

Original Article

Causal effects and metabolite mediation of immune cells in preterm birth: a Mendelian randomization study

Tong Zhou^{1,2*}, Yanqiu Zhang^{3*}, Sheng Zhang¹, Jun Cao¹, Bin Feng¹, Jieyu Jin¹, Qingqin Tang¹, Jun Qiu¹, Longwei Qiao⁴, Yuting Liang^{1,5}

¹Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215002, Jiangsu, China;

²Medical College of Soochow University, Suzhou 215123, Jiangsu, China; ³School of Pharmacy, Anhui Medical University; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, Anhui, China; ⁴Center for Reproduction and Genetics, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215002, Jiangsu, China; ⁵Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA. *Equal contributors.

Received October 12, 2025; Accepted November 18, 2025; Epub December 15, 2025; Published December 30, 2025

Abstract: Background: Preterm birth poses significant risks to neonatal health. Although immune dysregulation has been implicated in its etiology, the causal roles of specific immune cell phenotypes and the potential mediating effects of metabolites remain unclear. This study applied Mendelian randomization (MR) to investigate causal relationships between immune cell phenotypes and preterm birth, and to assess whether plasma metabolites mediate these associations. Methods: Two-sample and mediation MR analyses were performed using genetic variants from genome-wide association studies (GWAS) of immune cells and plasma metabolites. Causal estimates were primarily derived using inverse variance weighting (IVW), with sensitivity analyses conducted via MR-Egger, MR-PRESSO, and leave-one-out validation. Results: A total of 28 immune cell phenotypes and 47 metabolites were robustly associated with preterm birth ($P < 0.05$). Reverse MR analysis revealed no evidence of reverse causality for the identified immune phenotypes. Among these, CD28⁺ CD8^{br} AC exhibited the strongest association with increased preterm birth risk. Mediation analysis demonstrated that the effect of CD28⁺ CD8^{br} AC on preterm birth (total effect: 0.148; IVW OR [95% CI]: 1.160 [1.056-1.274], $P = 0.002$) was partially mediated by isoleucine levels (mediation proportion: 6.79%; $P = 0.027$) and the acetylcarnitine-to-propionylcarnitine (C2/C3) ratio (mediation proportion: 7.35%; $P = 0.029$). Sensitivity analyses confirmed the robustness of these findings. Conclusion: This study establishes causal links between immune cell phenotypes, metabolites, and genetic susceptibility to preterm birth. Specifically, CD28⁺ CD8^{br} AC may elevate preterm birth risk through modulation of isoleucine and the C2/C3 ratio, providing novel insights into disease mechanisms and potential therapeutic targets.

Keywords: Mendelian randomization, immune cells, metabolites mediator, preterm labour and delivery

Introduction

Preterm birth, defined as delivery before 37 weeks of gestation, is a common pregnancy complication. Epidemiological studies report that preterm birth occurs in approximately 12% of pregnancies worldwide [1]. In recent years, the global incidence of preterm birth has risen, making it the second leading direct cause of mortality among children under five years of age [2]. This condition not only significantly affects neonatal health but also imposes a

growing socioeconomic burden. The pathogenic mechanisms of preterm birth are not fully understood and are currently considered a complex syndrome arising from multiple factors, including infection or inflammation, utero-placental ischemia or hemorrhage, excessive uterine distension, stress, and immune-mediated processes [3]. Given the involvement of both innate and adaptive immunity in maintaining pregnancy tolerance, recent research has increasingly highlighted the critical role of immune dysfunction in the pathogenesis of pre-

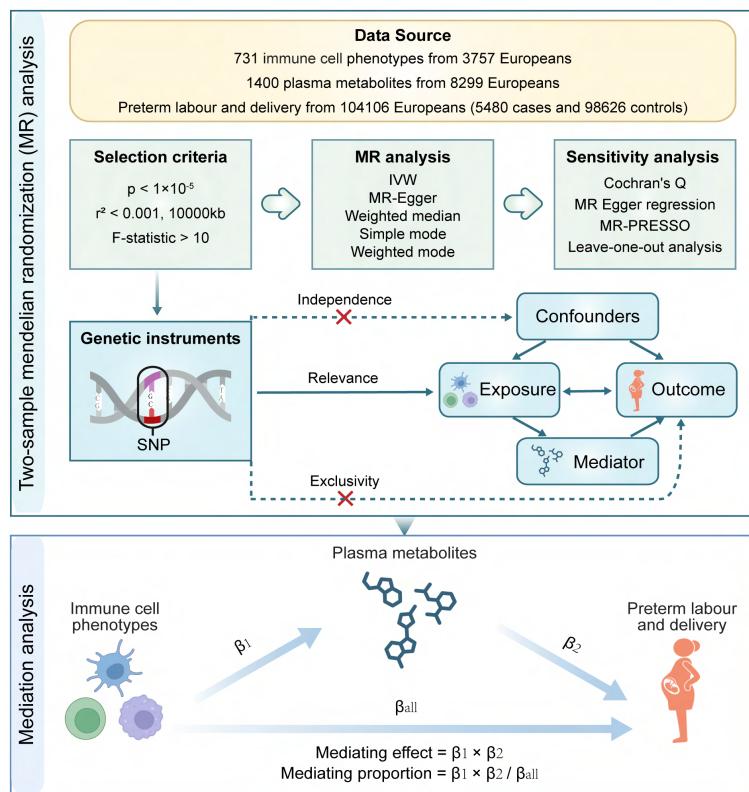
term birth [4, 5]. Therefore, a thorough investigation into the contributions of immune cells to the onset and progression of preterm birth is essential for advancing diagnostic and therapeutic approaches.

Pregnancy entails a finely regulated maternal immune response, in which maternal effector T cells, regulatory T cells (Tregs), and macrophages play crucial roles [6]. Clinical studies have reported reductions in both the number and function of Tregs in the maternal circulation of women undergoing preterm birth [7]. Macrophage depletion during pregnancy has been shown to impair fetal development and lead to early pregnancy loss [8]. Additionally, elevated levels of invariant natural killer T (iNKT) cells have been observed in pregnant women with pregnancy complications compared to those with normal pregnancies [9]. Although previous studies have explored associations between immune cells and preterm birth, the molecular mechanisms through which these cells contribute to preterm birth remain incompletely characterized, and the regulatory functions of other immune cell types in the initiation and progression of preterm birth have yet to be elucidated.

Beyond the direct involvement of immune cells, metabolic factors are also recognized as significant contributors to the risk of preterm birth. Growing evidence suggests that metabolites may act as key mediators through which immune cells influence disease pathogenesis. Studies have identified significant differences in metabolites related to amino acid metabolism, liver function, and fatty acid metabolism between preterm and term cases [10]. Maternal lipid profiles have been linked to preterm birth risk, with most studies indicating that dyslipidemia increases this risk [11, 12]. However, most existing studies are retrospective or observational in nature. Thus, the causal relationship between metabolites and preterm birth remains unclear, and the specific mechanisms by which immune cells may modulate metabolite levels or activities to influence preterm birth have not been established.

Mendelian randomization (MR) is an innovative statistical approach that uses genetic variants as instrumental variables (IVs) to minimize biases from confounding and reverse causality commonly present in conventional observational studies [13, 14]. MR has emerged as a robust

methodological framework for assessing causal relationships between exposures and outcomes. It typically employs genetic variants, particularly single nucleotide polymorphisms (SNPs), as IVs [15]. These instruments serve as proxies for modifiable exposures, allowing for more precise and reliable estimation of causal effects compared to traditional observational analyses. This study aims to systematically evaluate the causal associations between immune cell phenotypes and preterm birth and to investigate the potential mediating role of plasma metabolites.


Materials and methods

Study design

Based on a bidirectional MR analysis using two independent samples and mediation analysis framework, this study systematically assessed the causal relationship between immune cell phenotypes and genetic predisposition to preterm birth, and further investigated the potential mediating role of plasma metabolites [16, 17]. We first conducted two-sample MR analyses to estimate the causal effects of immune cell phenotypes on preterm birth while evaluating and excluding potential reverse causation. Subsequently, we assessed the causal relationships between plasma metabolites and preterm birth, as well as the causal effects of preterm birth-related immune cell phenotypes on preterm birth-associated plasma metabolites. Finally, we quantified the indirect effects of immune cell phenotypes on preterm birth mediated through specific metabolite. The overall study design is illustrated in **Figure 1**.

Data sources

The details of all GWAS summary statistics data used in this study are summarized in **Table 1**. All datasets were based on European populations. Genetic data for 731 immune cell phenotypes were obtained from a cohort study including 3,757 individuals of European ancestry (accession numbers: GCST90001391 to GCST90002121), which comprised approximately 22 million genetic variants [18]. These immune cell phenotypes were categorized into six panels: B cells, conventional dendritic cells (cDCs), T cell maturation stages, monocytes, myeloid cells, TBNK (B cells, natural killer cells, T cells), and regulatory T cells (Tregs). They were

Figure 1. Flowchart of Mendelian Randomization (MR) analysis conducted in this study.

further classified into four measurement types: absolute cell count (ACC, $n = 118$), median fluorescence intensity (MFI, $n = 389$), morphological parameters (MP, $n = 32$), and relative cell count (RCC, $n = 192$).

Data on 1,400 metabolites were sourced from a GWAS comprising 8,299 European participants (accession numbers: GCST90199621 to GCST90201020), including 1,091 plasma metabolites and 309 metabolite ratios [19].

Summary statistics for preterm birth were derived from the FinnGen consortium (finn-b-015_PRETERM; <https://www.finngen.fi/en>). This dataset defines preterm birth as overall preterm delivery without distinguishing between spontaneous and medically indicated subtypes. The analysis included 104,106 European-ancestry participants (5,480 cases and 98,626 controls) and 16,379,340 single nucleotide polymorphisms (SNPs). Cases were defined as females with a documented history of preterm birth, while controls consisted of females with no history of preterm delivery.

Identification of instrumental variables

The identification process of IVs in MR analysis adheres to three fundamental assumptions (relevance, independence, and exclusivity assumptions). First, SNPs strongly associated with exposure factors were selected as IVs ($P < 1 \times 10^{-5}$). This threshold was chosen to secure a sufficient number of instruments while maintaining a strong genetic association with the exposure. Linkage disequilibrium (LD) pruning was conducted with a distance threshold of 10,000 kb and an R^2 threshold of 0.001 to identify independent SNPs [20]. Additionally, the F-statistic, an indicator of the instrument's strength, was calculated using the following formula: $F = (N - K - 1)/K \times R^2/(1 - R^2)$, where N denotes the total sample size, K represents the number of SNPs, and R^2 suggests the

variance explained by all SNPs, and SNPs with an F-statistic below 10 were excluded to minimize bias arising from weak instruments [21]. Furthermore, to enhance the accuracy of the analysis, SNPs that could potentially influence the outcome through pleiotropic effects were excluded. This systematic identification process establishes a robust IV foundation for MR analysis, thereby improving its reliability in evaluating the causal relationship between exposure factors and outcome variables.

Mendelian randomization analysis

In this study, five MR methods - inverse variance weighting (IVW), MR-Egger, weighted median, simple mode, and weighted mode - were employed to assess potential causal relationships between immune cell phenotypes, plasma metabolites, and preterm birth risk [22-25]. Among these, the IVW method was selected as the primary analytical approach due to its robustness and widespread acceptance in causal inference. This method was applied to estimate the effect of each SNP on both expo-

Table 1. Summary of GWAS datasets used in this study

Traits	Datasets source	Sample size Total (cases/controls)	Ancestry	Accession codes
731 immune cell phenotypes	Cucca et al. [18]	3,757	European	GCST90001391 - GCST90002121
1091 plasma metabolites and 309 plasma metabolite ratios	Richards et al. [19]	8,299	European	GCST90199621 - GCST90201020
Preterm labour and delivery	FinnGen	104,106 (5,480/98,626)	European	finn-b-015_PRETERM

sure and outcome, with weights assigned based on their variances to derive pooled causal estimates [22]. To address potential reverse causality, reverse MR analyses were also conducted to examine the effect of preterm birth on immune cell phenotypes, thereby validating the main findings.

Sensitivity analysis

Sensitivity analyses were performed to evaluate the potential influence of heterogeneity and pleiotropy on the accuracy of the causal estimates [26]. Heterogeneity among the selected IVs was assessed using Cochran's Q statistic based on both the IVW and MR-Egger methods, with a *p*-value greater than 0.05 indicating the absence of significant heterogeneity. Horizontal pleiotropy was examined via the MR-Egger intercept test and the MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method; if the *p*-value greater than 0.05, horizontal pleiotropy is considered to be absent [27]. In addition, the MR-PRESSO framework was applied to identify and remove outlying variants, after which causal estimates were reassessed. Leave-one-out sensitivity analysis was conducted to determine whether the overall causal estimate was driven by any single SNP [28]. Funnel plots were also generated to visually inspect the symmetry of genetic associations and further evaluate potential heterogeneity across IVs.

Analysis of mediating effect

Within the framework of MR analysis, a series of systematic and rigorous steps were implemented to investigate the potential mediating role of plasma metabolites in the relationship between immune cell phenotypes and preterm birth. First, we used two-sample MR analysis to estimate the total effect (β_{all}) of immune cell phenotypes (exposure) on preterm birth (outcome). Second, we applied two-sample MR to assess the causal effect (β_1) of selected im-

une cell phenotypes (exposure) on plasma metabolites (mediator), as well as the causal effect (β_2) of these metabolites on preterm birth (outcome). After confirming the direction and consistency of these effects along the hypothesized pathway, the indirect (mediated) effect was quantified using the coefficient product method ($\beta_1 \times \beta_2$). The proportion of the total effect mediated by metabolites was then calculated as $(\beta_1 \times \beta_2)/\beta_{\text{all}}$ [29].

Statistical analysis

All statistical analyses and data visualization were performed using R software (version 4.3.1) with the following packages: TwoSampleMR, MR-PRESSO, forestplot, and ggplot2. "TwoSampleMR" package was utilized for conducting two-sample MR analysis, facilitating data integration and result visualization. "MR-PRESSO" package was employed to detect and correct for horizontal pleiotropy, ensuring the robustness of causal inference. "forestplot" package was used for generating forest plots. "ggplot2" package was used for general data visualization, generating statistical plots. Associations are presented as odds ratios (OR) with 95% confidence intervals (CI). A significance threshold of $P < 0.05$ was applied. These analytical approaches were implemented to systematically evaluate the potential causal relationships between immune cell phenotypes and preterm birth.

Results

Causality between immune cell phenotypes and preterm labour and delivery

Using two-sample MR analysis, this study systematically investigated the potential causal relationships between multiple immune cell phenotypes and the risk of preterm labour and delivery. To ensure the robustness and reliability of the analysis results, MR-Egger regression

Immunometabolic pathways in preterm birth

Figure 2. Forest plot of causal associations between immune cell phenotypes and preterm labour and delivery.

was employed to detect and mitigate biases arising from horizontal pleiotropy. Following an initial screening process, 28 immune cell phenotypes were identified as being significantly associated with the risk of preterm labour and delivery ($P < 0.05$) (Figure 2). Whereas 13 were potential risk factors, involving CD28- CD8^{br} AC (OR [95% CI]: 1.160 [1.056-1.274], $P = 0.002$), PDL-1 on CD14⁺ CD16⁻ monocyte (OR [95% CI]: 1.124 [1.020-1.240], $P = 0.019$), CD28- CD8^{br} %CD8^{br} (OR [95% CI]: 1.088 [1.017-1.164], $P = 0.015$), CD8^{br} NKT %lymphocyte (OR [95% CI]: 1.084 [1.023-1.148], $P = 0.007$), CD8^{br} NKT %T cell (OR [95% CI]: 1.075 [1.013-1.140], $P = 0.017$), CD8^{br} NKT AC (OR [95% CI]: 1.063 [1.001-1.129], $P = 0.047$), CD80 on myeloid DC (OR [95% CI]: 1.058 [1.015-1.102], $P = 0.007$), CM CD4⁺ AC (OR [95% CI]: 1.053 [1.003-1.106], $P = 0.038$), CD62L on monocyte (OR [95% CI]: 1.049 [1.015-1.084], $P = 0.004$), CD80 on CD62L⁺ myeloid DC (OR [95% CI]: 1.041 [1.011-1.073], $P = 0.008$), CD64 on monocyte (OR [95% CI]: 1.041 [1.004-1.080], $P = 0.030$), CD40 on CD14⁺ CD16⁺ monocyte (OR [95% CI]:

1.034 [1.005-1.064], $P = 0.021$), Resting Treg %CD4 (OR [95% CI]: 1.027 [1.001-1.053], $P = 0.044$). And 15 phenotypes were potential protective factors for preterm labour and delivery, including Naive CD8^{br} %CD8^{br} (OR [95% CI]: 0.977 [0.959-0.995], $P = 0.013$), IgD⁺ CD38^{dim} %lymphocyte (OR [95% CI]: 0.974 [0.950-0.998], $P = 0.034$), CD20 on naive-mature B cell (OR [95% CI]: 0.973 [0.949-0.997], $P = 0.026$), CD33 on Mo MDSC (OR [95% CI]: 0.965 [0.936-0.994], $P = 0.021$), CD33^{dim} HLA DR⁺ CD11b⁺ AC (OR [95% CI]: 0.963 [0.929-0.999], $P = 0.043$), CD24 on IgD- CD38⁻ (OR [95% CI]: 0.962 [0.929-0.996], $P = 0.030$), IgD⁺ CD38⁻ %B cell (OR [95% CI]: 0.962 [0.927-0.998], $P = 0.038$), CD20 on IgD- CD38^{br} (OR [95% CI]: 0.958 [0.921-0.996], $P = 0.032$), CD25^{hi} CD45RA⁻ CD4 not Treg %CD4⁺ (OR [95% CI]: 0.957 [0.926-0.989], $P = 0.010$), SSC-A on HLA DR⁺ CD8^{br} (OR [95% CI]: 0.948 [0.904-0.994], $P = 0.027$), CD25⁺⁺ CD8^{br} %CD8^{br} (OR [95% CI]: 0.939 [0.886-0.995], $P = 0.032$), CD4 Treg %T cell (OR [95% CI]: 0.928 [0.876-0.984], $P = 0.012$), CD4 on naive CD4⁺ (OR [95% CI]: 0.916

[0.867-0.969], P = 0.002), TD CD4⁺ %CD4⁺ (OR [95% CI]: 0.914 [0.845-0.989], P = 0.025), CD24 on IgD⁻ CD38^{dim} (OR [95% CI]: 0.887 [0.794-0.990], P = 0.032).

Subsequently, a reverse MR analysis was performed, treating preterm labour and delivery as an exposure factor and 28 immune cells as the outcomes of the MR analysis. The IVW results showed that there was no reverse causal relationship between preterm labour and delivery and these 28 immune cells (P > 0.05), indicating that further analysis could be performed (Figure 2).

Causality between plasma metabolites and preterm labour and delivery

47 plasma metabolites were found to have causal association with preterm labour and delivery using IVW (P < 0.05) (Table 2). Among them, 5-dodecenoylcarnitine (C12:1) levels, Glycodeoxycholate levels, Acetylcarnitine (C2) to propionylcarnitine (C3) ratio, Arachidonate (20:4n6) to paraxanthine ratio, Adenosine 5'-monophosphate (AMP) to tyrosine ratio, Spermidine to ergothioneine ratio, X-12740 levels, Xylose levels, Adenosine 5'-monophosphate (AMP) to palmitate (16:0) ratio, Margaroylcarnitine (C17) levels, Sphingomyelin (d18:1/20:1, d18:2/20:0) levels, 8-methoxykynurename levels, X-11372 levels, Hydroxy-N6,N6,N6-trimethyllysine levels, Arachidonate (20:4n6) to caffeine ratio, 12,13-DHOME levels, Vanillic acid glycine levels, Adenosine 5'-diphosphate (ADP) to glucose ratio, Adenosine 5'-diphosphate (ADP) to ornithine ratio, 2-ketocaprylate levels, X-17690 levels, Pregnenetriol sulfate levels, N-acetylglucosaminylasparagine levels, (N(1) + N(8))-acetyl- λ spermidine levels, Androstanediol (3beta,17-beta) disulfate (1) levels, 3-methylcytidine levels, 5alpha-androstan-3alpha,17beta-diol monosulfate (1) levels, Androsterone sulfate levels were identified as risk factors for preterm labour and delivery (OR > 1).

On the other hand, Ferulic acid 4-sulfate levels, Pyridoxal levels, 1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) levels, Isoleucine levels, Gamma-glutamylglutamine levels, 3-methyl catechol sulfate (1) levels, Phosphate to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio, Cholate to adenosine 3',5'-cyclic monophosphate (cAMP) ratio, Cysteinylglycine levels, 2-palmitoleoyl-GPC (16:1) levels, 1-(1-enyl-pal-

mitoyl)-2-arachidonoyl-GPE (p-16:0/20:4) levels, 5,6-dihydrothymine levels, Mannose to mannitol to sorbitol ratio, Mannose to fructose ratio, Adenosine 5'-monophosphate (AMP) to histidine ratio, Threonine to alpha-ketobutyrate ratio, Alpha-ketobutyrate levels, Dodecanoate levels, Taurine to glutamate ratio were protective factors against preterm labour and delivery (OR < 1).

Mediating analysis reveals metabolite-mediated causal pathways linking immune cell phenotypes to preterm labour and delivery

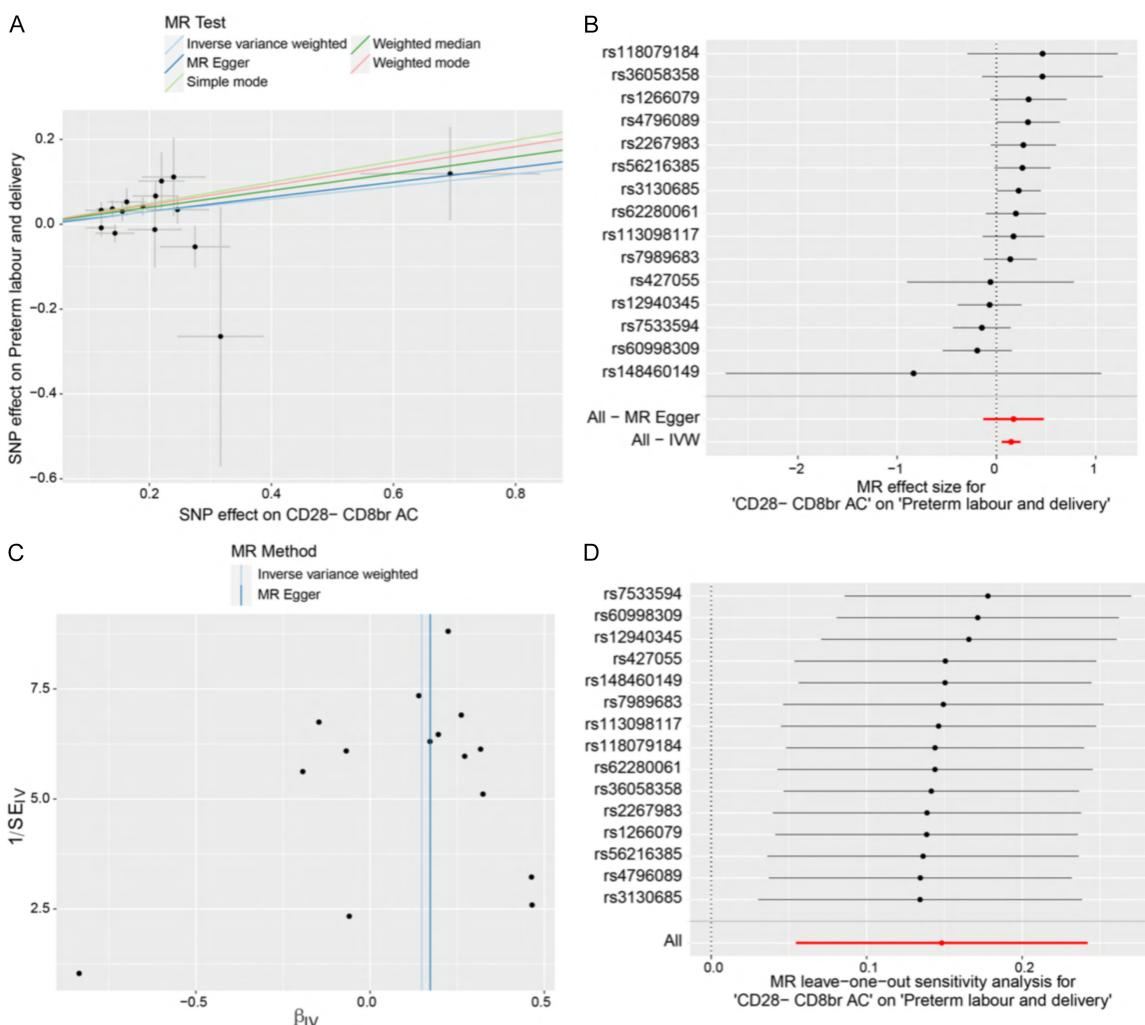
Based on the OR values, CD28⁻ CD8^{br} AC was the most significant risk factor for preterm labour and delivery (OR [95% CI]: 1.160 [1.056-1.274], β_{all} = 0.148, P = 0.002) (Table 3; Figure 3A, 3B). Furthermore, sensitivity analysis confirmed the robustness of the results. No significant horizontal pleiotropy was found (MR-Egger intercept (P = 0.872) and MR-PRESSO global pleiotropy test (P = 0.346)) (Table 4). No significant heterogeneity was observed, with p values of 0.316 and 0.253 for the Q-statistic in the IVW and MR Egger analysis, respectively (Table 4). Additionally, the funnel plot exhibited a predominantly symmetric distribution of causal effects, indicating minimal bias (Figure 3C). Leave-one-out sensitivity analyses confirmed that no single SNP significantly influenced the overall causal estimate (Figure 3D).

Therefore, CD28⁻ CD8^{br} AC was selected for in-depth subsequent analysis to further explore its mechanism in preterm labour and delivery. With CD28⁻ CD8^{br} AC as the exposure variable and 47 preterm labour and delivery-related plasma metabolites as the outcome variables, MR analysis was performed to estimate β_1 . Based on the IVW estimates, a significant negative causal relationship was identified between CD28⁻ CD8^{br} AC and isoleucine levels (OR [95% CI]: 0.893 [0.839-0.950], β_1 = -0.113, P < 0.001) (Table 3; Figure 4A, 4C), while a significant positive causal relationship was observed with C2/C3 ratio (OR [95% CI]: 1.080 [1.016-1.147], β_1 = 0.007, P = 0.013) (Table 3; Figure 4B, 4D). In addition, we assessed the heterogeneity and pleiotropy of CD28⁻ CD8^{br} AC to isoleucine levels and C2/C3 ratio (Table 4). IVW and MR-Egger Cochran's Q test showed that there was no significant heterogeneity in the effect of CD28⁻ CD8^{br} AC on isoleucine level (P = 0.718 and 0.673, respectively) and on C2/

Immunometabolic pathways in preterm birth

Table 2. Causal link between plasma metabolites and preterm labour and delivery

Exposure	Outcome	nsnp	OR (95% CI)	pval
5-dodecenoylcarnitine (C12:1) levels	Preterm labour and delivery	25	1.192 (1.049, 1.353)	0.007
Glycodeoxycholate levels	Preterm labour and delivery	20	1.163 (1.037, 1.304)	0.010
Acetylcarnitine (C2) to propionylcarnitine (C3) ratio	Preterm labour and delivery	19	1.153 (1.001, 1.328)	0.049
Arachidonate (20:4n6) to paraxanthine ratio	Preterm labour and delivery	22	1.146 (1.039, 1.264)	0.006
Adenosine 5'-monophosphate (AMP) to tyrosine ratio	Preterm labour and delivery	18	1.140 (1.014, 1.281)	0.029
Spermidine to ergothioneine ratio	Preterm labour and delivery	19	1.139 (1.032, 1.256)	0.010
X-12740 levels	Preterm labour and delivery	13	1.139 (1.003, 1.293)	0.045
Xylose levels	Preterm labour and delivery	25	1.138 (1.019, 1.271)	0.022
Adenosine 5'-monophosphate (AMP) to palmitate (16:0) ratio	Preterm labour and delivery	19	1.136 (1.004, 1.286)	0.044
Margaroylcarnitine (C17) levels	Preterm labour and delivery	26	1.131 (1.023, 1.250)	0.016
Sphingomyelin (d18:1/20:1, d18:2/20:0) levels	Preterm labour and delivery	28	1.131 (1.031, 1.241)	0.009
8-methoxykynurenate levels	Preterm labour and delivery	24	1.118 (1.012, 1.236)	0.029
X-11372 levels	Preterm labour and delivery	27	1.117 (1.012, 1.232)	0.028
Hydroxy-N6,N6-trimethyllysine levels	Preterm labour and delivery	26	1.116 (1.013, 1.229)	0.027
Arachidonate (20:4n6) to caffeine ratio	Preterm labour and delivery	23	1.115 (1.012, 1.227)	0.028
12,13-DiHOME levels	Preterm labour and delivery	28	1.112 (1.005, 1.232)	0.041
Vanillic acid glycine levels	Preterm labour and delivery	23	1.112 (1.033, 1.197)	0.005
Adenosine 5'-diphosphate (ADP) to glucose ratio	Preterm labour and delivery	16	1.107 (1.003, 1.222)	0.043
Adenosine 5'-diphosphate (ADP) to ornithine ratio	Preterm labour and delivery	23	1.103 (1.021, 1.191)	0.012
2-ketocaprylate levels	Preterm labour and delivery	23	1.097 (1.008, 1.194)	0.031
X-17690 levels	Preterm labour and delivery	27	1.095 (1.001, 1.198)	0.048
Pregnenetriol sulfate levels	Preterm labour and delivery	35	1.092 (1.018, 1.171)	0.014
N-acetylglucosaminylasparagine levels	Preterm labour and delivery	24	1.088 (1.014, 1.167)	0.019
(N(1) + N(8))-acetylspermidine levels	Preterm labour and delivery	35	1.081 (1.003, 1.165)	0.042
Androstanediol (3beta,17beta) disulfate (1) levels	Preterm labour and delivery	30	1.078 (1.000, 1.161)	0.049
3-methylcytidine levels	Preterm labour and delivery	19	1.073 (1.014, 1.136)	0.015
5alpha-androstan-3alpha,17beta-diol monosulfate (1) levels	Preterm labour and delivery	21	1.051 (1.005, 1.099)	0.031
Androsterone sulfate levels	Preterm labour and delivery	35	1.049 (1.006, 1.093)	0.024
Ferulic acid 4-sulfate levels	Preterm labour and delivery	33	0.963 (0.930, 0.998)	0.038
Pyridoxal levels	Preterm labour and delivery	41	0.925 (0.861, 0.994)	0.034
1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) levels	Preterm labour and delivery	34	0.920 (0.854, 0.991)	0.027
Isoleucine levels	Preterm labour and delivery	22	0.915 (0.845, 0.991)	0.029
Gamma-glutamylglutamine levels	Preterm labour and delivery	30	0.914 (0.838, 0.997)	0.042
3-methyl catechol sulfate (1) levels	Preterm labour and delivery	27	0.907 (0.827, 0.996)	0.041
Phosphate to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio	Preterm labour and delivery	27	0.906 (0.839, 0.978)	0.012
Cholate to adenosine 3'-5'-cyclic monophosphate (cAMP) ratio	Preterm labour and delivery	22	0.899 (0.808, 1.000)	0.050
Cysteinylglycine levels	Preterm labour and delivery	20	0.899 (0.816, 0.990)	0.030
2-palmitoleoyl-GPC (16:1) levels	Preterm labour and delivery	25	0.890 (0.801, 0.988)	0.029
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (p-16:0/20:4) levels	Preterm labour and delivery	22	0.883 (0.789, 0.988)	0.030
5,6-dihydrothymine levels	Preterm labour and delivery	19	0.879 (0.777, 0.995)	0.042
Mannose to mannitol to sorbitol ratio	Preterm labour and delivery	21	0.879 (0.778, 0.993)	0.038
Mannose to fructose ratio	Preterm labour and delivery	18	0.876 (0.771, 0.996)	0.043
Adenosine 5'-monophosphate (AMP) to histidine ratio	Preterm labour and delivery	23	0.874 (0.772, 0.990)	0.034
Threonine to alpha-ketobutyrate ratio	Preterm labour and delivery	19	0.833 (0.742, 0.936)	0.002
Alpha-ketobutyrate levels	Preterm labour and delivery	17	0.827 (0.717, 0.954)	0.009
Dodecanedioate levels	Preterm labour and delivery	22	0.822 (0.729, 0.926)	0.001
Taurine to glutamate ratio	Preterm labour and delivery	17	0.813 (0.692, 0.956)	0.012


C3 ratio ($P = 0.948$ and 0.923 , respectively). Additionally, there was no horizontal pleiotropy in the effect of CD28-CD8^{br} AC on isoleucine level (MR-Egger intercept ($P = 0.579$) and the MR-PRESSO global pleiotropy test ($P = 0.744$))

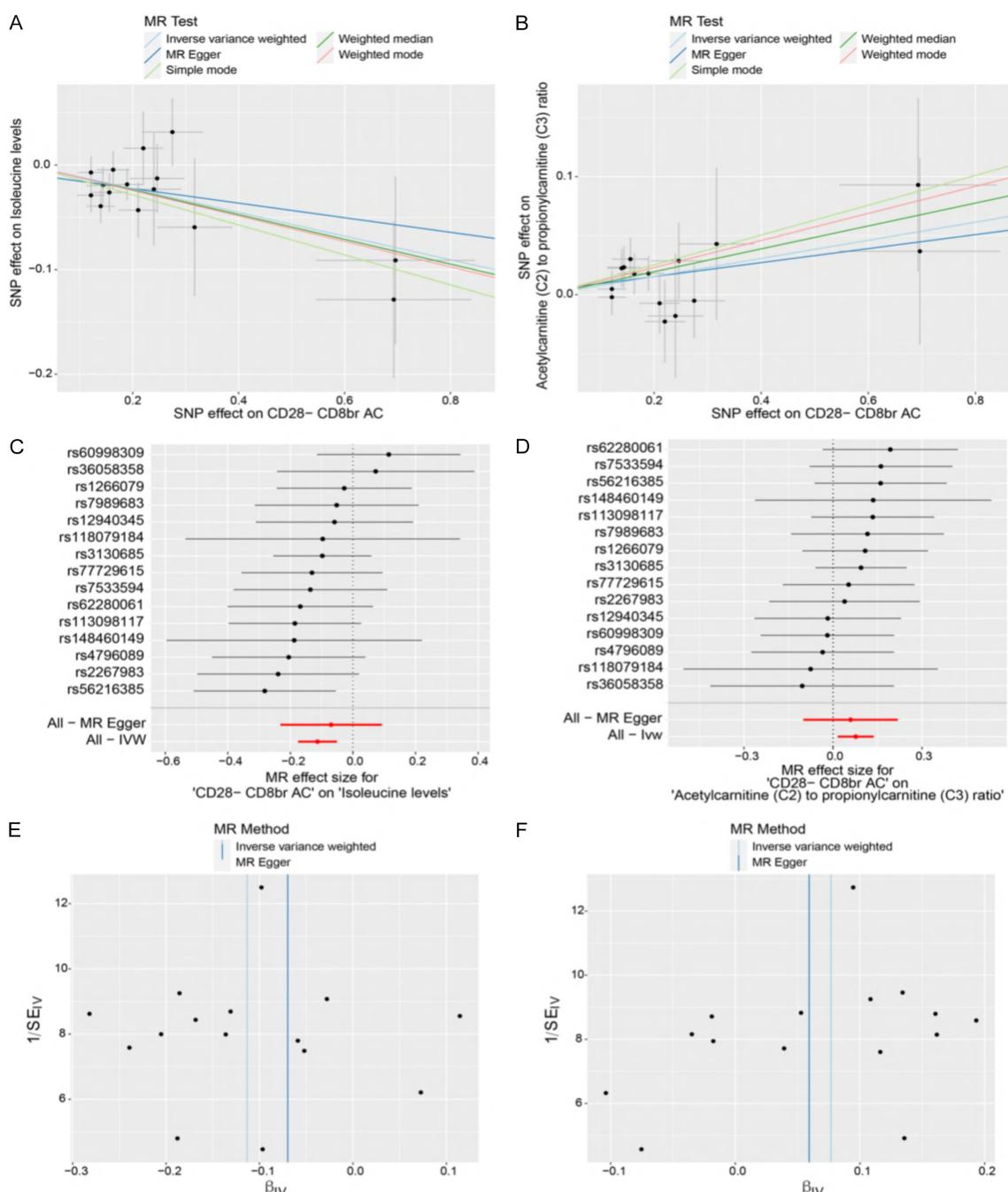
and on C2/C3 ratio (MR-Egger intercept ($P = 0.820$) and the MR-PRESSO global pleiotropy test ($P = 0.960$)). The funnel plots and leave-one-out analysis also indicated reliable data (Figure 4E-H).

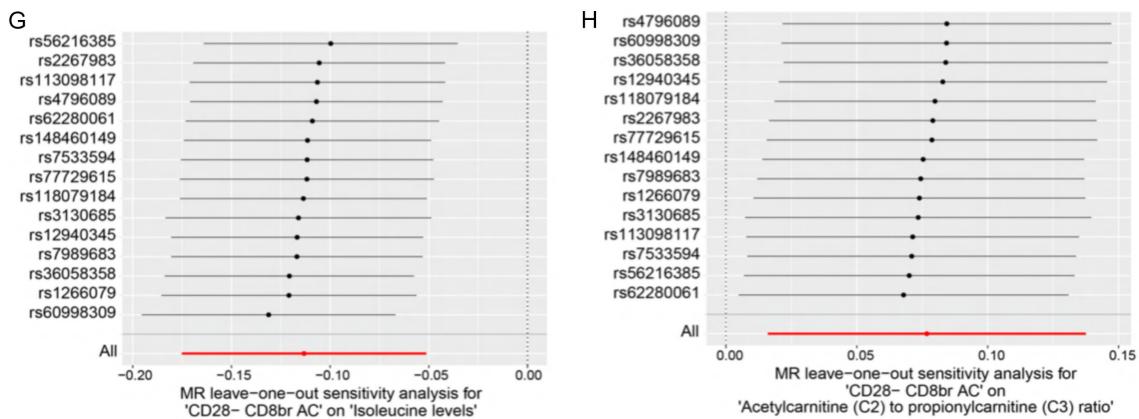
Immunometabolic pathways in preterm birth

Table 3. Mediation analyses for the association between metabolic mediators, immune cell phenotypes and preterm labour and delivery

Exposure	Outcome	Method	nsnp	β	OR (95% CI)	pval
CD28 CD8 ^{br} AC	Preterm labour and delivery	Inverse variance weighted	15	0.148	1.160 (1.056, 1.274)	0.002
CD28 CD8 ^{br} AC	Isoleucine levels	Inverse variance weighted	15	-0.113	0.893 (0.839, 0.950)	< 0.001
CD28 CD8 ^{br} AC	Acetylcarnitine (C2) to propionylcarnitine (C3) ratio	Inverse variance weighted	15	0.077	1.080 (1.016, 1.147)	0.013
Isoleucine levels	Preterm labour and delivery	Inverse variance weighted	22	-0.089	0.915 (0.845, 0.991)	0.029
Acetylcarnitine (C2) to propionylcarnitine (C3) ratio	Preterm labour and delivery	Inverse variance weighted	19	0.142	1.153 (1.001, 1.328)	0.049

Figure 3. MR results of immune cell phenotypes and preterm labour and delivery. A. Scatter plot of MR for CD28-CD8^{br} AC on preterm labour and delivery. B. Forest plot of MR for CD28-CD8^{br} AC on preterm labour and delivery. C. Funnel plot of MR for CD28-CD8^{br} AC on preterm labour and delivery. D. Leave-one-out analysis of MR for CD28-CD8^{br} AC on preterm labour and delivery.


In addition, MR analysis indicate that isoleucine level was associated with a reduced risk of preterm labour and delivery (OR [95% CI]: 0.915 [0.845-0.991], $\beta_2 = -0.089$, $P = 0.029$) (Table 3; Figure 5A, 5C). While C2/C3 ratio was


associated with an increased risk of preterm labour and delivery (OR [95% CI]: 1.153 [1.001-1.328], $\beta_2 = 0.142$, $P = 0.049$) (Table 3; Figure 5B, 5D). The results of the sensitivity analyses for isoleucine levels and C2/C3 ratio to preterm

Immunometabolic pathways in preterm birth

Table 4. The heterogeneity and pleiotropy in MR analysis

exposure	outcome	Heterogeneity test				Pleiotropy test				
		IVW		MR Egger		MR Egger regression		MR PRESSO		
		Cochran Q	pval	Cochran Q	pval	Intercept	se	pval	RSSobs	pval
CD28 CD8 ^{br} AC	Preterm labour and delivery	15.965	0.316	15.932	0.253	-0.004	0.026	0.872	18.382	0.346
CD28-CD8 ^{br} AC	Isoleucine levels	10.583	0.718	10.260	0.673	-0.009	0.015	0.579	12.171	0.744
CD28-CD8 ^{br} AC	Acetyl carnitine (C2) to propionyl carnitine (C3) ratio	6.632	0.948	6.578	0.923	0.003	0.015	0.820	7.509	0.960
Isoleucine levels	Preterm labour and delivery	18.904	0.591	18.230	0.572	0.009	0.011	0.421	20.286	0.679
Acetyl carnitine (C2) to propionyl carnitine (C3)	Preterm labour and delivery	26.308	0.093	26.298	0.069	0.001	0.019	0.937	28.400	0.118

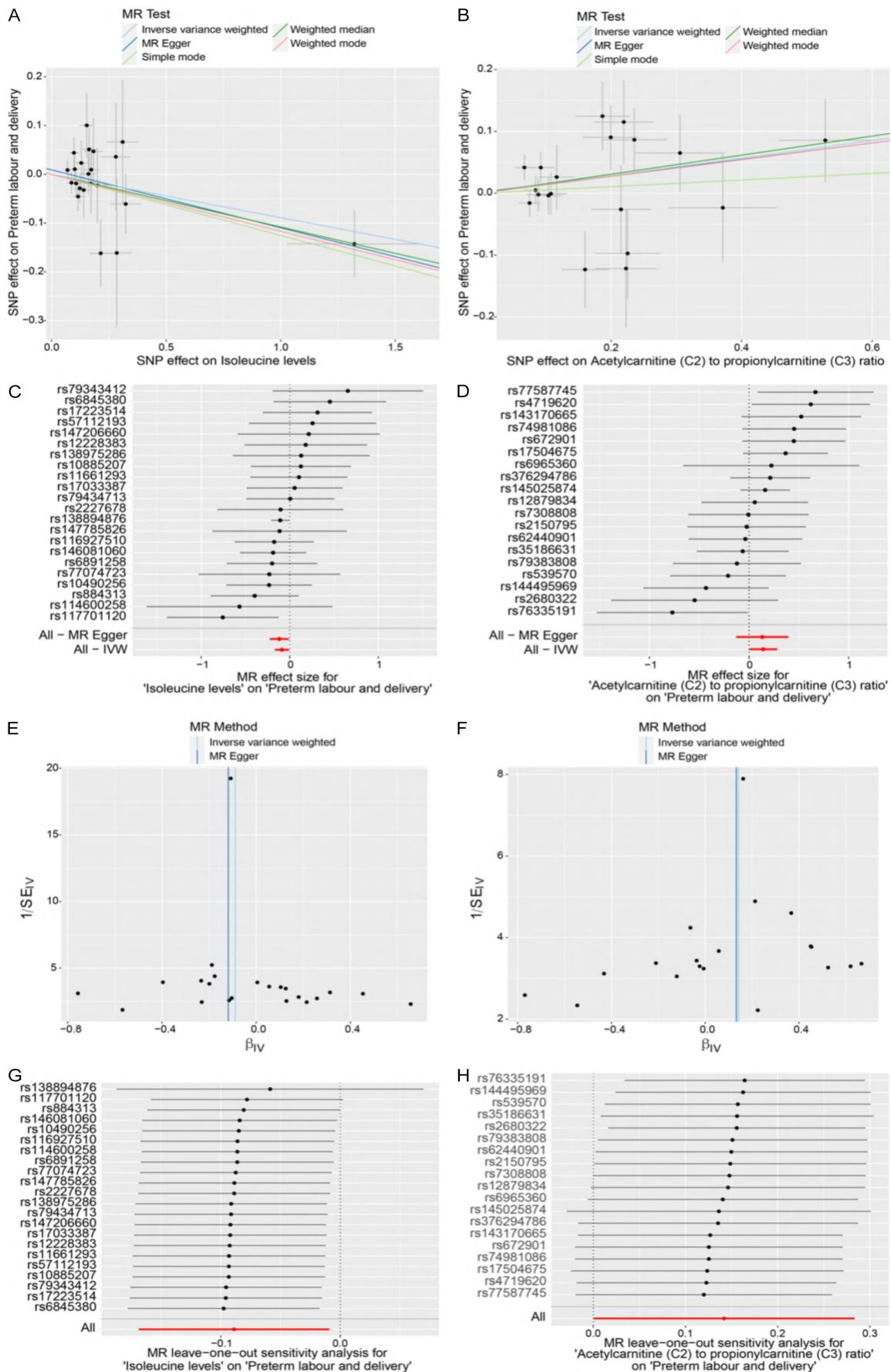
Figure 4. MR results of metabolic mediators and immune cell phenotypes. Scatter plot of MR for (A) CD28- CD8^{br} AC on Isoleucine levels and (B) CD28- CD8^{br} AC on Acetylcarnitine (C2) to Propionylcarnitine (C3) ratio. Forest plot of MR for (C) CD28- CD8^{br} AC on Isoleucine levels and (D) CD28- CD8^{br} AC on Acetylcarnitine (C2) to Propionylcarnitine (C3) ratio. Funnel plot of MR for (E) CD28- CD8^{br} AC on Isoleucine levels and (F) CD28- CD8^{br} AC on Acetylcarnitine (C2) to Propionylcarnitine (C3) ratio. Leave-one-out analysis of MR for (G) CD28- CD8^{br} AC on Isoleucine levels and (H) CD28- CD8^{br} AC on Acetylcarnitine (C2) to Propionylcarnitine (C3) ratio.

labour and delivery are presented in **Table 4**. The Cochran's Q statistic of IVW ($P = 0.591$ for isoleucine levels and $P = 0.093$ for C2/C3 ratio) and MR-Egger ($P = 0.572$ for isoleucine levels and $P = 0.069$ for C2/C3 ratio) suggesting that heterogeneity was not statistically significant. Additionally, no evidence of horizontal pleiotropy was detected using the MR-Egger regression ($P = 0.421$ for isoleucine levels and $P = 0.937$ for C2/C3 ratio), and the MR-PRESSO method ($P = 0.679$ for isoleucine levels and $P = 0.118$ for C2/C3 ratio). Finally, funnel plots and leave-one-out analysis were created, all of which showed no outliers (**Figure 5E-H**).

These results suggest that increased levels of CD28- CD8^{br} AC may reduce isoleucine levels or elevate C2/C3 ratio, thereby contributing to increase the risk of preterm labour and delivery.

Mediating effects analysis of plasma metabolites

To quantify these mediating analysis, the mediating effect was calculated as $\beta_1 \times \beta_2$. Accordingly, the effect of CD28- CD8^{br} AC on preterm labour and delivery via modulation of isoleucine levels was estimated to have a mediating effect of 0.010 (95% CI, 0.001 to 0.019) and a mediation effect ratio of 6.79% (95% CI, 0.777% to 12.8%; $P = 0.027$) (**Table 5; Figure 6A**). In parallel, a mediating effect of 0.011 (95% CI, 0.001 to 0.021) and a mediation eff-


ect ratio of 7.35% (95% CI, 0.736% to 14%; $P = 0.029$) was observed for CD28- CD8^{br} AC via C2/C3 ratio (**Table 5; Figure 6B**).

Discussion

This study systematically investigated the causal relationships between immune cell phenotypes, plasma metabolites, and preterm labour and delivery using MR methods. A total of 28 immune cell phenotypes were identified as causally associated with preterm birth, among which the CD28- CD8^{br} AC phenotype was established as a prominent risk factor. Additionally, 47 plasma metabolites were found to be causally linked to preterm birth. Mediation analysis revealed that isoleucine and the C2/C3 ratio partially mediated the effect of CD28- CD8^{br} AC on preterm birth, with mediation proportions of 6.79% and 7.35%, respectively. It was thus suggested that CD28- CD8^{br} AC increases the risk of preterm birth through modulating levels of isoleucine and the C2/C3 ratio.

The immune system plays a critical role in the pathogenesis of preterm birth, although the underlying mechanisms remain incompletely understood. In this MR study, the CD28- CD8^{br} AC T-cell phenotype was identified as being positively associated with an increased risk of preterm birth. CD28- CD8^{br} AC represents a subset of CD8⁺ T cells characterized by the absence of CD28 surface expression and high levels of CD8. CD8⁺ T cells are primarily involved in cellular immunity through cytotoxic activity,

Immunometabolic pathways in preterm birth

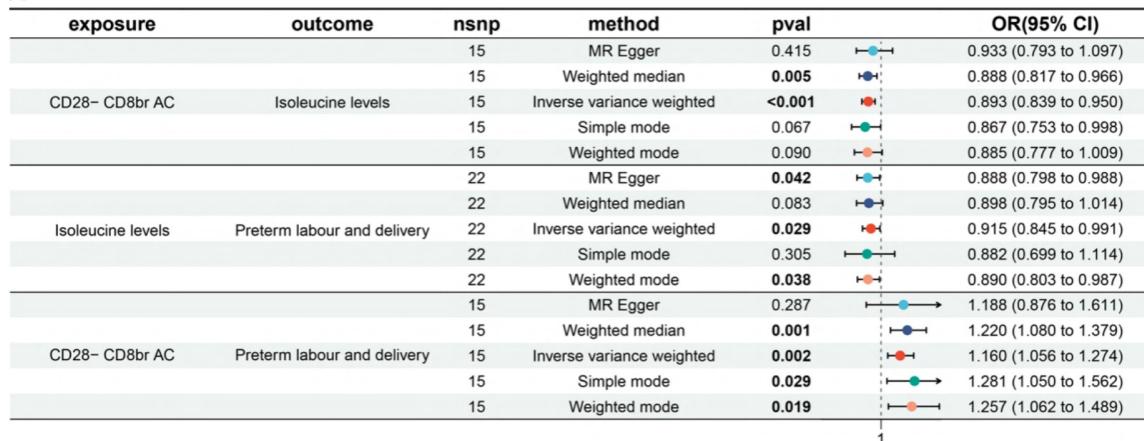
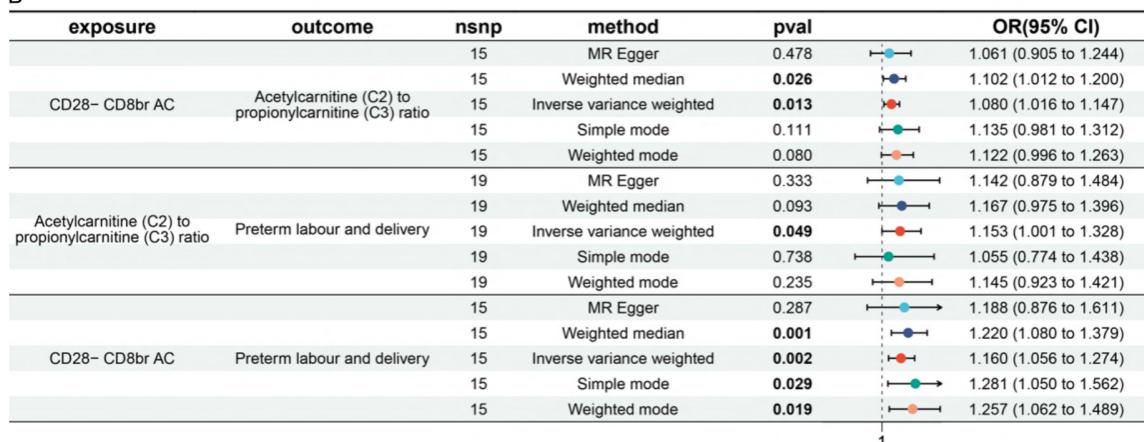

Immunometabolic pathways in preterm birth

Figure 5. MR results of metabolic mediators and preterm labour and delivery. Scatter plot of MR for (A) Isoleucine levels on preterm labour and delivery and (B) Acetyl carnitine (C2) to Propionyl carnitine (C3) ratio on preterm labour and delivery. Forest plot of MR for (C) Isoleucine levels on preterm labour and delivery and (D) Acetyl carnitine (C2) to Propionyl carnitine (C3) ratio on preterm labour and delivery. Funnel plot of MR for (E) Isoleucine levels on preterm labour and delivery and (F) Acetyl carnitine (C2) to Propionyl carnitine (C3) ratio on preterm labour and delivery. Leave-one-out analysis of MR for (G) Isoleucine levels on preterm labour and delivery and (H) Acetyl carnitine (C2) to Propionyl carnitine (C3) ratio on preterm labour and delivery.

Table 5. The mediation effect of plasma metabolites on immune cell phenotypes to preterm labour and delivery


Immune cell phenotypes	Plasma metabolites	Outcome	Mediated effect	Mediated proportion	pval
CD28 CD8 ^{br} AC	Isoleucine levels	Preterm labour and delivery	0.010 (0.001, 0.019)	6.79% (0.777%, 12.8%)	0.027
CD28 CD8 ^{br} AC	Acetyl carnitine (C2) to propionyl carnitine (C3) ratio	Preterm labour and delivery	0.011 (0.001, 0.021)	7.35% (0.736%, 14%)	0.029

A

1

B

1

Figure 6. A. Forest plot of the causal relationship between CD28-CD8^{br} AC, Isoleucine levels, and preterm labour and delivery. B. Forest plot of the causal relationship between CD28-CD8^{br} AC, Acetyl carnitine (C2) to Propionyl carnitine (C3) ratio, and preterm labour and delivery.

recognizing and eliminating virus-infected cells and certain tumor cells [30]. CD28 functions as a key co-stimulatory molecule on T cells, providing essential signals for T-cell activation.

Tregs help maintain immune homeostasis through the secretion of inhibitory cytokines such as IL-10 and TGF- β . Disruption of CD28 signalling may impair interactions between Tregs and

antigen-presenting cells, thereby compromising immune regulation [31]. Multiple mechanisms have been reported to contribute to the establishment of fetal tolerance, including the induction of anti-inflammatory Tregs that suppress anti-fetal immune responses [32]. Multiple earlier studies have confirmed that Treg cells play a critical role in maintaining maternal-fetal immune tolerance. Specifically, studies have demonstrated that in the peripheral blood of women with preterm birth, Treg cells not only exhibit abnormal proportions but also show significantly reduced capacity to suppress immune responses [7, 33, 34]. Our findings, which suggest that CD28⁻ CD8^{br} AC T cells may promote preterm birth by compromising the protective functions of Treg cells, are closely aligned with these previous observations. The decidua at the maternal-fetal interface is enriched with a specialized subset of natural killer cells (dNK). These cells typically exhibit low cytotoxicity and contribute actively to establishing an immunotolerant microenvironment through cytokine secretion, while also supporting placental growth and development. Multiple studies have shown that, compared to dNK cells from age-matched healthy controls, dNK cells from women with recurrent pregnancy loss (RPL) display reduced CD49a expression and elevated levels of perforin, granzyme B, and IFN- γ . Such alterations impair early dNK adhesion and migration into trophoblasts and enhance their cytotoxic potential, thereby compromising endometrial receptivity [35, 36]. Although our study focuses on circulating CD8⁺ T cells rather than uterine dNK cells, both lines of evidence collectively reinforce the fundamental principle that precise immunoregulation at the maternal-fetal interface is essential for successful pregnancy. Therefore, it is plausible that CD28⁻ CD8^{br} AC cells may promote preterm birth by attenuating the protective effects of Tregs on fetal tolerance, potentially due to the absence of CD28-mediated co-stimulation.

To further elucidate the mechanisms through which CD28⁻ CD8^{br} AC influences preterm birth, the causal relationship between metabolite levels and preterm birth risk was investigated. Isoleucine, a branched-chain amino acid, plays essential roles in systemic physiological processes including growth, immune function, protein and fatty acid metabolism, and glucose transport [37]. Previous studies have reported significantly lower plasma isoleucine levels in

women with preterm birth compared to those with term deliveries, suggesting a potential link between maternal isoleucine status and preterm birth risk [38]. This observation is consistent with the present MR analysis, which identified a causal relationship between decreased isoleucine levels and preterm birth. Given its role in energy metabolism, isoleucine can be oxidatively catabolized to produce energy [39]. Thus, preterm birth may be associated with disruptions in maternal energy metabolism. Reduced isoleucine availability could lead to inadequate energy supply for the fetus, potentially compromising fetal development and increasing preterm birth risk. Moreover, as an essential substrate for protein synthesis [40], isoleucine deficiency may impair fetal tissue and organ development, further contributing to fetal growth restriction and elevated preterm birth risk. In this study, isoleucine was identified as a metabolite associated with preterm birth, and MR mediation analysis indicated that CD28⁻ CD8^{br} AC contributes to preterm birth partly through the reduction of circulating isoleucine levels.

Furthermore, a potential causal relationship was identified between CD28⁻ CD8^{br} AC and preterm birth, which appeared to be mediated by an increased C2/C3 acylcarnitine ratio. Although direct evidence linking the C2/C3 ratio to preterm birth remains limited, it may indirectly influence preterm birth risk through several biological mechanisms. C2 plays a crucial role in fatty acid oxidation by facilitating the transport of acyl groups into mitochondria for energy production [41], while C3 is involved in the metabolism of branched-chain fatty acids [42]. An elevated C2/C3 ratio may reflect disrupted fatty acid metabolism, potentially leading to mitochondrial dysfunction and inadequate energy supply. Such metabolic disturbances could impair normal fetal development and placental function, thereby increasing preterm birth risk. Given that proper fatty acid metabolism is essential for placental development and function [43], an altered C2/C3 ratio might indicate compromised placental fatty acid oxidation, affecting blood flow and nutrient delivery to the fetus and ultimately contributing to fetal growth restriction and preterm birth. Although the C2/C3 ratio has not been established as an independent diagnostic biomarker for preterm birth, its integration with other clin-

cal indicators and metabolic profiles may improve comprehensive risk assessment, particularly in pregnant women with suspected metabolic abnormalities.

The findings of this study suggest that energy metabolism and branched-chain amino acid metabolism may function as critical mediators through which immune cells influence preterm birth. A deeper understanding of this immunometabolic pathway could provide valuable insights into novel mechanisms underlying preterm birth. Targeted regulation of specific immune cell subsets - such as inhibition of pathogenic CD8⁺ T cell populations - or correction of metabolic disturbances, such as modulation of carnitine metabolism, may offer potential strategies for preventing preterm birth. These results establish a new framework for investigating the immunometabolic mechanisms involved in preterm birth. Future studies integrating multi-omics data could further elucidate these pathways and facilitate the identification of clinically relevant biomarkers or therapeutic targets. We plan to further validate these findings in longitudinal pregnancy cohorts by employing high-dimensional immune phenotyping and metabolomic profiling approaches. Such efforts may help establish temporally resolved immunometabolic networks and provide mechanistic insights into trimester-specific dysregulations associated with preterm birth.

Several limitations of this study should be acknowledged. The analysis was conducted exclusively in European populations, which may limit the generalizability of the findings to other ethnic groups. Furthermore, the absence of stratified data regarding sex-specific differences or gestational age variations represents an important constraint, potentially influencing the interpretability and broader applicability of the results. In addition, the MR approach does not provide direct mechanistic evidence; thus, the proposed pathways involving CD28⁻ CD8^{br} AC and associated metabolites require validation through functional studies in experimental models, such as animal or cellular systems. Moreover, the lack of in vitro or in vivo experimental verification limits the causal inference that can be drawn from the current analyses. Finally, the identified metabolite biomarkers remain preliminary, and their predictive and therapeutic utility must be evaluated in large, prospective clinical cohorts.

Conclusion

In this study, 28 immune cell phenotypes and 47 metabolites were identified as being associated with genetic susceptibility to preterm birth. Notably, CD28⁻ CD8^{br} AC (from the Treg panel) was found to potentially increase preterm birth risk by reducing isoleucine levels or elevating the C2/C3 acylcarnitine ratio. The application of MR methods revealed a causal immunometabolic network in preterm birth, providing a critical foundation for elucidating its etiology and developing targeted interventions. These findings may contribute to improved diagnostic and therapeutic strategies, ultimately offering more effective clinical solutions for patients at risk of preterm birth.

Acknowledgements

This study was supported by Science Foundation of Suzhou Health Talent Program (GS-WS2024046); Suzhou Key Clinical Technology Research (SKY2023001); Jiangsu Province Grant BK20240371; the National Natural Science Foundation of China (Grant No. 8200-1576); Suzhou Science and Technology Support Program (SKY2023001); the Primary Research & Development Plan of Jiangsu Province (BE20-22736), and the Jiangsu Province College Students' Innovation and Entrepreneurship Training Program Project (202410285273Y).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Yuting Liang, Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Street, Suzhou 215002, Jiangsu, China. E-mail: liangyuting666@126.com; Dr. Longwei Qiao, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, No. 26, Daoqian Street, Suzhou 215002, Jiangsu, China. E-mail: qiaolongwei1@126.com

References

- [1] da Fonseca EB, Damião R and Moreira DA. Preterm birth prevention. *Best Pract Res Clin Obstet Gynaecol* 2020; 69: 40-49.
- [2] Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Vera Garcia C, Rohde S, Say L and Lawn JE. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends

since 1990 for selected countries: a systematic analysis and implications. *Lancet* 2012; 379: 2162-2172.

[3] Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, Chaiworapongsa T and Mazor M. The preterm parturition syndrome. *BJOG* 2006; 113 Suppl 3: 17-42.

[4] Goldenberg RL, Culhane JF, Iams JD and Romero R. Epidemiology and causes of preterm birth. *Lancet* 2008; 371: 75-84.

[5] Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM and LaMarca B. The role of immune cells and mediators in pre-eclampsia. *Nat Rev Nephrol* 2023; 19: 257-270.

[6] Gomez-Lopez N, Galaz J, Miller D, Farias-Jofre M, Liu Z, Arenas-Hernandez M, Garcia-Flores V, Shaffer Z, Greenberg JM, Theis KR and Romero R. The immunobiology of preterm labor and birth: intra-amniotic inflammation or breakdown of maternal-fetal homeostasis. *Reproduction* 2022; 164: R11-R45.

[7] Schober L, Radnai D, Schmitt E, Mahnke K, Sohn C and Steinborn A. Term and preterm labor: decreased suppressive activity and changes in composition of the regulatory T-cell pool. *Immunol Cell Biol* 2012; 90: 935-944.

[8] Yellon SM, Greaves E, Heuerman AC, Dobyns AE and Norman JE. Effects of macrophage depletion on characteristics of cervix remodeling and pregnancy in CD11b-dtr mice. *Biol Reprod* 2019; 100: 1386-1394.

[9] Miko E, Szereday L, Barakonyi A, Jarkovich A, Varga P and Szekeres-Bartho J. The role of invariant NKT cells in pre-eclampsia. *Am J Reprod Immunol* 2008; 60: 118-126.

[10] Manuck TA, Lai Y, Ru H, Glover AV, Rager JE, Fry RC and Lu K. Metabolites from midtrimester plasma of pregnant patients at high risk for preterm birth. *Am J Obstet Gynecol MFM* 2021; 3: 100393.

[11] Smith CJ, Baer RJ, Oltman SP, Breheny PJ, Bao W, Robinson JG, Dagle JM, Liang L, Feuer SK, Chambers CD, Jelliffe-Pawlowski LL and Ryckman KK. Maternal dyslipidemia and risk for preterm birth. *PLoS One* 2018; 13: e0209579.

[12] Jiang S, Jiang J, Xu H, Wang S, Liu Z, Li M, Liu H, Zheng S, Wang L, Fei Y, Li X, Ding Y, Wang Z and Yu Y. Maternal dyslipidemia during pregnancy may increase the risk of preterm birth: a meta-analysis. *Taiwan J Obstet Gynecol* 2017; 56: 9-15.

[13] Ren F, Jin Q, Liu T, Ren X and Zhan Y. Causal effects between gut microbiota and IgA nephropathy: a bidirectional Mendelian randomization study. *Front Cell Infect Microbiol* 2023; 13: 1171517.

[14] Swanson SA, Tiemeier H, Ikram MA and Hernán MA. Nature as a Trialist? Deconstructing the analogy between mendelian randomization and randomized trials. *Epidemiology* 2017; 28: 653-659.

[15] Birney E. Mendelian randomization. *Cold Spring Harb Perspect Med* 2022; 12: a04130.

[16] Hartley A, Sanderson E, Granell R, Paternoster L, Zheng J, Smith GD, Southam L, Hatzikotoulas K, Boer CG, van Meurs J, Zeggini E, Gregson CL and Tobias JH. Using multivariable Mendelian randomization to estimate the causal effect of bone mineral density on osteoarthritis risk, independently of body mass index. *Int J Epidemiol* 2022; 51: 1254-1267.

[17] Zhang K, Zhu J, Wang P, Chen Y, Wang Z, Ge X, Wu J, Chen L, Lu Y, Xu P and Yao J. Plasma metabolites as mediators in immune cell-pancreatic cancer risk: insights from Mendelian randomization. *Front Immunol* 2024; 15: 1402113.

[18] Orrù V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, Sole G, Lai S, Dei M, Mulas A, Virdis F, Piras MG, Lobina M, Marongiu M, Pitzalis M, Deidda F, Loizedda A, Onano S, Zoledziewska M, Sawcer S, Devoto M, Gorospe M, Abecasis GR, Floris M, Pala M, Schlessinger D, Fiorillo E and Cucca F. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. *Nat Genet* 2020; 52: 1036-1045.

[19] Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, Nakanishi T, Cerani A, Liang KYH, Yoshiji S, Willett JDS, Su CY, Raina P, Greenwood CMT, Farjoun Y, Forgetta V, Langenberg C, Zhou S, Ohlsson C and Richards JB. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. *Nat Genet* 2023; 55: 44-53.

[20] 1000 Genomes Project Consortium; Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA and Abecasis GR. A global reference for human genetic variation. *Nature* 2015; 526: 68-74.

[21] Burgess S and Thompson SG; CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. *Int J Epidemiol* 2011; 40: 755-764.

[22] Burgess S, Foley CN and Zuber V. Inferring causal relationships between risk factors and outcomes from genome-wide association study data. *Annu Rev Genomics Hum Genet* 2018; 19: 303-327.

[23] Bowden J, Davey Smith G, Haycock PC and Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted Median estimator. *Genet Epidemiol* 2016; 40: 304-314.

[24] Burgess S and Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. *Eur J Epidemiol* 2017; 32: 377-389.

- [25] Hartwig FP, Davey Smith G and Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. *Int J Epidemiol* 2017; 46: 1985-1998.
- [26] Bowden J, Davey Smith G and Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. *Int J Epidemiol* 2015; 44: 512-525.
- [27] Verbanck M, Chen CY, Neale B and Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat Genet* 2018; 50: 693-698.
- [28] Cheng H, Garrick DJ and Fernando RL. Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction. *J Anim Sci Biotechnol* 2017; 8: 38.
- [29] Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C, Morrison JV, Pan W, Relton CL and Theodoratou E. Guidelines for performing Mendelian randomization investigations: update for summer 2023. *Wellcome Open Res* 2019; 4: 186.
- [30] Zhang N and Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. *Immunity* 2011; 35: 161-168.
- [31] Esensten JH, Helou YA, Chopra G, Weiss A and Bluestone JA. CD28 costimulation: from mechanism to therapy. *Immunity* 2016; 44: 973-988.
- [32] Green ES and Arck PC. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. *Semin Immunopathol* 2020; 42: 413-429.
- [33] Shah NM, Edey LF, Imami N and Johnson MR. Human labour is associated with altered regulatory T cell function and maternal immune activation. *Clin Exp Immunol* 2020; 199: 182-200.
- [34] Tang Q, Wang X, Yang F, Liang L, Li Y, Liu W, Zhou R and Ma B. Pathophysiological associations between maternal immune activation and neurodevelopmental disorders in offspring: a comprehensive review. *Front Endocrinol (Lausanne)* 2025; 16: 1681190.
- [35] Zhang X and Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. *Front Immunol* 2021; 12: 728291.
- [36] Li H, Hou Y, Zhang S, Zhou Y, Wang D, Tao S and Ni F. CD49a regulates the function of human decidual natural killer cells. *Am J Reprod Immunol* 2019; 81: e13101.
- [37] Gu C, Mao X, Chen D, Yu B and Yang Q. Isoleucine plays an important role for maintaining immune function. *Curr Protein Pept Sci* 2019; 20: 644-651.
- [38] Guivarch C, Wu J, Lu R, Grewal J, Yu G, Li LJ, Yang J, Pang WW, Wang DD, Weir NL, Chen Z, Tsai MY and Zhang C. Longitudinal plasma amino acids during pregnancy and neonatal anthropometry: findings from the NICHD fetal growth studies-singleton cohort. *BMC Med* 2025; 23: 343.
- [39] Nie C, He T, Zhang W, Zhang G and Ma X. Branched chain amino acids: beyond nutrition metabolism. *Int J Mol Sci* 2018; 19: 954.
- [40] Davis TA and Fiorotto ML. Regulation of muscle growth in neonates. *Curr Opin Clin Nutr Metab Care* 2009; 12: 78-85.
- [41] Izzo LT, Trefely S, Demetriadou C, Drummond JM, Mizukami T, Kuprasertkul N, Farria AT, Nguyen PTT, Murali N, Reich L, Kantner DS, Shaffer J, Affronti H, Carrer A, Andrews A, Capell BC, Snyder NW and Wellen KE. Acetyl carnitine shuttling links mitochondrial metabolism to histone acetylation and lipogenesis. *Sci Adv* 2023; 9: eadf0115.
- [42] Wu M, Du Y, Zhang C, Li Z, Li Q, Qi E, Ruan W, Feng S and Zhou H. Mendelian randomization study of lipid metabolites reveals causal associations with heel bone mineral density. *Nutrients* 2023; 15: 4160.
- [43] Basak S, Mallick R and Duttaroy AK. Maternal docosahexaenoic acid status during pregnancy and its impact on infant neurodevelopment. *Nutrients* 2020; 12: 3415.