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Abstract: Background: Systemic lupus erythematosus (SLE) and dilated cardiomyopathy (DCM) are closely linked bi-
ologically, especially regarding immune responses. However, key biomarkers mediating the onset and development
of both diseases are still lacking. This study uses bioinformatic methods to analyse the immune microenvironment
of the ventricles of DCM patients and to search for biomarkers related to DCM and SLE. Methods: Single-cell and
bulk transcriptomic data for DCM were obtained from the GEO database, while GWAS data for SLE were obtained
from the FinnGen database. The SMR method was used to identify genetic variants in the ventricles associated with
SLE. Differential analysis was used to detect genes specific to monocyte-macrophages. Subsequently, a combina-
tion of machine learning algorithms was employed to select hub genes. Finally, small molecule drugs targeting the
hub genes were retrieved from the DGldb database. Results: Mononuclear macrophages were found to be signifi-
cantly infiltrated in dilated cardiomyopathy (DCM) samples. Seven key genes (HLA-DQB1, CD52, FCER1A, etc.) were
identified by cross-tabulation analysis, of which FCER1A was the best-performing (AUC 0.8-0.9) among ten machine
learning models. Validation of multiple datasets showed that FCER1A was highly expressed in the DCM group, was
mainly involved in the immune cell activation pathway, and strongly interacted with other cells in the myocardial
microenvironment through the MK/PROS pathway. The gene was highly expressed in the middle and late stages of
monocyte-macrophage differentiation and was associated with drugs such as benzathine penicillin polylysine and
omalizumab. Conclusion: FCER1A was found to be a key differentially expressed gene in mononuclear macrophages
in DCM myocardial tissue, and its significantly high expression was closely associated with immune cell activation
in the myocardial microenvironment, which lays a theoretical foundation for immunotherapy of DCM and requires
further clinical validation.
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single-cell sequencing analyze

Introduction can progress to severe heart failure if left
untreated [4]. Current treatment strategies for
DCM include pharmacological interventions,

device-based therapies and surgical options to

Dilated cardiomyopathy (DCM) is a common
heart muscle disease characterised by the dila-

tion and impaired contraction of the left ventri-
cle, leading to heart failure [1]. The epidemiol-
ogy of DCM suggests a prevalence of 1 in 2500
individuals, with a complex interplay of genetic
and environmental factors contributing to its
development [2]. The aetiology of DCM is multi-
faceted, encompassing viral infections, autoim-
mune diseases, and genetic mutations [3].
Clinically, DCM presents with symptoms of dys-
pnoea, fatigue and peripheral oedema, which

improve cardiac function and patient survival
[5].

Systemic lupus erythematosus (SLE) is an
autoimmune disease that affects multiple
organ systems, including the skin, joints, kid-
neys, and cardiovascular system [6]. The asso-
ciation between SLE and DCM is of significant
clinical interest, as patients with SLE are at an
increased risk of developing DCM due to shared
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pathogenic mechanisms such as chronic infla-
mmation and immune dysregulation [7].

The association between SLE and DCM is well
documented in the literature. SLE is a systemic
autoimmune disease characterised by the pro-
duction of autoantibodies that target various
organs and tissues, including the heart. The
presence of autoantibodies in SLE can lead to
the development of myocarditis, which can
progress to DCM [8]. In addition to myocarditis,
SLE can also cause other cardiovascular com-
plications, such as pericarditis, valvular heart
disease, and coronary artery disease, which
can contribute to the development of DCM [9].
The pathogenesis of DCM in the context of SLE
is thought to involve a combination of immune-
mediated myocardial damage, inflammation,
and fibrosis.

The role of bioinformatics in the study of DCM
and SLE has been increasingly recognised in
recent years. In the context of SLE, bioinformat-
ics has been used to study the genetic basis of
the disease, identify susceptibility loci, and
understand the molecular mechanisms invo-
Ived in the pathogenesis of SLE-related cardio-
vascular complications. In the context of DCM,
bioinformatics tools have been used to analyse
gene expression data, identify differentially
expressed genes, and discover novel biomark-
ers. Therefore, this paper aims to screen and
obtain biomarkers that play important func-
tions in SLE and DCM using bioinformatics
methods.

Materials and methods
Data collection

The single-cell sequencing dataset (GSE135-
337) was obtained from the Gene Expression
Omnibus (GEO) database, which included 5
DCM samples and 2 NF samples [10]. A total
of 49723 ventricular cells were included in
our analysis. After annotation, a total of 183 B
cells, 11576 endothelial cells, 23549 fibro-
blasts, 37 lymphocytes, 4371 mononuclear/
macrophages, 315 neurons cells, 414 NK cells,
5683 pericytes, 888 smooth muscle cells and
2347 T cells were obtained. The bulk RNA se-
quencing data (GSE141910, GSE57345, GSE-
116250 and GSE42955) for this study were
obtained from the Gene Expression Omnibus
(GEO) database. A total of 297 NF samples and
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321 DCM samples were included and analysed
[11-17].

SMR data

Expression Quantitative Trait Loci (eQTL) are
genetic variants or single nucleotide polymor-
phisms (SNPs) that influence gene expression
levels. These genetic loci are associated with
the expression levels of specific genes in indi-
vidual genomes. Studying eQTL provides insig-
hts into the genetic factors regulating gene
expression, revealing gene functionality and its
association with phenotypes. A key resource is
the Genotype-Tissue Expression (GTEX) project,
which collects tissue samples from a variety of
healthy individuals, including organs such as
heart, liver, kidney, lung and brain. With contri-
butions from thousands of donors, GTEx offers
extensive eQTL data, elucidating the relation-
ship between genotypes and gene expression
levels. Our analysis focuses on the GTEx V8
Heart_Left_Ventricle eQTL summary statistics
and finngen_R7_M13_SLE for SMR analysis,
which includes 538 case samples and 213145
control samples [18].

SMR analysis

In this analysis, we used summary data-bas-
ed Mendelian randomisation (SMR) to investi-
gate whether single nucleotide polymorphisms
(SNPs) influencing phenotype are mediated by
gene expression. We used summary data from
genome-wide association studies (GWAS) and
expression quantitative trait loci (eQTL) studies
to explore the association between gene ex-
pression and SLE. In addition, we performed
a Heterogeneity in Dependent Instruments
(HEIDI) test to assess whether the observed
associations were influenced by linkage dis-
equilibrium. A P_HEIDI value less than 0.05
indicates that the observed associations may
be due to two independent genetic variants in
linkage disequilibrium. Genes with P_SMR less
than 0.05 and P_HEIDI greater than 0.05 are
considered statistically significant. The analysis
was performed using version 1.3.1 of the SMR
software tool [19].

Functional enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) systems
provide structured, computable information on
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the functionality of genes and gene products.
Functional enrichment analysis was conducted
using the R package clusterProfiler [20], and
enrichment analysis results were visualised. A
significance threshold of P<0.05 was used.

Differential gene expression analysis

Differential gene expression analysis was per-
formed on the gene expression data of DCM
patients from GSE141910 using the limma
package in R [21]. Genes meeting the criteria
of adj_P.value <0.05 and |LogFC| >1 were cat-
egorised as differentially expressed. A volcano
plot was generated from this analysis using the
“ggplot” package.

Assessing the tumor immune microenviron-
ment

To comprehensively assess the extent of im-
mune infiltration, we used a variety of bioinfor-
matics algorithms, including single-sample
gene set enrichment analysis (ssGSEA), tu-
mour immune estimation resource (TIMER),
cell type identification by estimating relative
subsets of RNA transcripts (CIBERSORT),
QUANTISEQ, Estimate, microenvironment cell
population counter (MCPcounter), Xcell, and
immune and cancer cell proportion estimation
(EPIC). Note that these algorithms are en-
capsulated in the R package I0BR, which is
called directly for immune infiltration analysis
in this study [22]. Each algorithm uses unique
strategies and gene expression characteris-
tics to estimate the abundance of different
immune cell subsets. By calculating the enrich-
ment or relative abundance of marker genes,
we accurately estimated the proportion of
immune cell types in the ventricular samples.
In addition, a heat map was drawn using the
ComplexHeatmap R package [23].

Cell communication analysis

To explore crosstalk patterns between cells, we
used the R package CellChat. We first created
CellChat objects from the normalised count
matrix using a standardised workflow. Next, we
used the identify overexpressed genes and
identify overexpressed interactions functions
to process the data with default settings. We
then used the compute CommunProb, compute
CommunProb Pathway and aggregateNet func-
tions to evaluate and analyse potential ligand-
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receptor (L/R) interactions between all cells,
with a particular focus on interactions between
cell types in DCM and NF ventricular [24].

Establishment of tow-classification mechanical
learning models

When classifying the binary categories of DCM,
we employed feature selection methods to
identify key features. Following a 7:3 ratio, 232
samples from the GSE141910 dataset were
divided into training and validation groups. To
ensure consistency and efficiency in the model-
ling process, we consistently used the caret
package in R for model building [25]. This pack-
age provides a variety of modelling functions,
including gimnet, GBM, avNNet, logitboost, NB,
PAM, ctree, RF, and KNN. Minimising errors in
the model prediction process depends on
determining the optimal hyperparameters for
each algorithm. Fortunately, the caret package
simplifies this process by defaulting to a stan-
dard grid set for automatically tuning the hy-
perparameters of each algorithm. Once these
parameters are identified, they are applied to
the down-sampled training data set to fit the
model parameters. We then evaluate the per-
formance of the model on the test dataset. To
ensure the accuracy of the model training, we
use 10 cross-validation to select the best
parameter set, providing a solid foundation for
the final predictions.

Statistical analysis

Statistical analyses were performed for the
significance of differences and correlations
observed in the study. All data are expressed
as mean * standard deviation (SD). Pearson
correlation analysis was performed to explore
relationships between variables. Statistical
analysis and scientific plotting were performed
using R Studio (version 4.3.3). A significance
level of P<0.05 was considered statistically
significant.

Results

The crucial role of mononuclear macrophages
in the development of DCM

All data sources for the article are shown in
Table 1. After preliminary processing, the
UMAP results of the cells in each sample are
shown in Figure 1A, indicating no obvious batch
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Table 1. Data sources

Dataset Category N sample Data_type Population

GSE183852 Transmittal LV Apex NF:2 scRNA-seq European
DCM:5

GSE141910 Left ventricle NF:166 RNA-seq European
DCM:166

GSE57345 Left ventricle NF:136 Microarray European
DCM:82

GSE116250 Left ventricle NF:14 RNA-seq European
DCM:37

GSE42955 Left ventricle NF:5 Microarray European
DCM:12

Finngen_R7_M13_SLE Binary Case:538 Europea

Comtrol:213145

effects within the samples. Figure 1B shows
that after dimension reduction and clustering,
all cells can be distinctly divided into 26 clus-
ters with clear differences between them. The
annotated cell UMAP results are shown in
Figure 1C, with the marker genes expressed by
relevant cells as depicted in Figure 1D. Mono-
cytes and macrophages are grouped together
for ease of further investigation. The enrich-
ment analysis of marker genes for each cell
type is shown in Figure 1E, indicating that the
marker genes of each cell subset can be clearly
distinguished, and the pathways enriched by
cell subsets are essentially similar to those
recognised by cell subsets such as B cells: B
cell differentiation; mononuclear macrophages:
immune response, bacterial defence and com-
plement activation. The proportions of cell
types in the ventricular cells are shown in
Figure 1F, 1G and show that in the ventricle,
fibroblasts are significantly decreased in DCM,
whereas mononuclear macrophages are sig-
nificantly increased, suggesting that mononu-
clear macrophages may play an important role
in the development of DCM. For key pathways
involved in the development of DCM, such as
NOTCH, INTRINSIC_APOPTOTIC and TGFB, the
Addmodelscore algorithm is used for scoring,
and their enrichment in various cell popula-
tions is shown in Figure 1H, indicating that
mononuclear macrophages show high expres-
sion in all three pathways, suggesting their
important role in the development of DCM.

Identification of key genes

For the differential analysis of DCM and NF
samples from the GSE183852 dataset, the
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results are shown in Figure 2A. Based on the
criteria of avg_log2FC >1 and p_val_adj <0.05,
2653 differentially expressed genes were iden-
tified in the DCM group; to identify the charac-
teristic genes of mononuclear macrophages,
we performed differential analysis based on
different cell types. The results are shown in
Figure 2B. Based on the criteria of avg_log2-
FC >1 and p_val_adj <0.05, 1874 characteris-
tic genes highly expressed in mononuclear
macrophages were identified; to identify SLE-
related genes, we conducted an MR analysis
based on summary data (SMR analysis) for
SLE. By summarising the results of genome-
wide association studies (GWAS), we applied a
specific MR analysis technique, summary data
SMR analysis. After SVR analysis, the Man-
hattan plot of SLE-related genes is obtained
(Figure 2C), and 210 SLE-related genes were
selected based on the criteria of p_SMR <0.05
and p_HEID >0.05. By taking the intersection
of differentially expressed genes in the DCM
group, characteristic genes of mononuclear
macrophages, and SLE-related genes, a total
of 7 key intersected genes were obtained
for subsequent analysis, namely HLA-DQB1,
CD52, FCER1A, HLA-DQB2, WDFY4, CSGALN-
ACT2, and NCR3LG1 (Figure 2D).

Hub gene selection using multiple machine
learning algorithms

To identify the hub genes that play a significant
role in DCM from the above seven intersected
genes, we used several machine learning algo-
rithms. We used DCM and NF as target vari-
ables and the expression of the intersected
genes as independent variables to build and
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Figure 1. Deciphering the microenvironment of DCM ventricular cells. A. UMAP plot of cells grouped by sample condition. B. UMAP plot of cells grouped by cluster
condition. C. UMAP plot of cell clusters. D. Bubble plot of cell cluster marker gene annotations. E. Heatmap of cell cluster marker genes and enrichment. F. Stacked
bar plot of cell subset proportions grouped by NF and DCM. G. Distribution of cell subset proportions. H. Enrichment of DCM-related pathways in cell clusters.
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Figure 2. Identification of key genes in DCM macrophages and SLE. A. Identification of differential genes grouped by DCM and NF. B. Identification of key genes in
macrophages grouped by cell subset. C. SMR analysis of SLE genetic variant sites. D. Intersection of differential genes, key macrophage genes, and key SLE genetic
variant sites.
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evaluate models to estimate the importance of
the variables. Initially, we observed the expres-
sion patterns of intersected genes between
DCM and NF groups. As shown in Figure 3A,
FCER1A, CD52, HLA-DQB1, HLA-DQB2, and
WDFY4 were highly expressed in the DCM
group, while CSGALNACT2 and NCR3LG1 were
highly expressed in the NF group. The efficacy
metrics of the ten models are shown in Figure
3B, indicating that the glmnet model had the
highest ROC, sensitivity, and specificity, with an
ROC metric greater than 0.9 in the training set,
suggesting its excellent performance (Figure
3C). Subsequently, we examined the variable
importance ranking in five models, as shown in
Figure 3D. Notably, the FCER1A gene showed
the best performance in all models, indicating
the highest variable importance level. The cali-
bration curve in the validation set, shown in
Figure 3E, suggests an increasing trend in the
observed number of events as the bin midpoint
increases. Moreover, for the PAM and gimnet
models, the AUC in both the validation and
training sets was greater than 0.85, indicating
the good diagnostic efficacy of the trained mod-
els (Figure 3F).

Feature analysis of FCER1A

We observed the differential expression of
FCER1A in several DCM and NF datasets. As
shown in Figure 4A, the gene was significantly
highly expressed in DCM samples in the
GSE141910, GSE116250, and GSE57345
datasets (P<0.05). In addition, FCER1A also
showed a trend towards higher expression
in the DCM group in the GSE42955 dataset.
The single cell expression UMAP results for
FCERZ1A are shown in Figure 4B, indicating its
primary expression in mononuclear macro-
phages, with a significant difference in expres-
sion in other cell types, further validating it as
a characteristic gene of mononuclear macro-
phages (P<0.05). Moreover, FCER1A also
showed higher expression in the DCM group
compared to the NF group in single-cell data,
confirming the expression characteristics of
FCER1A obtained from conventional transcrip-
tomics (Figure 4C, 4D). Subsequently, regard-
ing the effector site situation of FCER1A in SLE,
we found that FCER1A is positively correlated
with the risk of developing SLE and can serve
as a risk factor for the disease (Figure 4E). The
site localisation situation further confirms that
FCER1A can act as an independent negative
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factor promoting the development of SLE
(Figure 4F).

Functional analysis of FCER1A differences

To explore the pathways through which FCER1A
functions in DCM, we selected the DCM sam-
ples in the GSE141910 dataset and stratified
them based on the top and bottom 30% ex-
pression of this gene. The PCA results after
stratification are shown in Figure 5A and show
a clear heterogeneity between the two gro-
ups. Using FCER1A as the control group and
setting |log2FC| >1 and adj_pvalue <0.05 as
the threshold, a total of 265 upregulated dif-
ferential genes and 84 downregulated differ-
ential genes were identified as shown in Figure
5B. The heat map shows that the obtained dif-
ferential genes can be significantly clustered
into two categories (Clusterl and Cluster2)
under unsupervised clustering conditions, and
overall, the expression trends of genes in each
cluster are markedly opposite (Figure 5C). The
GO and KEGG enrichment analysis results
for upregulated genes are shown in Figure 5D,
5E, indicating that FCER1A primarily functions
by upregulating immune-related pathways
such as chemokine receptor activity, lympho-
cyte differentiation, and PI3K. The GO and
KEGG enrichment analysis results for downreg-
ulated genes are shown in Figure 5F, 5G, indi-
cating that in DCM patients with low expres-
sion of FCER1A, one-carbon unit, oxygen, and
lipid transport can be upregulated. And the
GSEA results are shown in Figure 5H-K. Over-
all, upregulated differential genes are mainly
enriched in immune activation-related path-
ways, such as the differentiation and develop-
ment of T and B cells, chemokine communica-
tion, Th17 activation, and immune regulatory
interactions. Downregulated differential genes
are mainly enriched in substance metabolism
and transport-related pathways, such as ATP
synthesis coupled to electron transport, pep-
tide chain elongation and respiratory chain
electron transport.

Immune microenvironment decoding

Firstly, we observed the differences in immune
cell composition between the ventricles of DCM
patients and NF normal samples. The results,
as shown in Figure 6A, indicate that most
immune cells in the ventricles of DCM patients
are highly infiltrated. Compared to the FCER1A_
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Figure 3. Hub gene selection by multiple machine learning methods. A. Expression of intersection genes in DCM and NF groups. B. Sensitivity, specificity, and ROC
curve analysis of multiple machine learning algorithms. C. GLMnet model situation. D. Variable importance in models under five machine learning algorithms. E.
Calibration curve of the model within the test set. F. ROC curves of the PAM and GLMnet algorithms within the test and validation sets.
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Figure 5. Functional analysis of FCER1A in DCM. A. PCA dimension reduction of samples grouped by the top and
bottom 30% of FCER1A expression in DCM. B. Volcano plot of differential analysis between FCER1A_High and
FCER1A_Low groups. C. Expression heatmap of differential genes selected by abs(logFC) >1 and adj.pvalue <0.05.
D. GO enrichment of up-regulated differential genes. E. KEGG enrichment of up-regulated differential genes. F. GO
enrichment bubble chart of down-regulated differential genes. G. KEGG enrichment bubble chart of downregulated
differential genes. H-K. GSEA enrichment bar chart of differential genes in GO (H), KEGG (1), Reactome (J) and Msidb

(K) databases.

Low group, the FCERLA_High group has signifi-
cantly higher infiltration levels of NK cells,
CD4+ T cells, CD8+ T cells, B cells, and mono-
cytes. Regarding macrophage infiltration, we
found that the FCER1A_High group has a high-
er infiltration level, such as Macrophage_xCell
and Macrophage_quantiseq (Figure 6B). In
addition, we observed that various immune-
related features are highly expressed in the
DCM group compared to the NF group ventricu-
lar cells, with features such as TNF, TIP, ICB,
MHC molecules, HLA and others showing
higher expression (Figure 6C). For the FCER1A_
High group, we found that this group down-
regulates the expression of several immune-
related features, such as TIP, MDSC, BCR, and
TCR (Figure 6D).

FCER1A+ macrophage microenvironment
analysis

To observe the function of FCER1A- mediat-
ed mononuclear macrophages in the ventricu-
lar microenvironment, we divided them into
FCER1A+ macrophages and FCER1A- macro-
phages. The overall interaction strength is
shown in Figure 7A, 7B, suggesting that
FCER1A+ macrophages have stronger interac-
tion intensity compared to FCER1A- macro-
phages, such as NK cells, fibroblasts and lym-
phocytes. Figure 7C shows the difference in
the receptor-ligand level enriched by various
cell types, indicating that FCER1A- Macroph-
age has the strongest ability as a signal receiv-
er. In terms of signal emission capability, and
FCER1A+ Macrophage has a stronger enrich-
ment level in the PROS, MK, CXCL, and GAS
signal pathways compared to FCER1A- Macro-
phage (Figure 7D). For the two significantly dif-
ferent pathways, namely MK and PROS, the
analysis results are shown in Figure 7E, 7F,
indicating that in the MK pathway, FCER1A+
Macrophage has a strong interaction with NK
cells and other cell groups, while in the PROS
pathway, FCER1A- Macrophage has no interac-
tion with other cell types, while FCER1A+
Macrophage has an interaction with NK cells
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and peripheral cells. To observe the rela-
tionship between the expression of FCER1A
and macrophage differentiation, we perform-
ed pseudotime analysis on macrophages. The
results are shown in Figure 7G, which indicates
that FCER1A is mainly significantly expressed
in the middle and late stages of macrophage
differentiation. Figure 7H shows that FCER1A,
which is co-expressed in the middle and late
stages of macrophage differentiation, is mainly
enriched in the regulation of protein activity
and type Il interferon production.

FCER1A small molecule drug screening

To identify small-molecule drugs targeting
FCER1A. We used the DGldb database to
search for drugs targeting the FCER1A gene,
the results are shown in Figure 8A, indicating
that a total of two approved drugs were ob-
tained, namely BENZYLPENICILLOYL POLY-
LYSINE and OMALIZUMAB. The former is mainly
used for treating allergic reactions and as a
diagnostic agent, while the latter is a recombi-
nant humanized monoclonal antibody targeting
anti-IgE, mainly used for treating moderate to
severe asthma. In addition, we also use a net-
work diagram to show the interaction relation-
ship between the target FCER1A and small mol-
ecule drugs (Figure 8B).

Discussion

Heart failure is a complex clinical syndrome
caused by the dysfunction of various biological
processes leading to cardiac dysfunction [26].
In this study, we started from a single cell per-
spective and found that mononuclear macro-
phages in the DCM group showed significantly
increased infiltration compared to NF samples.
Based on this finding, we identified specific
expression genes in mononuclear macropha-
ges and differential genes in the DCM group
compared to the NF group. Additionally, using
SMR analysis, we obtained significant genetic
variants that are highly associated with the
occurrence of SLE. The seven overlapping
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Figure 6. Decoding of the immune microenvironment associated with DCM and FCER1A. A. Heatmap of immune cell
infiltration grouped by DCM and NF. B. Heatmap of immune cell infiltration grouped by high and low FCER1A expres-
sion. C. Heatmap of immune-related feature expression grouped by DCM and NF. D. Heatmap of immune-related

feature expression grouped by high and low FCER1A expression.

genes were used for modelling. Interestingly,
on the one hand, the models built with the

intersecting genes performed very well in both
the training and validation sets, with AUCs
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Figure 7. Analysis of the cellular microenvironment of FCER1A+ macrophages in DCM. A. Network graph of interaction strengths between different cell clusters. B.
Network plot of interaction strengths between FCER1A+ and FCER1A- macrophages and other cells. C. Heat map of differences in receptor-ligand interactions be-
tween different cell clusters. D. Differences in the entry and exit situations of different cell clusters in the MK and PROS pathways. E. Network and chord diagrams
of cell entry and exit in the MK pathway. F. Network and chord diagrams of cell entry and exit in the PROS pathway. G. Analysis of the differentiation pathway of
macrophages in DCM and the expression pathway of FCER1A. H. Heatmap of differential expression of pseudotime genes during differentiation.
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greater than 0.8 in the training set and calibra-
tion curves close to the ideal line in the valida-
tion set. On the other hand, FCER1A showed
the best performance in multiple models, mak-
ing it the most critical gene identified in this
study for the occurrence of diseases such as
SLE and DCM.

The Fc fragment of IgE, high-affinity |, receptor
for; alpha polypeptide (FCER1A) gene encodes
the alpha subunit of the high-affinity IgE recep-
tor (FceRl), which plays a critical role in immune
responses [27]. This receptor is predominantly
expressed on the surface of mast cells and
basophils and mediates allergic reactions upon
binding to IgE [28]. Recent studies have also
implicated FCER1A in the pathogenesis of
SLE [29]. In mononuclear phagocytes, such as
macrophages and dendritic cells, FCER1A has
been shown to influence antigen processing
and presentation, as well as cytokine produc-
tion [30]. In our study, the SMR result further
supports the role of FCER1A in lupus by identi-
fying polymorphisms in the FCER1A gene that
are associated with the risk of developing SLE.

FCER1A encodes the alpha subunit of the high-
affinity IgE receptor (FceRl), which is primarily
expressed on mast cells and basophils [31-33].
It binds IgE antibodies and triggers cell activa-
tion upon allergen recognition, leading to the
release of inflammatory mediators (e.g. hista-
mine) that drive allergic responses [31-33]. This
gene plays a key role in type | hypersensitivity
(e.g., asthma, anaphylaxis) and anti-parasitic
immunity, making it a potential therapeutic tar-
get for allergic diseases. Genetic variations in
FCER1A are associated with allergy suscep-
tibility [31-33]. Through our analysis, we found
that FCER1A plays a very important role in DCM
patients. First, FCER1A is highly expressed in
several conventional transcriptome datasets in
DCM patients, which is also confirmed at the
single-cell level. Second, FCER1A is highly
expressed in macrophages and can upregulate
several immune-related pathways, such as
PI3K, NFKB, Toll-like receptors, and multiple
immune cell activation pathways. Third, high
expression of FCER1A is closely associated
with high infiltration of various immune cells
into the ventricle, such as NK cells, T cells, DC
cells and macrophages. Fourth, within the ven-
tricular microenvironment, FCER1A+ macro-
phages have stronger interactions with other
cells compared to FCER1A- macrophages,
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mainly enriched in the MF and PROS pathways.
Fifth, the FCER1A gene is mainly expressed in
the middle and late stages of mononuclear
macrophage differentiation, and its combined
expression trend with other genes may enrich
pathways such as type Il interferon regulation.
Sixth, FCER1A mainly serves as a risk factor
for the occurrence of SLE, and its increased
expression significantly increases the possi-
bility of SLE. Based on the above findings, we
have fully demonstrated the key role of the
FCER1A gene in the DCM ventricular microenvi-
ronment and obtained small molecule drugs
targeting FCER1A, such as BENZYLPENICILLO-
YL POLYLYSINE and OMALIZUMAB, providing
important guidance for clinical medication. In
conclusion, our study provides new insights
into the link between SLE and DCM and shows
that FCER1A may be a potential key factor in
both diseases, playing an important role in the
immune response.

Conclusions

In conclusion, mononuclear macrophages are
significantly increased in DCM samples com-
pared to NF samples, and the FCER1A gene is
significantly highly expressed in mononuclear
macrophages. Its high expression in DCM may
upregulate related pathways represented by
immune activation and enhance the interac-
tion strength between mononuclear macro-
phages and other ventricular cells to play an
important function. Considering the significant
role of FCER1A in DCM, we have obtained its
targeted drugs, providing hope for clinical drugs
to treat DCM.
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