Through single-cell analysis, we have uncov-
ered the prevalence of autophagy in breast 
cancer cells, with varying intensities across dif-
ferent cell clusters. In this study, we identified 
15 key autophagy-related genes associated 
with breast cancer survival. Unsupervised clus-
tering based on these genes delineated two 
distinct groups, which were further used to 
develop a prognostic model. This model, con-
sisting of three key genes - STX11, FEZ1, and 
ADAMTSL1 - was validated using external data-
sets. Additionally, we constructed a novel no- 
mogram that integrates the risk score with clini-
cal parameters, enhancing its clinical applica- 
bility.

Intra-tumor heterogeneity (ITH) presents a sig-
nificant challenge in cancer treatment by pro-
moting genetic variability that can drive tumor 
progression and the development of drug resis-
tance [20]. Single-cell RNA sequencing (scRNA-
seq) is instrumental in uncovering such cellular 
heterogeneity and revealing novel genetic trai- 
ts associated with clinical outcomes [21]. Our 
study utilized scRNA-seq data to identify four 
distinct cell clusters within breast cancer, each 
exhibiting unique biological characteristics, hi- 
ghlighting the substantial heterogeneity of the 
tumor. The fact that each sample contains at 
least two distinct cell clusters emphasizes the 

complexity of intra-tumoral heterogeneity. Addi- 
tionally, we observed fluctuations in autophagy 
levels across these clusters, with pseudo-tem-
poral ordering identifying 43 autophagy-related 
genes with diverse expression patterns as ce- 
lls differentiate. This dynamic analysis under-
scores the critical role of autophagy in the initi-
ation and progression of breast cancer, as well 
as its potential involvement in therapeutic res- 
ponses. Depending on the context, autophagy 
may either promote tumor cell survival or con-
tribute to drug resistance and tumor progres-
sion [22-24].

Our findings indicate that among the three 
autophagy-related genes, STX11 acts as a pro-
tective gene, while FEZ1 and ADAMTSL1 are 
associated with increased risk. STX11, encod-
ing Syntaxin 11, is enriched in immune cells 
such as natural killer cells, cytotoxic T cells,  
and monocytes/macrophages [25]. Silencing 
STX11 enhances phagocytosis of apoptotic 
cells and TNFα secretion, suggesting its antitu-
moral effect [26]. As a tumor suppressor gene, 
STX11 has been implicated in peripheral T-cell 
lymphomas [27]. FEZ1, a negative regulator of 
autophagy, forms a complex with the short 
coiled-coil protein (SCOC) and is involved in 
autophagy regulation. Knockdown of FEZ1 in- 
creases autophagic activity, promoting tumor 
progression [28, 29]. ADAMTSL1, an extracel-
lular matrix component, is involved in cell-cell 
or cell-matrix interactions and exhibits signifi-
cant differential methylation in breast cancer 
subtypes. It has shown high predictive value as 
a cancer biomarker [30], and polymorphisms in 
ADAMTSL1 have been linked to disease-free 
survival in breast cancer [31].

Despite the promising results, our study has 
some limitations. First, further evaluation of 
the prognostic effects of the risk model and 
nomogram in various molecular subtypes of 
breast cancer is needed. Second, due to the 
retrospective design of this study, certain clini-
cal data, such as the specific chemoradiothera-
py regimens used, were unavailable in the TCGA 
database, which could influence survival analy-

group. (E) Box plot displaying TMB for the high-low risk groups. (F) Bar chart indicating MSI status for the high-low 
risk groups. The X-axis represents MSI status, the Y-axis displays the number of samples, and colors differentiate 
between high and low-risk groups. (G) TIDE scores for high and low-risk groups. The X-axis represents samples, the 
Y-axis shows the score, with scores > 0 indicating samples that do not respond to immunotherapy, and scores < 0 
indicating a response. The high-risk group is displayed above, and the low-risk group is shown below. (H) Violin plot 
showing TIDE scores. “ns” signifies that the Wilcoxon rank sum test did not yield statistical significance.
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sis. Lastly, additional validation through func-
tional experiments is necessary to confirm 
these findings.

In conclusion, our study reveals that autophagy 
levels vary across breast cancer cell clusters, 
suggesting that autophagy influences tumor 
cell differentiation. We identified a novel auto- 
phagy-related prognostic risk model compris-
ing three key genes, providing a valuable tool 
for predicting patient prognosis and guiding 
clinical decision-making.
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