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Abstract: Background: Systemic lupus erythematosus (SLE) and dilated cardiomyopathy (DCM) are closely linked bi-
ologically, especially regarding immune responses. However, key biomarkers mediating the onset and development 
of both diseases are still lacking. This study uses bioinformatic methods to analyse the immune microenvironment 
of the ventricles of DCM patients and to search for biomarkers related to DCM and SLE. Methods: Single-cell and 
bulk transcriptomic data for DCM were obtained from the GEO database, while GWAS data for SLE were obtained 
from the FinnGen database. The SMR method was used to identify genetic variants in the ventricles associated with 
SLE. Differential analysis was used to detect genes specific to monocyte-macrophages. Subsequently, a combina-
tion of machine learning algorithms was employed to select hub genes. Finally, small molecule drugs targeting the 
hub genes were retrieved from the DGIdb database. Results: Mononuclear macrophages were found to be signifi-
cantly infiltrated in dilated cardiomyopathy (DCM) samples. Seven key genes (HLA-DQB1, CD52, FCER1A, etc.) were 
identified by cross-tabulation analysis, of which FCER1A was the best-performing (AUC 0.8-0.9) among ten machine 
learning models. Validation of multiple datasets showed that FCER1A was highly expressed in the DCM group, was 
mainly involved in the immune cell activation pathway, and strongly interacted with other cells in the myocardial 
microenvironment through the MK/PROS pathway. The gene was highly expressed in the middle and late stages of 
monocyte-macrophage differentiation and was associated with drugs such as benzathine penicillin polylysine and 
omalizumab. Conclusion: FCER1A was found to be a key differentially expressed gene in mononuclear macrophages 
in DCM myocardial tissue, and its significantly high expression was closely associated with immune cell activation 
in the myocardial microenvironment, which lays a theoretical foundation for immunotherapy of DCM and requires 
further clinical validation.

Keywords: Dilated cardiomyopathy, immune infiltration, diagnosis, bioinformatics, mononuclear macrophage, 
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Introduction

Dilated cardiomyopathy (DCM) is a common 
heart muscle disease characterised by the dila-
tion and impaired contraction of the left ventri-
cle, leading to heart failure [1]. The epidemiol-
ogy of DCM suggests a prevalence of 1 in 2500 
individuals, with a complex interplay of genetic 
and environmental factors contributing to its 
development [2]. The aetiology of DCM is multi-
faceted, encompassing viral infections, autoim-
mune diseases, and genetic mutations [3]. 
Clinically, DCM presents with symptoms of dys-
pnoea, fatigue and peripheral oedema, which 

can progress to severe heart failure if left 
untreated [4]. Current treatment strategies for 
DCM include pharmacological interventions, 
device-based therapies and surgical options to 
improve cardiac function and patient survival 
[5].

Systemic lupus erythematosus (SLE) is an  
autoimmune disease that affects multiple 
organ systems, including the skin, joints, kid-
neys, and cardiovascular system [6]. The asso-
ciation between SLE and DCM is of significant 
clinical interest, as patients with SLE are at an 
increased risk of developing DCM due to shared 
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pathogenic mechanisms such as chronic infla- 
mmation and immune dysregulation [7].

The association between SLE and DCM is well 
documented in the literature. SLE is a systemic 
autoimmune disease characterised by the pro-
duction of autoantibodies that target various 
organs and tissues, including the heart. The 
presence of autoantibodies in SLE can lead to 
the development of myocarditis, which can 
progress to DCM [8]. In addition to myocarditis, 
SLE can also cause other cardiovascular com-
plications, such as pericarditis, valvular heart 
disease, and coronary artery disease, which 
can contribute to the development of DCM [9]. 
The pathogenesis of DCM in the context of SLE 
is thought to involve a combination of immune-
mediated myocardial damage, inflammation, 
and fibrosis.

The role of bioinformatics in the study of DCM 
and SLE has been increasingly recognised in 
recent years. In the context of SLE, bioinformat-
ics has been used to study the genetic basis of 
the disease, identify susceptibility loci, and 
understand the molecular mechanisms invo- 
lved in the pathogenesis of SLE-related cardio-
vascular complications. In the context of DCM, 
bioinformatics tools have been used to analyse 
gene expression data, identify differentially 
expressed genes, and discover novel biomark-
ers. Therefore, this paper aims to screen and 
obtain biomarkers that play important func-
tions in SLE and DCM using bioinformatics 
methods.

Materials and methods

Data collection

The single-cell sequencing dataset (GSE135- 
337) was obtained from the Gene Expression 
Omnibus (GEO) database, which included 5 
DCM samples and 2 NF samples [10]. A total  
of 49723 ventricular cells were included in  
our analysis. After annotation, a total of 183 B 
cells, 11576 endothelial cells, 23549 fibro-
blasts, 37 lymphocytes, 4371 mononuclear/
macrophages, 315 neurons cells, 414 NK cells, 
5683 pericytes, 888 smooth muscle cells and 
2347 T cells were obtained. The bulk RNA se- 
quencing data (GSE141910, GSE57345, GSE- 
116250 and GSE42955) for this study were 
obtained from the Gene Expression Omnibus 
(GEO) database. A total of 297 NF samples and 

321 DCM samples were included and analysed 
[11-17].

SMR data

Expression Quantitative Trait Loci (eQTL) are 
genetic variants or single nucleotide polymor-
phisms (SNPs) that influence gene expression 
levels. These genetic loci are associated with 
the expression levels of specific genes in indi-
vidual genomes. Studying eQTL provides insig- 
hts into the genetic factors regulating gene 
expression, revealing gene functionality and its 
association with phenotypes. A key resource is 
the Genotype-Tissue Expression (GTEx) project, 
which collects tissue samples from a variety of 
healthy individuals, including organs such as 
heart, liver, kidney, lung and brain. With contri-
butions from thousands of donors, GTEx offers 
extensive eQTL data, elucidating the relation-
ship between genotypes and gene expression 
levels. Our analysis focuses on the GTEx V8 
Heart_Left_Ventricle eQTL summary statistics 
and finngen_R7_M13_SLE for SMR analysis, 
which includes 538 case samples and 213145 
control samples [18].

SMR analysis

In this analysis, we used summary data-bas- 
ed Mendelian randomisation (SMR) to investi-
gate whether single nucleotide polymorphisms 
(SNPs) influencing phenotype are mediated by 
gene expression. We used summary data from 
genome-wide association studies (GWAS) and 
expression quantitative trait loci (eQTL) studies 
to explore the association between gene ex- 
pression and SLE. In addition, we performed  
a Heterogeneity in Dependent Instruments 
(HEIDI) test to assess whether the observed 
associations were influenced by linkage dis-
equilibrium. A P_HEIDI value less than 0.05 
indicates that the observed associations may 
be due to two independent genetic variants in 
linkage disequilibrium. Genes with P_SMR less 
than 0.05 and P_HEIDI greater than 0.05 are 
considered statistically significant. The analysis 
was performed using version 1.3.1 of the SMR 
software tool [19].

Functional enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclope- 
dia of Genes and Genomes (KEGG) systems 
provide structured, computable information on 
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the functionality of genes and gene products. 
Functional enrichment analysis was conducted 
using the R package clusterProfiler [20], and 
enrichment analysis results were visualised. A 
significance threshold of P<0.05 was used.

Differential gene expression analysis

Differential gene expression analysis was per-
formed on the gene expression data of DCM 
patients from GSE141910 using the limma 
package in R [21]. Genes meeting the criteria  
of adj_P.value <0.05 and |LogFC| >1 were cat-
egorised as differentially expressed. A volcano 
plot was generated from this analysis using the 
“ggplot” package.

Assessing the tumor immune microenviron-
ment

To comprehensively assess the extent of im- 
mune infiltration, we used a variety of bioinfor-
matics algorithms, including single-sample 
gene set enrichment analysis (ssGSEA), tu- 
mour immune estimation resource (TIMER),  
cell type identification by estimating relative 
subsets of RNA transcripts (CIBERSORT), 
QUANTISEQ, Estimate, microenvironment cell 
population counter (MCPcounter), Xcell, and 
immune and cancer cell proportion estimation 
(EPIC). Note that these algorithms are en- 
capsulated in the R package IOBR, which is 
called directly for immune infiltration analysis  
in this study [22]. Each algorithm uses unique 
strategies and gene expression characteris- 
tics to estimate the abundance of different 
immune cell subsets. By calculating the enrich-
ment or relative abundance of marker genes, 
we accurately estimated the proportion of 
immune cell types in the ventricular samples. 
In addition, a heat map was drawn using the 
ComplexHeatmap R package [23].

Cell communication analysis

To explore crosstalk patterns between cells, we 
used the R package CellChat. We first created 
CellChat objects from the normalised count 
matrix using a standardised workflow. Next, we 
used the identify overexpressed genes and 
identify overexpressed interactions functions 
to process the data with default settings. We 
then used the compute CommunProb, compute 
CommunProb Pathway and aggregateNet func-
tions to evaluate and analyse potential ligand-

receptor (L/R) interactions between all cells, 
with a particular focus on interactions between 
cell types in DCM and NF ventricular [24].

Establishment of tow-classification mechanical 
learning models

When classifying the binary categories of DCM, 
we employed feature selection methods to 
identify key features. Following a 7:3 ratio, 232 
samples from the GSE141910 dataset were 
divided into training and validation groups. To 
ensure consistency and efficiency in the model-
ling process, we consistently used the caret 
package in R for model building [25]. This pack-
age provides a variety of modelling functions, 
including glmnet, GBM, avNNet, logitboost, NB, 
PAM, ctree, RF, and KNN. Minimising errors in 
the model prediction process depends on 
determining the optimal hyperparameters for 
each algorithm. Fortunately, the caret package 
simplifies this process by defaulting to a stan-
dard grid set for automatically tuning the hy- 
perparameters of each algorithm. Once these 
parameters are identified, they are applied to 
the down-sampled training data set to fit the 
model parameters. We then evaluate the per-
formance of the model on the test dataset. To 
ensure the accuracy of the model training, we 
use 10 cross-validation to select the best 
parameter set, providing a solid foundation for 
the final predictions.

Statistical analysis

Statistical analyses were performed for the  
significance of differences and correlations 
observed in the study. All data are expressed 
as mean ± standard deviation (SD). Pearson 
correlation analysis was performed to explore 
relationships between variables. Statistical 
analysis and scientific plotting were performed 
using R Studio (version 4.3.3). A significance 
level of P<0.05 was considered statistically 
significant.

Results

The crucial role of mononuclear macrophages 
in the development of DCM

All data sources for the article are shown in 
Table 1. After preliminary processing, the  
UMAP results of the cells in each sample are 
shown in Figure 1A, indicating no obvious batch 
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effects within the samples. Figure 1B shows 
that after dimension reduction and clustering, 
all cells can be distinctly divided into 26 clus-
ters with clear differences between them. The 
annotated cell UMAP results are shown in 
Figure 1C, with the marker genes expressed by 
relevant cells as depicted in Figure 1D. Mono- 
cytes and macrophages are grouped together 
for ease of further investigation. The enrich-
ment analysis of marker genes for each cell 
type is shown in Figure 1E, indicating that the 
marker genes of each cell subset can be clearly 
distinguished, and the pathways enriched by 
cell subsets are essentially similar to those  
recognised by cell subsets such as B cells: B 
cell differentiation; mononuclear macrophages: 
immune response, bacterial defence and com-
plement activation. The proportions of cell 
types in the ventricular cells are shown in 
Figure 1F, 1G and show that in the ventricle, 
fibroblasts are significantly decreased in DCM, 
whereas mononuclear macrophages are sig- 
nificantly increased, suggesting that mononu-
clear macrophages may play an important role 
in the development of DCM. For key pathways 
involved in the development of DCM, such as 
NOTCH, INTRINSIC_APOPTOTIC and TGFB, the 
Addmodelscore algorithm is used for scoring, 
and their enrichment in various cell popula- 
tions is shown in Figure 1H, indicating that 
mononuclear macrophages show high expres-
sion in all three pathways, suggesting their 
important role in the development of DCM.

Identification of key genes

For the differential analysis of DCM and NF 
samples from the GSE183852 dataset, the 

results are shown in Figure 2A. Based on the 
criteria of avg_log2FC >1 and p_val_adj <0.05, 
2653 differentially expressed genes were iden-
tified in the DCM group; to identify the charac-
teristic genes of mononuclear macrophages, 
we performed differential analysis based on 
different cell types. The results are shown in 
Figure 2B. Based on the criteria of avg_log2- 
FC >1 and p_val_adj <0.05, 1874 characteris-
tic genes highly expressed in mononuclear 
macrophages were identified; to identify SLE-
related genes, we conducted an MR analysis 
based on summary data (SMR analysis) for 
SLE. By summarising the results of genome-
wide association studies (GWAS), we applied a 
specific MR analysis technique, summary data 
SMR analysis. After SVR analysis, the Man- 
hattan plot of SLE-related genes is obtained 
(Figure 2C), and 210 SLE-related genes were 
selected based on the criteria of p_SMR <0.05 
and p_HEID >0.05. By taking the intersection  
of differentially expressed genes in the DCM 
group, characteristic genes of mononuclear 
macrophages, and SLE-related genes, a total  
of 7 key intersected genes were obtained  
for subsequent analysis, namely HLA-DQB1, 
CD52, FCER1A, HLA-DQB2, WDFY4, CSGALN- 
ACT2, and NCR3LG1 (Figure 2D).

Hub gene selection using multiple machine 
learning algorithms

To identify the hub genes that play a significant 
role in DCM from the above seven intersected 
genes, we used several machine learning algo-
rithms. We used DCM and NF as target vari-
ables and the expression of the intersected 
genes as independent variables to build and 

Table 1. Data sources
Dataset Category N sample Data_type Population
GSE183852 Transmittal LV Apex NF:2

DCM:5
scRNA-seq European

GSE141910 Left ventricle NF:166
DCM:166

RNA-seq European

GSE57345 Left ventricle NF:136
DCM:82

Microarray European

GSE116250 Left ventricle NF:14
DCM:37

RNA-seq European

GSE42955 Left ventricle NF:5
DCM:12

Microarray European

Finngen_R7_M13_SLE Binary Case:538
Comtrol:213145

Europea
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Figure 1. Deciphering the microenvironment of DCM ventricular cells. A. UMAP plot of cells grouped by sample condition. B. UMAP plot of cells grouped by cluster 
condition. C. UMAP plot of cell clusters. D. Bubble plot of cell cluster marker gene annotations. E. Heatmap of cell cluster marker genes and enrichment. F. Stacked 
bar plot of cell subset proportions grouped by NF and DCM. G. Distribution of cell subset proportions. H. Enrichment of DCM-related pathways in cell clusters.
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Figure 2. Identification of key genes in DCM macrophages and SLE. A. Identification of differential genes grouped by DCM and NF. B. Identification of key genes in 
macrophages grouped by cell subset. C. SMR analysis of SLE genetic variant sites. D. Intersection of differential genes, key macrophage genes, and key SLE genetic 
variant sites.
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evaluate models to estimate the importance of 
the variables. Initially, we observed the expres-
sion patterns of intersected genes between 
DCM and NF groups. As shown in Figure 3A, 
FCER1A, CD52, HLA-DQB1, HLA-DQB2, and 
WDFY4 were highly expressed in the DCM 
group, while CSGALNACT2 and NCR3LG1 were 
highly expressed in the NF group. The efficacy 
metrics of the ten models are shown in Figure 
3B, indicating that the glmnet model had the 
highest ROC, sensitivity, and specificity, with an 
ROC metric greater than 0.9 in the training set, 
suggesting its excellent performance (Figure 
3C). Subsequently, we examined the variable 
importance ranking in five models, as shown in 
Figure 3D. Notably, the FCER1A gene showed 
the best performance in all models, indicating 
the highest variable importance level. The cali-
bration curve in the validation set, shown in 
Figure 3E, suggests an increasing trend in the 
observed number of events as the bin midpoint 
increases. Moreover, for the PAM and glmnet 
models, the AUC in both the validation and 
training sets was greater than 0.85, indicating 
the good diagnostic efficacy of the trained mod-
els (Figure 3F).

Feature analysis of FCER1A

We observed the differential expression of 
FCER1A in several DCM and NF datasets. As 
shown in Figure 4A, the gene was significantly 
highly expressed in DCM samples in the 
GSE141910, GSE116250, and GSE57345 
datasets (P<0.05). In addition, FCER1A also 
showed a trend towards higher expression  
in the DCM group in the GSE42955 dataset. 
The single cell expression UMAP results for 
FCER1A are shown in Figure 4B, indicating its 
primary expression in mononuclear macro-
phages, with a significant difference in expres-
sion in other cell types, further validating it as  
a characteristic gene of mononuclear macro-
phages (P<0.05). Moreover, FCER1A also 
showed higher expression in the DCM group 
compared to the NF group in single-cell data, 
confirming the expression characteristics of 
FCER1A obtained from conventional transcrip-
tomics (Figure 4C, 4D). Subsequently, regard-
ing the effector site situation of FCER1A in SLE, 
we found that FCER1A is positively correlated 
with the risk of developing SLE and can serve 
as a risk factor for the disease (Figure 4E). The 
site localisation situation further confirms that 
FCER1A can act as an independent negative 

factor promoting the development of SLE 
(Figure 4F).

Functional analysis of FCER1A differences

To explore the pathways through which FCER1A 
functions in DCM, we selected the DCM sam-
ples in the GSE141910 dataset and stratified 
them based on the top and bottom 30% ex- 
pression of this gene. The PCA results after 
stratification are shown in Figure 5A and show 
a clear heterogeneity between the two gro- 
ups. Using FCER1A as the control group and 
setting |log2FC| >1 and adj_pvalue <0.05 as 
the threshold, a total of 265 upregulated dif-
ferential genes and 84 downregulated differ- 
ential genes were identified as shown in Figure 
5B. The heat map shows that the obtained dif-
ferential genes can be significantly clustered 
into two categories (Cluster1 and Cluster2) 
under unsupervised clustering conditions, and 
overall, the expression trends of genes in each 
cluster are markedly opposite (Figure 5C). The 
GO and KEGG enrichment analysis results  
for upregulated genes are shown in Figure 5D, 
5E, indicating that FCER1A primarily functions 
by upregulating immune-related pathways  
such as chemokine receptor activity, lympho-
cyte differentiation, and PI3K. The GO and 
KEGG enrichment analysis results for downreg-
ulated genes are shown in Figure 5F, 5G, indi-
cating that in DCM patients with low expres- 
sion of FCER1A, one-carbon unit, oxygen, and 
lipid transport can be upregulated. And the 
GSEA results are shown in Figure 5H-K. Over- 
all, upregulated differential genes are mainly 
enriched in immune activation-related path-
ways, such as the differentiation and develop-
ment of T and B cells, chemokine communica-
tion, Th17 activation, and immune regulatory 
interactions. Downregulated differential genes 
are mainly enriched in substance metabolism 
and transport-related pathways, such as ATP 
synthesis coupled to electron transport, pep-
tide chain elongation and respiratory chain 
electron transport.

Immune microenvironment decoding

Firstly, we observed the differences in immune 
cell composition between the ventricles of DCM 
patients and NF normal samples. The results, 
as shown in Figure 6A, indicate that most 
immune cells in the ventricles of DCM patients 
are highly infiltrated. Compared to the FCER1A_
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Figure 3. Hub gene selection by multiple machine learning methods. A. Expression of intersection genes in DCM and NF groups. B. Sensitivity, specificity, and ROC 
curve analysis of multiple machine learning algorithms. C. GLMnet model situation. D. Variable importance in models under five machine learning algorithms. E. 
Calibration curve of the model within the test set. F. ROC curves of the PAM and GLMnet algorithms within the test and validation sets.

Figure 4. Characteristic analysis of the FCER1A gene. A. Violin plots showing the expression difference of FCER1A in GSE141910, GSE116250, GSE57345, and 
GSE42955 from left to right. B UMAP plot of FCER1A expression distribution. C. Violin plots of FCER1A expression difference in different cell subsets. D. Differential 
expression of FCER1A in different sample groups. E. Effector location of FCER1A in SLE. F. Effector site of FCER1A.
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Low group, the FCER1A_High group has signifi-
cantly higher infiltration levels of NK cells, 
CD4+ T cells, CD8+ T cells, B cells, and mono-
cytes. Regarding macrophage infiltration, we 
found that the FCER1A_High group has a high-
er infiltration level, such as Macrophage_xCell 
and Macrophage_quantiseq (Figure 6B). In 
addition, we observed that various immune-
related features are highly expressed in the 
DCM group compared to the NF group ventricu-
lar cells, with features such as TNF, TIP, ICB, 
MHC molecules, HLA and others showing  
higher expression (Figure 6C). For the FCER1A_
High group, we found that this group down- 
regulates the expression of several immune-
related features, such as TIP, MDSC, BCR, and 
TCR (Figure 6D).

FCER1A+ macrophage microenvironment 
analysis

To observe the function of FCER1A- mediat- 
ed mononuclear macrophages in the ventricu-
lar microenvironment, we divided them into 
FCER1A+ macrophages and FCER1A- macro-
phages. The overall interaction strength is 
shown in Figure 7A, 7B, suggesting that 
FCER1A+ macrophages have stronger interac-
tion intensity compared to FCER1A- macro-
phages, such as NK cells, fibroblasts and lym-
phocytes. Figure 7C shows the difference in  
the receptor-ligand level enriched by various 
cell types, indicating that FCER1A- Macroph- 
age has the strongest ability as a signal receiv-
er. In terms of signal emission capability, and 
FCER1A+ Macrophage has a stronger enrich-
ment level in the PROS, MK, CXCL, and GAS  
signal pathways compared to FCER1A- Macro- 
phage (Figure 7D). For the two significantly dif-
ferent pathways, namely MK and PROS, the 
analysis results are shown in Figure 7E, 7F, 
indicating that in the MK pathway, FCER1A+ 
Macrophage has a strong interaction with NK 
cells and other cell groups, while in the PROS 
pathway, FCER1A- Macrophage has no interac-
tion with other cell types, while FCER1A+ 
Macrophage has an interaction with NK cells 

and peripheral cells. To observe the rela- 
tionship between the expression of FCER1A  
and macrophage differentiation, we perform- 
ed pseudotime analysis on macrophages. The 
results are shown in Figure 7G, which indicates 
that FCER1A is mainly significantly expressed 
in the middle and late stages of macrophage 
differentiation. Figure 7H shows that FCER1A, 
which is co-expressed in the middle and late 
stages of macrophage differentiation, is mainly 
enriched in the regulation of protein activity 
and type II interferon production.

FCER1A small molecule drug screening

To identify small-molecule drugs targeting 
FCER1A. We used the DGIdb database to 
search for drugs targeting the FCER1A gene, 
the results are shown in Figure 8A, indicating 
that a total of two approved drugs were ob- 
tained, namely BENZYLPENICILLOYL POLY- 
LYSINE and OMALIZUMAB. The former is mainly 
used for treating allergic reactions and as a 
diagnostic agent, while the latter is a recombi-
nant humanized monoclonal antibody targeting 
anti-IgE, mainly used for treating moderate to 
severe asthma. In addition, we also use a net-
work diagram to show the interaction relation-
ship between the target FCER1A and small mol-
ecule drugs (Figure 8B).

Discussion

Heart failure is a complex clinical syndrome 
caused by the dysfunction of various biological 
processes leading to cardiac dysfunction [26]. 
In this study, we started from a single cell per-
spective and found that mononuclear macro-
phages in the DCM group showed significantly 
increased infiltration compared to NF samples. 
Based on this finding, we identified specific 
expression genes in mononuclear macropha- 
ges and differential genes in the DCM group 
compared to the NF group. Additionally, using 
SMR analysis, we obtained significant genetic 
variants that are highly associated with the 
occurrence of SLE. The seven overlapping 

Figure 5. Functional analysis of FCER1A in DCM. A. PCA dimension reduction of samples grouped by the top and 
bottom 30% of FCER1A expression in DCM. B. Volcano plot of differential analysis between FCER1A_High and 
FCER1A_Low groups. C. Expression heatmap of differential genes selected by abs(logFC) >1 and adj.pvalue <0.05. 
D. GO enrichment of up-regulated differential genes. E. KEGG enrichment of up-regulated differential genes. F. GO 
enrichment bubble chart of down-regulated differential genes. G. KEGG enrichment bubble chart of downregulated 
differential genes. H-K. GSEA enrichment bar chart of differential genes in GO (H), KEGG (I), Reactome (J) and Msidb 
(K) databases.
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Figure 6. Decoding of the immune microenvironment associated with DCM and FCER1A. A. Heatmap of immune cell 
infiltration grouped by DCM and NF. B. Heatmap of immune cell infiltration grouped by high and low FCER1A expres-
sion. C. Heatmap of immune-related feature expression grouped by DCM and NF. D. Heatmap of immune-related 
feature expression grouped by high and low FCER1A expression.

genes were used for modelling. Interestingly, 
on the one hand, the models built with the 

intersecting genes performed very well in both 
the training and validation sets, with AUCs 
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Figure 7. Analysis of the cellular microenvironment of FCER1A+ macrophages in DCM. A. Network graph of interaction strengths between different cell clusters. B. 
Network plot of interaction strengths between FCER1A+ and FCER1A- macrophages and other cells. C. Heat map of differences in receptor-ligand interactions be-
tween different cell clusters. D. Differences in the entry and exit situations of different cell clusters in the MK and PROS pathways. E. Network and chord diagrams 
of cell entry and exit in the MK pathway. F. Network and chord diagrams of cell entry and exit in the PROS pathway. G. Analysis of the differentiation pathway of 
macrophages in DCM and the expression pathway of FCER1A. H. Heatmap of differential expression of pseudotime genes during differentiation.

Figure 8. Small molecule drug screening for FCER1A. A. Drugs against FCER1A in the DGIdb database. B. Interaction network graph between FCER1A and drugs.
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greater than 0.8 in the training set and calibra-
tion curves close to the ideal line in the valida-
tion set. On the other hand, FCER1A showed 
the best performance in multiple models, mak-
ing it the most critical gene identified in this 
study for the occurrence of diseases such as 
SLE and DCM.

The Fc fragment of IgE, high-affinity I, receptor 
for; alpha polypeptide (FCER1A) gene encodes 
the alpha subunit of the high-affinity IgE recep-
tor (FcεRI), which plays a critical role in immune 
responses [27]. This receptor is predominantly 
expressed on the surface of mast cells and 
basophils and mediates allergic reactions upon 
binding to IgE [28]. Recent studies have also 
implicated FCER1A in the pathogenesis of  
SLE [29]. In mononuclear phagocytes, such as 
macrophages and dendritic cells, FCER1A has 
been shown to influence antigen processing 
and presentation, as well as cytokine produc-
tion [30]. In our study, the SMR result further 
supports the role of FCER1A in lupus by identi-
fying polymorphisms in the FCER1A gene that 
are associated with the risk of developing SLE.

FCER1A encodes the alpha subunit of the high-
affinity IgE receptor (FcεRI), which is primarily 
expressed on mast cells and basophils [31-33]. 
It binds IgE antibodies and triggers cell activa-
tion upon allergen recognition, leading to the 
release of inflammatory mediators (e.g. hista-
mine) that drive allergic responses [31-33]. This 
gene plays a key role in type I hypersensitivity 
(e.g., asthma, anaphylaxis) and anti-parasitic 
immunity, making it a potential therapeutic tar-
get for allergic diseases. Genetic variations in 
FCER1A are associated with allergy suscep- 
tibility [31-33]. Through our analysis, we found 
that FCER1A plays a very important role in DCM 
patients. First, FCER1A is highly expressed in 
several conventional transcriptome datasets in 
DCM patients, which is also confirmed at the 
single-cell level. Second, FCER1A is highly 
expressed in macrophages and can upregulate 
several immune-related pathways, such as 
PI3K, NFKB, Toll-like receptors, and multiple 
immune cell activation pathways. Third, high 
expression of FCER1A is closely associated 
with high infiltration of various immune cells 
into the ventricle, such as NK cells, T cells, DC 
cells and macrophages. Fourth, within the ven-
tricular microenvironment, FCER1A+ macro-
phages have stronger interactions with other 
cells compared to FCER1A- macrophages, 

mainly enriched in the MF and PROS pathways. 
Fifth, the FCER1A gene is mainly expressed in 
the middle and late stages of mononuclear 
macrophage differentiation, and its combined 
expression trend with other genes may enrich 
pathways such as type II interferon regulation. 
Sixth, FCER1A mainly serves as a risk factor  
for the occurrence of SLE, and its increased 
expression significantly increases the possi- 
bility of SLE. Based on the above findings, we 
have fully demonstrated the key role of the 
FCER1A gene in the DCM ventricular microenvi-
ronment and obtained small molecule drugs 
targeting FCER1A, such as BENZYLPENICILLO- 
YL POLYLYSINE and OMALIZUMAB, providing 
important guidance for clinical medication. In 
conclusion, our study provides new insights 
into the link between SLE and DCM and shows 
that FCER1A may be a potential key factor in 
both diseases, playing an important role in the 
immune response.

Conclusions

In conclusion, mononuclear macrophages are 
significantly increased in DCM samples com-
pared to NF samples, and the FCER1A gene is 
significantly highly expressed in mononuclear 
macrophages. Its high expression in DCM may 
upregulate related pathways represented by 
immune activation and enhance the interac- 
tion strength between mononuclear macro-
phages and other ventricular cells to play an 
important function. Considering the significant 
role of FCER1A in DCM, we have obtained its 
targeted drugs, providing hope for clinical drugs 
to treat DCM.
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