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Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease primarily affecting the elderly,
marked by lung tissue scarring and impaired function. Current treatments, such as pirfenidone and nintedanib,
slow disease progression but do not halt it and are associated with side effects. Lung transplantation is limited by
donor shortages and surgical risks. Stem cell-based therapies, particularly mesenchymal stromal cells (MSCs) from
bone marrow, adipose tissue, and umbilical cord, offer promise due to their low immunogenicity, homing capacity,
and paracrine signaling. Preclinical models show that MSCs or their miRNA-bearing extracellular vehicles (EVs) can
inhibit the TGFB/Smad pathway, reprogram macrophage polarization, and promote tissue regeneration through
anti-inflammatory and repair factors (e.g., IL-10, HGF, VEGF). Genetic modifications like CXCR4 overexpression may
enhance MSC efficacy. Early clinical trials suggest favorable safety and preliminary efficacy, though long-term valida-
tion is needed. Additionally, alveolar type 2 (AT2) cells derived from induced pluripotent stem cells (iPSCs) and lung
epithelial cells from embryonic stem cells (ESCs) offer potential for alveolar repair. Bioengineering advancements,
including hydrogel scaffolds and 3D lung organoids, enhance stem cell retention and provide platforms for IPF re-
search and drug screening. This review explores the therapeutic potential of stem cell therapies in IPF, integrating
recent bioengineering developments and clinical prospects.
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Introduction holds promise for IPF treatment [14, 15]. This
review summarizes recent advancements in
stem cell-based therapies, focusing on the
potential of various stem cell types (mesenchy-
mal, induced pluripotent, and embryonic) for

lung tissue repair and disease progression

Idiopathic pulmonary fibrosis (IPF) is a chronic,
progressive interstitial lung disease marked by
lung scarring, dyspnea, and eventual respirato-
ry failure [1-3]. It typically affects individuals

aged 65-70 [4], with a higher prevalence in
males [5, 6]. Despite research, its etiology re-
mains unclear [7], and treatment options are
limited [8]. Current management includes phar-
macotherapy [9], lung transplantation, and cell-
based therapies [10]. Although pharmacother-
apy and transplantation can slow progression,
they do not halt lung function decline. Drugs
like pirfenidone and nintedanib decelerate de-
terioration but are not curative [11, 12]. Lung
transplantation improves survival but is con-
strained by organ shortages and surgical risks
[13].

Stem cell therapy, with self-renewal, multi-
potency, and immunomodulatory properties,

attenuation.

Understanding idiopathic pulmonary fibrosis
IPF overview

Idiopathic pulmonary fibrosis (IPF) is one of
the most prevalent interstitial lung disease
(ILD), characterized by chronic inflammation,
aberrant tissue repair, destruction of normal
parenchymal, progressive functional impair-
ment, and poor prognosis [16]. Its higher inci-
dence in individuals over 60 suggests a poten-
tial link with aging [17]. Smoking constitutes
a major risk factor; environmental exposures
(e.g., wood dust, viruses, asbestos, silica) also
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contribute to pathogenesis [16]. Global epide-
miology indicates an annual IPF incidence of
0.09-1.30 per 10,000 and prevalence of 0.33-
4.51 per 10,000. Key pathological features
include fibroblast proliferation/differentiation,
inflammatory cell infiltration, abnormal extra-
cellular matrix (ECM) deposition, and alveolar
structural damage [18]. Repetitive injury to al-
veolar epithelial cells, particularly type Il al-
veolar cells (AT2), leads to dysfunctional repair
mechanisms [19], promoting the proliferation
and migration of fibroblasts within the intersti-
tium, driving their phenotypic transition into
myofibroblasts [20, 21]. This process results
in excessive ECM production, leading to tissue
scarring and stiffening. Cellular senescence
involves epithelial cells exhibiting a senes-
cence-associated secretory phenotype (SASP),
releasing pro-inflammatory and pro-fibrotic
mediators (e.g., IL.-6, IL-1, TGF-B) [22, 23]. Mo-
lecular pathways implicated in IPF include
TGF-B/Smad, WNT/B-catenin, PI3K/Akt/mTOR,
Notch, and Hippo/Yes-associated protein [24],
regulating proliferation, differentiation, progra-
mmed cell death, remodeling the fibrotic micro-
environment, and driving progression.

IPF treatment strategies

Current IPF pharmacotherapy aims to alleviate
symptoms and slow progression but cannot
halt the disease process. Untreated median
survival is approximately 4 years [25]. Pirfeni-
done and nintedanib are the sole approved
antifibrotic drugs for IPF [26]. While they decel-
erate progression, they cannot arrest lung func-
tion decline [27]. Real-world data reveal signifi-
cant adverse effects, underscoring the need
for more effective and tolerable therapeutics
[28]. Recent years, numerous novel drug trials
target fibroblasts, alveolar macrophages, epi-
thelial cells, senescence, oxidative stress, and
mitochondrial dysfunction [7], acting through
multiple fibrotic pathways [29]. However, their
inability to reverse disease highlights the
necessity for regenerative approaches. Lung
transplantation currently offers the sole life-
extending intervention for IPF but is restricted
by stringent eligibility criteria, age limitations,
and donor scarcity, limiting it to a minority
of patients [24]. Thus, developing alternative
regenerative therapies is critical. Owing to their
properties of self-renewal and multipotent dif-
ferentiation, stem cells have been established
as a pivotal research platform in regenerative
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medicine. Accumulating preclinical and clinical
evidence in recent years further indicates that
stem cell-based therapeutic strategies demon-
strate considerable potential for IPF treatment
[14] (Figure 1).

Stem cell therapy in IPF research and applica-
tion

Stem cell therapy, leveraging advantages of
self-renewal, multipotency, and paracrine im-
munomodulation [30], is emerging as a core
platform in regenerative medicine for diverse
diseases. The primary stem cell types relevant
to IPF include mesenchymal stem cells (MSCs),
induced pluripotent stem cells (iPSCs), and em-
bryonic stem cells (ESCs). A direct comparative
analysis of their key characteristics is summa-
rized in the table below. And subsequent sec-
tions elaborate on their therapeutic and re-
search value (Table 1).

Mesenchymal stem cells (MSCs)

In recent years, MSC-based therapies have
been used to treat diverse diseases because of
their ability to potently repair tissue and locally
restore function [31], which also have garnered
significant attention for IPF therapy. Encourag-
ing findings on their mechanisms and efficacy,
coupled with entry into clinical research, war-
rant their focus herein.

Sources and biological characteristics: Me-
senchymal stem cells (MSCs) can be isolated
from multiple tissue sources - including bone
marrow (BM), adipose tissue (AT), and umbili-
cal cord (UC) [32]. Compared to BM-MSCs and
adipose-derived stem cells (ADSCs), UC-MSCs
exhibit greater primitiveness and higher prolif-
erative potential [33]. Although bone marrow is
atraditional source, MSCyield decreases mark-
edly with donor age, and extraction is invasive
[34]. The non-invasive harvesting of umbilical
cord mesenchymal stem cells (UC-MSCs) sig-
nificantly reduces procedural risks for donors
and may enhance cellular availability for alloge-
neic transplantation, thereby improving clinical
feasibility [35]. Despite procurement flexibility
from diverse sources, biological property varia-
tions necessitate careful source selection ba-
sed on therapeutic goals and patient status.

MSCs readily expand in vitro and possess sig-
nificant immunomodulatory properties, inhibit-
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Therapies
for
IPF

Drugs Lung transplant Stem cell therapy
¢ Only life-extending method
* Age, donor limitations
Approved
nintedanib Ne_\ﬂ{ tﬁ':‘gs MSCs ESCs iPSCs
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* No reversal of fibrosis
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* Promising evidence in IPF

Figure 1. This slide provides a general classification of current and potential therapies for Idiopathic Pulmonary

Fibrosis (IPF).

Table 1. Comparison of stem cell types for IPF therapy

Embryonic Stem Cells (ESCs)

Induced Pluripotent Stem Cells
(iPSCs)

Feature Mesenchymal Stem Cells (MSCs)

Source/ Relatively wide range of sources; can be

Accessibility obtained from adult tissues (e.g., bone marrow,
adipose) or perinatal tissues (e.g., umbilical
cord).

Differentiation Limited multipotency; primarily differentiates

Potential into mesenchymal lineages (e.g., osteoblasts,
adipocytes). Therapeutic action relies mainly
on paracrine effects rather than direct
differentiation into lung epithelial cells.

Major Safety 1. Low tumorigenic risk.

Risks 2. Main risks include cellular heterogeneity, low
post-transplant survival rates, and potential
unintended effects due to immunomodulation
(e.g., pro-inflammatory or pro-fibrotic effects).

Clinical Highest. Several Phase I/Il clinical trials for IPF

Readiness have been completed, preliminarily demon-

strating safety and tolerability. This cell type is
closest to clinical application.

Limited to the inner cell mass of
early embryos. Source is restricted
and involves ethical controversies.

Pluripotent; can differentiate into
all cell types of the body, including
functional alveolar epithelial cells.

Tumorigenicity is the primary risk,
potentially leading to teratoma for-
mation after transplantation. Also
carries a risk of immune rejection.

Lowest. Due to ethical and safety
constraints, currently confined to
basic and preclinical research. No
clinical transplantation protocols for
IPF exist.

Obtained by reprogramming somatic
cells (e.g., skin fibroblasts); sources

are wide-ranging and bypass ethical
concerns.

Pluripotent, similar to ESCs; can differ-
entiate into various cell types, including
alveolar epithelial cells. Ideal tools for
disease modeling and regenerative
medicine.

Tumorigenicity is a major risk, stemming
from potential genomic mutations/insta-
bility due to integrating reprogramming
factors and the presence of residual
undifferentiated cells.

Intermediate. Undergoing active preclini-
cal research, holding significant value for
disease modeling and drug screening.
Application as a cell therapy for IPF still
requires resolving safety and standard-
ization issues.

ing excessive immune responses and pro-
moting tolerance [36]. Their multipotency,
including differentiation into lung-associated
cells, facilitates tissue repair. Low immunoge-
nicity enables allogeneic transplantation, cir-
cumventing costly patient-specific cell prepara-
tion and enabling “off-the-shelf” therapy [37].
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Homing to injury sites and secretion of benefi-
cial bioactive factors further augment thera-
peutic value [37, 38]. Owing to this multifaceted
potential in immunomodulation, anti-inflamma-
tion, and tissue regeneration, MSCs represent
a promising candidate for complex diseases
like IPF.
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Mechanisms of action in IPF: By inhibiting the
TGF-B/Smad signaling pathway - which plays a
central role in IPF fibrogenesis - MSCs reduce
myofibroblast differentiation and extracellular
matrix (ECM) production. This regulatory ca-
pacity directly underpins their therapeutic po-
tential [39]. Secondly, MSCs modulate immune
responses by inhibiting Th17 cell differentia-
tion/proliferation (associated with IPF patho-
genesis) [40] and promoting macrophage po-
larization from pro-inflammatory (M1) to anti-
inflammatory/repair (M2) phenotypes [41],
thereby inhibiting fibrosis. Furthermore, MSCs
primarily function via paracrine mechanisms,
secreting factors (e.g., anti-inflammatory IL-10,
reparative HGF, angiogenic VEGF) [42] that syn-
ergistically reduce inflammation [40], promote
repair, and improve lung function. Elucidating
specific factor contributions will enable more
precise enhancement of MSC-based strate-
gies, suggesting application prospects for ther-
apies based on the MSC secretome. MSC-
derived exosomes are small extracellular ve-
sicles rich in bioactive molecules [43], includ-
ing miRNAs, which deliver specific miRNAs (e.g.,
miR-30b-5p, MiR-29a) to target cells to regu-
late gene expression (e.g., miR-30b potentially
alleviating fibrosis via Spred2/Runxl) [44].
Compared to whole-cell transplantation [42],
MSC exosomes offer a safer, more targeted
cell-free option, with miRNA delivery showing
significant potential for regulating profibrotic
pathways like TGF-.

MSCs exhibit tropism for injury sites, such as
lungs in IPF models [42]. Animal studies demon-
strate enhanced engraftment of mesenchymal
stem cells (MSCs) in bleomycin (BLM)-induced
lung injury models, a process partially mediat-
ed by the SDF-1/CXCR4 axis [45], which is criti-
cal for efficacy (e.g., CXCR4 overexpression
enhances it) [46]. However, survival and long-
term engraftment in the fibrotic lung microenvi-
ronment may be limited [45], indicating a need
for strategies to improve pulmonary retention
to maximize therapeutic benefit (Figure 2).

Research progress

In BLM-induced pulmonary fibrosis models,
MSC therapy significantly reduces lung colla-
gen deposition, fibrosis scores, histopathologi-
cal damage, and improves survival [47] while
diminishing inflammatory marker expression
[48]. Some studies observed MSC differentia-
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tion into AT2-like cells [49] within damaged
lungs, suggesting a tissue regeneration mecha-
nism. These findings strongly support the trans-
lation MSC therapy into IPF clinical trials [45].
However, such models may not fully recapitu-
late complex human IPF pathological physiolo-
gy [50] and primary therapeutic benefits likely
stem from paracrine effects rather than direct
engraftment/differentiation [45], a mechanis-
tic distinction requiring further investigation.

Several clinical trials have assessed MSC ther-
apy safety and preliminary efficacy in IPF pa-
tients. For instance, the Phase | AETHER trial
(NCT02013700) evaluated intravenous alloge-
neic BM-MSC safety in mild-to-moderate IPF.
Results demonstrated favorable treatment tol-
erability with no treatment-related serious ad-
verse events. The two reported deaths were
attributed to disease progression and were not
treatment related. Exploratory efficacy end-
points showed the mean decline in forced vital
capacity (FVC) and diffusing capacity for car-
bon monoxide (DLCO) within 60 weeks was
within expected ranges [51].

Application prospects and challenges: The
translation of MSC-based therapeutics into
clinical practice encounters significant persis-
tent hurdles. Firstly, delivery and engraftment
efficiency is low; systemic administration yields
poor lung homing, and transplanted cell sur-
vival/engraftment in the fibrotic microenviron-
ment is limited, impacting therapeutic dura-
bility [52]. Secondly, cellular heterogeneity:
variations among MSCs from different sources
and donors directly affect immunomodulatory
and antifibrotic functions, leading to inconsis-
tent outcomes [53] - standardization requires
overcoming this barrier. Thirdly, precise in vivo
mechanisms remain incompletely elucidated,
hindering optimization; understanding MSC-
lung microenvironment interactions is crucial.
Finally, safety: while tumorigenicity risk is con-
sidered low, clear assessment is needed [54].
Addressing delivery/engraftment challenges in-
volves exploring gene editing (e.g., CXCR4
overexpression) and biomaterial scaffolds to
enhance targeted lung delivery and cell re-
tention.

Comparison of cell-based versus cell-free
therapies

The field of stem cell therapy is gradually evolv-
ing into two major strategies: traditional cell-
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Figure 2. This diagram details the proposed mechanisms by which Mesenchymal Stem Cells (MSCs) alleviate IPF.

based transplantation and emerging cell-free
therapies. The latter primarily refers to the use
of conditioned medium derived from stem cells
or specific active components, such as exo-
somes and other extracellular vesicles. These
two strategies each have their own advantages
and disadvantages for treating IPF (Table 2).

Cell-based therapies: The core advantage of
**cell-based therapies** lies in the ability of
transplanted living cells to sense the microen-
vironment and respond dynamically, exerting
synergistic therapeutic effects through the con-
tinuous secretion of various factors. However,
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their greatest challenge is the low survival rate
and limited long-term retention of cells within
the diseased lung tissue, which restricts the
durability of their efficacy. Furthermore, live cell
transplantation carries risks of immune rejec-
tion (although MSCs have low immunogeni-
city) and a very low potential tumorigenic risk.
Their production and quality control processes
are also more complex.

Cell-free therapies: Cell-free therapies (particu-
larly exosome therapy) present unique advan-
tages. Exosomes, as nano-scale vesicles, carry
various bioactive substances (e.g., proteins,
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Table 2. Comparison of cell-based and cell-free therapies for IPF

Characteristic

Cell-Based Therapy (e.g., MSC Transplantation) Cell-Free Therapy (e.g., MSC-Derived Exosomes)

Mechanism of Action Dynamic and multifaceted: homing, differen-
tiation (limited), paracrine secretion (multiple
factors), immunomodulation, cell-cell contact.

Main Advantages

Main Challenges

Potentially broader and more sustained action
(if cells survive and function long-term).

Low cell survival and retention rates; risks of

Relatively singular: primarily relies on carried bioactive
molecules (e.g., miRNAs, proteins) to modulate recipi-
ent cell function.

High safety profile (no tumorigenic risk, very low im-
munogenicity); easier to standardize for production,
storage, and QC; potentially better tissue penetration.

Potentially lower durability and potency of effect com-

immune rejection and potential tumorigenicity; pared to live cells; challenges in large-scale production

complex production, transportation, and QC.

Clinical Translation Multiple Phase I/11 clinical trials have already

verified safety.

yield; targeting needs improvement; precise definition
of active components required.

Currently primarily in the preclinical research stage,
representing a highly promising next-generation thera-
peutic strategy.

miRNAs) from their parent cells and can medi-
ate intercellular communication, regulating the
gene expression and function of target cells.
Compared to whole cells, exosomes offer a
superior safety profile with extremely low im-
munogenicity and, crucially, avoid the risk of
tumorigenesis due to their inability to prolifer-
ate. Their size characteristics may favor distri-
bution within tissues, and they are easier to
standardize for production, long-term storage,
and quality control, holding promise as “off-the-
shelf” products. However, their mechanism of
action might be relatively singular, lacking the
dynamic and multifaceted regulatory capacity
of living cells. Additionally, challenges remain
regarding exosome yield, tissue targeting, and
the precise definition of their functional com-
ponents.

Conclusion: Cell-based and cell-free therapies
are not mutually exclusive but rather comple-
mentary strategies. Cell-free therapies, espe-
cially exosomes, offer a safer and more con-
trollable novel approach for IPF treatment.
However, the stability and potency of their effi-
cacy still require extensive preclinical and clini-
cal validation. Future research directions may
include engineering exosomes to enhance their
targeting and anti-fibrotic efficacy or explor-
ing the synergistic effects of combining both
strategies.

Embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs)

Due to tumorigenic potential, differentiation
inefficiency, and heterogeneity, iPSCs and ESCs
remain in preclinical investigation. iPSCs close-
ly resemble ESCs in pluripotency and self-
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renewal [55]. Consequently, research and clini-
cal applications of MSC-based therapies in IPF
treatment will be collectively examined in the
following sections.

Sources and biological characteristics: Em-
bryonic stem cells (ESCs) originate from the
inner cell mass (ICM) of early embryos. In vitro,
they proliferate indefinitely and can differenti-
ate into all three germ layer cell types [56].
However, ESC derivation involves embryo ma-
nipulation, raising ethical concerns limiting re-
search/application in some regions. In 2006,
Shinya Yamanaka and Kazutoshi Takahashi
first successfully reprogrammed somatic cells
into iPSCs, a breakthrough inaugurating a re-
generative medicine and cell therapy era [57,
58]. In 2007, the same research team success-
fully induced pluripotent stem cells (iPSCs) by
introducing transcription factors - including
SOX2, KLF4, and C-MYC - into adult human
fibroblasts [59]. The derived iPSCs can be dif-
ferentiated into diverse cell lineages for multi-
disciplinary research applications, effectively
circumventing the ethical constraints associat-
ed with embryonic stem cells (ESCs).

Mechanisms of action: ESCs and iPSCs can dif-
ferentiate into lung-specific cell types, particu-
larly exhibiting potential for directed differentia-
tion into alveolar epithelial type Il cells (AT2),
enabling regenerative IPF therapy [60]. By acti-
vating critical pathways involved in embryonic
lung development (e.g., Wnt, FGF), iPSCs differ-
entiate into functional alveolar type Il epithelial
cells (AEC2s), forming self-renewing “alveolar
spheres” in 3D culture [61]. Bayati et al.
observed intravenous iPSCs downregulated
Wnt, B-catenin, and LEF expression and upreg-
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Figure 3. This diagram explains how Embryonic Stem Cells (ESCs) and Induced Pluripotent Stem Cells (iPSCs) could

be used to treat IPF.

ulated DKK1 in BLM-induced fibrosis, inhibiting
fibroblast activation and reducing fibrosis, sug-
gesting modulation of Wnt signaling mediates
antifibrotic effects [62]. iPSC-derived exosomes
rich in miR-302a-3p can inhibit M2 macro-
phage polarization by targeting TET1, alleviat-
ing BLM-induced fibrosis in mice [63]. Addi-
tionally, patient-derived iPSCs generate donor-
genotype-matched cells, reducing rejection risk
[64]. These properties render ESCs and iPSCs
valuable for studying IPF mechanisms, drug
screening, and regenerative therapy. Despite
the potential of iPSCs and ESCs to differentiate
into functional alveolar epithelial type Il cells
(AEC2s), their clinical application faces several
challenges. Current differentiation protocols
are inefficient and yield heterogeneous cell
populations with limited purity. The derived
cells often exhibit functional immaturity, includ-
ing underdeveloped lamellar body structures,
which compromises their regenerative capaci-
ty. Furthermore, transplanted cells may under-
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go phenotypic instability within the fibrotic mi-
croenvironment, potentially leading to abnor-
mal trans differentiation and safety concerns.
Ultimately, clinical translation requires address-
ing the critical challenge of scaling up labora-
tory differentiation methods into standardiz-
ed, GMP-compliant manufacturing processes
(Figure 3).

Research progress: Current ESC and iPSC
research for IPF is preclinical. Animal models
show iPSC, or iPSC-derived AT2 cell transplan-
tation reduces fibrosis and improves function
[65, 66]. In a separate study, JayminJ. Kathiriya
et al. utilized iPSCs derived from IPF patients to
generate alveolar organoids, unveiling the role
of aberrant alveolar epithelial repair in fibrogen-
esis [67]. Alvarez-Palomo et al. differentiated
human iPSCs into AT2 cells (iAT2s) and trans-
planted them into BLM-induced rat fibrosis;
transplanted iAT2s secreted surfactant protein
C (SP-C), significantly reduced lung collagen
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deposition, suppressed TGF-f and a-SMA ex-
pression, and restored gas exchange, indicat-
ing iAT2 repair potential [66]. ESC-derived lung
epithelial cells also demonstrate therapeutic
effects in fibrosis models [68]. Successful pre-
clinical application supports the potential feasi-
bility of ESC/iPSC therapy for IPF, providing evi-
dence for future clinical trials requiring safety
and efficacy validation.

Application prospects and challenges: Owing
to their unlimited proliferative potential, both
iPSCs and ESCs carry inherent tumorigenic
risks [69], constituting a primary safety chal-
lenge for cell-based therapeutic strategies uti-
lizing these platforms. Ensuring safety neces-
sitates complete differentiation before trans-
plantation and effective elimination of residual
undifferentiated cells [70]. What’s more, ESC
derivation involves embryo destruction, raising
ethical concerns regarding embryonic dignity
and research acceptability [71]. iPSCs circum-
vent embryo procurement, avoiding associated
ethical issues, thus possessing higher ethical
acceptability for IPF therapy. However, iPSCs
may present reprogramming efficiency and ge-
nomic instability challenges [72], posing safety
risks requiring stringent evaluation and control
prior to clinical translation.

Regulatory and manufacturing hurdles in the
clinical translation of stem cell therapies for
IPF

The clinical translation of stem cell therapies
for idiopathic pulmonary fibrosis (IPF) faces sig-
nificant regulatory and manufacturing challeng-
es. The core issue lies in the safe and consis-
tent transformation of living cells into standar-
dized pharmaceutical products. Both mesen-
chymal stem cells (MSCs) and pluripotent stem
cells (iPSCs/ESCs) are plagued by source het-
erogeneity, where variations in donor charac-
teristics, tissue origins, or minor procedural
differences can lead to substantial inconsisten-
cies in the final product’s efficacy and safety
profile.

Establishing standardized processes compliant
with Good Manufacturing Practice (GMP) is cru-
cial. This requires comprehensive control over
the entire production workflow - from cell iso-
lation and expansion to differentiation - while
addressing engineering complexities associat-
ed with scalable manufacturing. Quality control
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presents another major bottleneck. Living cell-
based products demand sophisticated release
criteria, including identity verification, sterility
assurance, and particularly rigorous assess-
ment of tumorigenic risk. Furthermore, devel-
oping potency assays that accurately reflect
clinical therapeutic effects remains a critical
unmet need.

iPSC-based therapies face an additional di-
lemma in choosing between autologous and
allogeneic approaches. Autologous therapies,
while avoiding immune rejection, are prohibi-
tively costly and difficult to standardize. Allo-
geneic “off-the-shelf” strategies enable scal-
ability but introduce immunogenicity concerns
and require exceptionally high standards for
master cell bank safety and genetic stability.
For emerging cell-free approaches such as exo-
some therapies, challenges remain in defining
active components, standardizing manufac-
turing, and clarifying regulatory classification
frameworks.

In summary, overcoming these barriers will re-
quire integrated advances in automated GMP
production platforms, clinically relevant bio-
markers, and adaptive regulatory policies. Only
through such coordinated efforts can stem cell
therapies evolve into safe, effective, and acces-
sible treatment options for IPF patients.

Technological innovations to enhance stem
cell therapy for IPF

Gene editing strategies: In animal models of
lung injury, genetic engineering-mediated over-
expression of homing receptors (e.g.CXCR4)
on mesenchymal stem cells (MSCs) enhances
their homing efficiency to damaged pulmonary
tissue, consequently amplifying therapeutic
efficacy [44]. This strategy addresses low pul-
monary homing efficiency post-systemic ad-
ministration, enhancing MSC therapeutic po-
tential for IPF.

Biomaterial scaffolds: Hydrogel scaffolds pro-
vide a supportive microenvironment for trans-
planted stem cells, improving survival and
retention [73]. They mimic natural extracellular
matrices (ECMs) and facilitate tailored cell-
hydrogel interactions [74]. Hydrogels derived
from decellularized lung matrix (DLM) demon-
strate potential utility for investigating fibro-
blast behavior in idiopathic pulmonary fibrosis
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(IPF) [75]. Biomaterial scaffolds, particularly
hydrogels [76], enhance stem cell delivery and
survival in the lung, strengthening therapeutic
effects. Additionally, hydrogel scaffolds serve
as in vitro models for studying pathogenesis
[77].

Three-dimensional lung organoid models:
Pluripotent stem cell (PSC)-derived 3D lung
organoids recapitulate human lung complexity
and cellular interactions [78]. These models
facilitate IPF pathogenesis study, in vitro dis-
ease modeling, and therapeutic screening [79].
Organoids recapitulate fibrotic alterations ob-
served in IPF, including honeycomb cyst-like
structures [80], thus providing a valuable tool
to overcome limitations inherent in animal
models and 2D cell culture systems [81]. This
platform enables in-depth elucidation of dis-
ease mechanisms and accelerates therapeutic
development.

Conclusion and future perspectives

Stem cell therapy exhibits substantial potential
for idiopathic pulmonary fibrosis (IPF) research
and application. Despite demonstrating effica-
cy in slowing disease progression, current ther-
apeutic approaches fail to achieve a cure for
IPF. Stem cells, particularly MSCs, iPSCs, and
ESCs, offer novel therapeutic avenues through
their unique biological properties.

MSCs, readily obtainable with low immunoge-
nicity and capable of secreting diverse anti-
inflammatory/reparative factors, demonstrate
favorable safety in preclinical and early clinical
studies. However, key challenges persist, in-
cluding in vivo homing efficiency, survival rates,
and source-dependent heterogeneity. Innova-
tive technologies - including genome editing,
biomaterial scaffolds, and three-dimensional
(3D) organoid models - are being explored to
address these limitations, showing promise for
enhancing therapeutic outcomes.

iPSCs and ESCs, as pluripotent stem cells
(PSCs), provide an unlimited cell source for
regenerative medicine. The potential of iPSC
differentiation into AT2 cells and ESC-derived
lung progenitor research offer valuable tools
for elucidating IPF pathogenesis and develop-
ing cell replacement strategies. Nonetheless,
tumorigenic risks and ethical considerations
remain significant clinical translation barriers.
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Prospective studies should investigate these
complex interrelations and their tissue-speci-
fic manifestations to devise comprehensive
therapeutic approaches.

Furthermore, current clinical trials of stem cell
therapy for IPF remain preliminary, with major
limitations including: (1) Small sample sizes:
Early-phase trials focused primarily on safety
enrolled limited patients, resulting in under-
powered studies that struggle to demonstrate
efficacy definitively or identify rare adverse
events. (2) Lack of protocol standardization:
Significant heterogeneity in cell type, dosage,
and administration routes across trials makes
direct comparison of results difficult and hin-
ders the identification of an optimal treatment
regimen. (3) Challenges with endpoint selec-
tion: The commonly used primary endpoint of
annual forced vital capacity (FVC) decline
changes slowly, requiring extended follow-up
and large cohorts to detect significant differ-
ences. Therefore, future large-scale, standard-
ized Phase lll clinical trials utilizing more reli-
able clinical endpoints are essential to defini-
tively establish the ultimate clinical value of
stem cell therapies.

Future research should prioritize: (1) optimiza-
tion of stem cell source selection and manu-
facturing standardization, (2) enhancement of
pulmonary-targeted delivery efficiency and sur-
vival within the fibrotic niche, and (3) compre-
hensive delineation of the precise mechanis-
tic actions of stem cells in IPF pathogenesis.
Furthermore, conducting rigorous clinical trials
to evaluate stem cell therapy safety and effica-
cy in IPF patients is paramount. Through sus-
tained research and innovation, stem cell ther-
apy is anticipated to provide novel therapeutic
options for IPF patients, improving quality of life
and extending survival.
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