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Regulatory T cells vs Th17: differentiation of Th17  
versus Treg, are the mutually exclusive?
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Abstract: Naive CD4+ cells differentiate into T helper (Th1, Th2, Th9, Th17) and regulatory T (Treg) cells to execute 
their immunologic function. Whereas TGF-β suppresses Th1 and Th2 cell differentiation, this cytokine promotes 
Th9, Th17 and Foxp3+ regulatory T cells depending upon the presence of other cytokines. IL-6 promotes Th17, but 
suppresses regulatory T cell differentiation. Moreover, natural but not TGF-β-induced regulatory T cells convert into 
Th17 cells in the inflammatory milieu. Here an update of T cell differentiation and conversion, as well as underlying 
mechanisms are given. 
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Naive CD4+ cells differentiate into T helper 
(Th1, Th2, Th9, Th17) and regulatory T (Treg) 
cells to execute their functional activities. Th1, 
Th2 and Th17 cells play an important role in the 
protective immune response against intracel-
lular pathogens and extracellular parasites, 
nonetheless, excessive immune responses 
exerted by these T helper cells also cause auto-
immune and inflammatory diseases. Foxp3+ 

Treg cells are essential for the immune toler-
ance and play a crucial role in the limitation of 
the excessive immune and inflammatory 
response executed by these T helper cells. 
Although Treg and Th17 cells have a completely 
different function in the immune responses, 
the differentiation of both cell subsets does 
need TGF-β. In this review, I will discuss the dif-
ferentiation and relation of Tregs and Th17 
cells, in particular Treg cell conversion to Th17 
cells. I have also discussed the underlying 
mechanisms and functional significance of 
these differentiations and conversions. 

Functional characteristics and categories of 
regulatory T cells

It is now well accepted that CD4+CD25+Foxp3+ 
regulatory or suppressor cells are critically 

involved in immune tolerance and homeosta-
sis. In the early 1970s, Gershon and colleagues 
initially reported that thymocytes from his 
experimental animal model contained a such 
cell population they called “suppressor T cells” 
and assumed they belong to CD8+ cell subset 
[1]. This suggestion was not appreciated until 
Sakaguchi et al found that a population of 
CD4+CD25+ cells rather than CD8+ T cells in the 
thymus did indeed possess immunosuppres-
sive activity that is now referred to as “regula-
tory T cells or natural regulatory T cells, nTregs 
[2].

CD4+CD25+ cell population also exists in 
humans, although only the CD4+CD25bright cell 
population appears to display an immune sup-
pressive activity. A better approach for the iden-
tification of human Treg cells is to target the 
CD4+CD25+CD127-/low population [3]. More 
recently, CD4+CD25+CD127-CD45RO+Foxp3+ 
cells are identified as real human suppressor 
cells [4].

CD25 is also an activation marker for lympho-
cytes. Thus, the utility of CD25 expression as a 
Treg marker is limited since it does not discrimi-
nate between activated T effector cells and 
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Tregs. Fortunately, the nuclear transcription 
factor Foxp3 has been identified as a more spe-
cific marker for Treg cells. Foxp3 is critically 
involved in the development and function of 
Treg cells [5]. In mice, the lack of functional 
Foxp3 expression results in a fatal lymphopro-
liferative disorder known as scurfy and muta-
tions of the human FOXP3 gene results in a 
human syndrome known as IPEX (immune dys-
regulation, polyendocrinopathy, enteropathy, 
X-linked), which is characterized by autoim-
mune disease expression in multiple endocrine 
organs [6]. 

Despite the fact that Foxp3-GFP “knock-in” 
studies clearly demonstrate that there is a very 
broad spectrum of CD25 expression on Treg 
cells and that the intranuclear location of Foxp3 
makes it difficult to use this protein for immu-
noaffinity-based purification methods although 
recent study has identified a new technique to 
improve the isolation of the live Treg cells [7], 
CD4+CD25+ cells are still widely used in the field 
of the biology of Treg cells without using geneti-
cally modified tissues, particular in human 
studies. Although Foxp3 is considered as a spe-
cific marker for Tregs in mouse, this may not be 
the case for human Tregs. Recent data demon-
strate that FOXP3 (FOXP3 for human cells and 
Foxp3 for mouse cells) may be upregulated in 
rapidly proliferating human T cells and might be 
viewed as an activation marker for human T 
cells [8]. More studies are needed to determine 
how FOXP3 might also be expressed on rapidly 
proliferating human T effector cells and more 
specific molecular markers to identify human 
Tregs are also desirable.

Many studies have revealed that the numbers 
of CD4+CD25+ cells and CD4+FOXP3+ cells in 
patients with various autoimmune diseases are 
diminished and that this Treg deficit is associ-
ated with disease severity and activity [9]. The 
peripheral Treg deficit in patients with autoim-
mune diseases is not resultant from their redis-
tribution to different organs [10]. However, 
diminishment of Tregs in the autoimmune dis-
eases is not a universal finding. Other groups 
have actually observed the converse; that the 
numbers of human CD4+CD25+ cells can be 
increased under these circumstances [11]. 
Since CD25 and FOXP3 can also be classified 
as activated makers, this aspect may reflect 
the disparity between these findings. Miyara et 
al have further classified human FOXP3+ cells 

into three cell subsets: CD45RA+FOXP3low, 
CD45RA-FOXP3hi and CD45RA-FOXP3low. 
Functional assay demonstrated that the 
CD45RA-FOXP3low subset contains non-sup-
pressor cells, that the CD45RA+FOXP3low sub-
set contains resting Tregs and that active Tregs 
are found in the CD45RA-FOXP3hi subset. Using 
these criteria, they found that Treg cell num-
bers were indeed diminished in patients with 
active autoimmune disease [4]. 

In addition to Treg frequency, others have also 
reported that the functional activity of Tregs 
has been altered in some autoimmune diseas-
es. For example, the suppressive activity of 
CD4+CD25+ cells isolated from patients with 
active rheumatoid arthritis was significantly 
reduced [12]. It is possible that some intrinsic 
defect in CD4+CD25+ cells in these patients 
accounts for their reduced functional activity. 
Similarly, the frequency of CD4+CD25+ cells in 
patients with multiple sclerosis (MS) is unal-
tered, however, the functional activity of these 
cells to suppress T cell immune responses 
including antigen-specific or non-specific stimu-
lation is diminished [13-15]. These results sug-
gest that the manipulation of nTregs to restore 
their numbers and function may be 
therapeutic.

Although most reports claim that CD4+CD25+ in 
peripheral blood mononuclear cell (PBMC) 
belong to natural Treg cells, we and others 
would suggest that CD4+CD25+ cells in PBMCs 
consist of a mixture of both thymic-derived 
nTregs and those induced in the periphery 
(induced Tregs, iTregs) [16-18]. Until today, 
there are no specific markers that can distin-
guish nTregs from iTregs, although Shevach’s 
group recently reported that Helios, an Ikaros 
family transcription factor, may be helpful for 
distinguishing these cell population [19], while 
others reported that Helios is also highly 
expressed on Th2 and T follicular helper cells 
and may be associated with the differentiation 
of these cells [20]. We recently observed acti-
vated Foxp3- T cells also express Helios (unpub-
lished data). NrP-1 expression provides another 
biological marker to distinguish nTregs from 
iTregs [21, 22], however, it specificity needs to 
be further validated since others reported that 
NrP1 is not a marker for human Treg cells [23]. 
it is, therefore, necessary to identify more reli-
able molecular marker(s) to distinguish various 
subsets of Treg cells.
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It has been well known that the adoptive trans-
fer of nTregs can prevent the appearance and 
development of autoimmune diseases in many 
animal models. Nonetheless, there are also 
considerable numbers of studies demonstrat-
ing that the therapeutic effect of nTregs on 
established autoimmune diseases is fairly 
unsatisfactory. For example, the efficacy of 
adoptive transfer of nTregs to established colla-
gen-induced arthritis (CIA) is poor for control-
ling the disease progression [24]. Injection of 
nTregs to established lupus had mild protective 
effects and it was unable to suppress lupus glo-
merulonephritis and sialoadenitis [25, 26]. 
Moreover, adoptive transfer of nTregs failed to 
control Th17-mediated autoimmune gastritis 
[27].

There are several possibilities that could 
explain the inability of nTregs to treat CIA and 
other autoimmune diseases. First, pro-inflam-
matory cytokines may hamper their suppres-
sive activity. Pasare et al have reported that 
Treg suppressive activity can be abolished by 
IL-6 [28]. Valencia et al also revealed that ele-
vated TNF-α may interfere with the suppressive 
capacity of nTregs in patients with rheumatoid 
arthritis (RA) [12]. There is no question that 
these pro-inflammatory cytokines are elevated 
in patients with RA and other autoimmune dis-
eases [29]. Secondly, Th17 cells may be resis-
tant to the suppressive effects exerted by 
nTregs. This could explain how nTregs are able 
to prevent development of disease before Th17 
cells become established, while demonstrating 
ineffective suppression after disease expres-
sion is evident where Th17 cells have been 
developed. Third, nTregs are inherently unsta-
ble and can be converted to Th1, Th2, Th17 and 
Tfh effector cells when they encounter an 
inflammatory milieu [24, 30-34]. 

There are still other reasons that could hamper 
the utilization of nTregs in clinical therapy. First, 
the intranuclear location of Foxp3 makes it dif-
ficult to purify human nTregs for functional 
study. Second, nTregs constitute only 1-2% of 
human CD4+ T cells and this is also difficult to 
gain the sufficient numbers for therapeutic 
requirement. Although several groups have 
claimed that expansion of human nTregs in 
vitro can overcome this problem [35], other 
laboratories have reported that repeated 
expansion alters Treg phenotype and function 
[36]. Third, the expansion of nTregs from 

patients with RA and MS for therapeutic pur-
poses may be problematic due to potential 
other intrinsic defects in RA and MS nTregs. 
nTreg instability, Teff cell resistance and the 
influence of an inflammatory milieu may indi-
vidually or collectively account for the inability 
of nTregs to control established autoimmune 
diseases. 

Of great interest, the plasticity or instability of 
nTregs under inflammatory conditions could be 
overcome with cytokines or other compounds. 
Our group recently reported that while nTregs 
become Th17 cells in the presence of IL-6, 
these cells also lost their suppressive role in 
the progression of the lupus-like syndromes 
and CIA. We also determined that pretreatment 
of nTregs with IL-2 combined with TGF-β, or all-
trans retinoic acid (atRA), a vitamin A metabo-
lite, can render these nTregs resistant to Teff 
cell conversion and allow them to begin to sup-
press lupus and CIA progression [34, 37]. 
Recently, we found that atRA also maintains 
the stability of nTregs in human (unpublished 
data). This indicates that the manipulation of 
nTregs still holds a potential promise in the 
treatment of autoimmune diseases.

Like nTregs, iTregs generated ex vivo with IL-2 
and TGF-β also share similar phenotypes relat-
ed to Treg cells, and suppress immune respons-
es and immune cell-mediated diseases. 
Importantly, adoptive transfer of iTregs not only 
prevents autoimmune diseases in many animal 
models, but also attenuates the disease syn-
dromes when iTregs were infused when or after 
diseases are established [38-47]. It is very like-
ly that iTregs are stable and sustain their 
immune suppressive activity in the inflamma-
tory condition [34]. Because sufficient numbers 
of iTregs can be easily gained and antigen-spe-
cific iTregs can be easily developed in the cer-
tain environment, it implicates that the manipu-
lation of iTregs has a great potential to treat 
autoimmune and inflammatory diseases.

iTregs and their differentiation and develop-
ment 

CD4+ Treg subsets can be further classified into 
three main populations, thymus-derived, natu-
rally occurring CD4+CD25+Foxp3+ cells (nTregs) 
described as above, endogenous induced Tregs 
in vivo and those that can be induced ex vivo 
from CD25- precursors in peripheral lymphoid 
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organs (iTregs) [48]. Although IL-10-induced Tr1 
cells represent another cell population of 
iTregs, they do not express Foxp3 and produce 
considerable levels of IL-10 [49]. As IL-10 may 
promote autoimmune response through stimu-
lating B cell activation and its level is highly 
increased in patients with active systemic 
lupus erythematosus (SLE) [50], Tr1 may not be 
suitable for the treatment of SLE and other 
autoimmune diseases. TGF-β-induced Tregs 
will be defined as iTregs in this review.

While Yamagiwa et al reported that TGF-β pro-
motes endogenous CD4+CD25+ nTreg cell 
expansion [51], our group first reported that 
TGF-β does have an ability to induce CD4+CD25- 
cells to become CD4+CD25+ Treg cells in vitro 
[48]. When Foxp3 was identified as Treg mark-
er, several groups immediately found that TGF-β 
can induce Foxp3 expression in iTregs [38, 39, 
52]. Additionally, other studies have also clearly 
demonstrated the development of Foxp3+ Tregs 
in vivo is also through TGF-β-dependent mecha-
nism [53].

Phenotypically, both nTregs and iTregs express 
similar molecules such as CD25, CD122, CTLA-
4, GITR, CCR4, CD62L, PD1 and Foxp3, and 
express CD45RBlow in mice and CD45RO in 
humans. CD4+CD25+Foxp3+ cells in the periph-
ery have been considered as a mixed popula-
tion comprised of nTregs and iTregs. Although 
Helios and NrP-1 might possibly help to distin-
guish nTregs from iTregs [19, 21], more specific 
molecular markers are needed to distinguish 
both Treg cell populations. 

Although both nTreg and iTreg subsets share 
similar phenotypes and display comparable 
suppressive activity, several factors distinctly 
affect their development, stability and function. 
First, nTregs develop in the thymus through rec-
ognition of self-antigens. A high and medium 
affinity cognate interaction between self-pep-
tide: MHC complex and T cell receptor is 
required for this process. They also require 
CD28 co-stimulation because they do not 
develop in CD28 deficient mice [54]. Although 
IL-2 and TGF-β play an important role in the 
maintenance of the pool size of nTregs, both 
cytokines are redundant for their development 
since both IL-2 and TGF-β knock-out mice con-
tain CD4+CD25+Foxp3+ regulatory T cells in the 
thymus [55]. Although one group recent report-
ed that TGF-β is essential for the nTreg cell 

development [56], most researchers believe 
that TGF-β is redundant in nTreg development 
although this cytokines is important for the 
maintaining pool size of the nTreg cells [57]. 

By contrast, the generation of iTregs is depen-
dent upon the presence of both TGF-β and 
TGF-β receptor signals since the absence of 
TGF-β or TGF-β receptors or blocking the TGF-β 
receptor signal prevents the induction of Foxp3 
expression and the subsequent functional sup-
pressive capacity [33, 58]. Similarly, IL-2 plays 
an essential role in the differentiation of Foxp3+ 

iTregs. TGF-β fails to induce Foxp3+ iTregs from 
naïve CD4+CD25- precursor cells in IL-2 defi-
cient mice [59]. The conversion of CD4+CD25- 
cells in the periphery to CD25+ iTregs requires a 
suboptimal TCR stimulation and thus environ-
mental antigens may sufficiently trigger iTreg 
development. The absence of CD28 co-stimula-
tory molecules does not affect the differentia-
tion of iTregs (Lan Q and Zheng SG, unpublished 
data), but inhibitory CTLA-4 co-stimulation and 
CTLA-4/B7.1 signaling is crucially required for 
the generation of iTregs [60]. This conclusion is 
further documented by an observation that the 
blocking of CTLA-4/B7.1 signal abolished the 
capacity of TGF-β to induce iTregs in wild type 
mice [61]. OX40/OX40L, an alternate CD28/
B7-independent co-stimulatory pathway, also 
negatively regulates the development and func-
tion of both nTregs and iTregs. While stimula-
tion of mature nTregs by OX40 results in the 
loss of suppression of T cell proliferation and 
cytokine production, the generation of iTregs is 
completely abolished by OX40 although OX40 
does not affect the generation of nTregs [62]. 

Recently, Housley et al reported that while the 
TNF-R2 expression is essential for nTregs-medi-
ated suppression of colitis, its expression is not 
required for iTreg-mediated suppression [63]. 
Differing IL-2 and co-stimulatory molecule 
requirements for Treg development, and TNFRII 
expression requirements for the suppressive 
function of both nTregs and iTregs suggests 
that nTregs and iTregs are possibly heteroge-
neous populations and that integration of both 
Treg subsets is required for the maintenance of 
normal immune homeostasis. It is also likely 
that both nTreg and iTreg subsets can either act 
in concert or separately on different targets. In 
addition, as anti-TNF-α therapy has been widely 
used in treating patient with rheumatoid arthri-
tis, further studies are required to understand 
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whether this therapy differentially regulates 
nTregs and/or iTregs development in individual 
diseases.

Function and differentiation of Th17 cells

Recent studies have provided a line of new evi-
dence demonstrating the existence of a third 
subset of effector CD4+ cells in addition to the 
classic Th1 and Th2 cells, the differentiation 
and growth of which is directed by a combina-
tion of TGF-β1 and IL-6 or IL-21 [64-67]. These 
T cells have been designated Th17 cells based 
on their production of IL-17A and F. Despite the 
evidence for the role of Th1 cells in autoim-
mune disease, recent incontrovertible findings 
have revealed that pathologies previously 
attributed to Th1 cells may in fact be mainly 
mediated by Th17 cells in some autoimmune 
diseases. The best evidence for this comes 
from studies using anti-IFN-γ-treated mice, IFN-
γ- or IFNR-deficient mice, mice deficient in 
IL-12p35, IL-12 receptor β2 (IL-12Rβ2), or 
STAT1, which are critical molecules in IL-12/
IFN-γ–Th1-mediated responses, are capable of 
developing even severe collagen-induced 
arthritis (CIA) or experimental autoimmune 
encephalomyelitis (EAE) despite interference of 
the proper functioning of the prototypic Th1 
cytokine IFN-γ [68-73]. Moreover, these find-
ings concur with reports demonstrating that 
CIA is suppressed in IL-17-deficient mice and 
that administration of neutralizing anti-IL-17 
antibodies at preclinical and advanced stages 
significantly reduces disease severity [74]. 
Similarly, IL-17R-deficient mice or IL-17R IgG1 
fusion protein significantly attenuates colonic 
inflammation in acute trinitrobenzenesulfonic 
acid (TNBS)-induced colitis although this pro-
tection occurred in the presence of equivalent 
induction of local IL-23 and higher levels of 
IL-12p70 and interferon-gamma in IL-17R 
knockout mice compared with wild-type mice 
[75].

Interleukin-17 (IL-17A) is one of the prototypic 
IL-17 family members that are predominately 
produced by CD4+ memory cells [76]. IL-17 
receptor is ubiquitously expressed and ligand 
binding causes the secretion of a range of other 
factors known to drive inflammatory responses 
such as rheumatoid arthritis (RA), multiple scle-
rosis (MS) and colitis [71, 72, 75]. IL-17 stimu-
lates epithelial, endothelial, and fibroblastic 
cells to secrete pro-inflammatory factors such 

as IL-6, IL-8, GM-CSF, CXCL1, CCL20 as well as 
prostaglandin E2 [77]. Secreted CXCL1 and 
CCL20 result in the recruitment of neutrophils 
and/or macrophages to the area of inflamma-
tion and enable cell movement and tissue dam-
age. Thus, research directed at controlling 
autoimmune inflammatory diseases will require 
a better characterization of the developmental 
and functional properties of Th17 in these 
diseases.

Naive CD4+ T cells can be induced to differenti-
ate towards Th1, Th2, Th9, Th17 and Treg phe-
notypes according to the local cytokine milieu. 
While IL-12 favors the differentiation towards 
Th1 cells through transcription factor T-bet 
[78], IL-4 towards Th2 via GATA-3 [79], IL-2 and 
TGF-β towards iTregs via Foxp3 [38, 39, 48], 
the combination of TGF-β and IL-6 induces 
Th17 cells through transcription factor orphan 
nuclear receptor RORγt [80]. IL-21 could substi-
tute for IL-6 to promote Th17 differentiation in 
this condition [67]. IL-23 was initially consid-
ered as a key cytokine to induce Th17 cell pro-
duction [81], however, recent studies revealed 
it is dispensable for the differentiation of Th17 
cells but critical for Th17 expansion and surviv-
al [82].  IL-1β also promotes the allergic asthma 
by enhancing Th17 cell differentiation [83]. 
TGF-β signal is crucial for Th17 cell differentia-
tion although one group recently reported that 
Th17 cells can be differentiated in the lack of 
TGF-β signal [84].

It has been demonstrated that the skewing of 
naïve T cells towards Th17 and iTreg is mutually 
exclusive. While we and others have recently 
revealed IL-2 critically drives TGF-β-treated 
CD4+ cells to differentiate into Foxp3+ iTreg 
cells [59, 85], IL-6 or IL-21, however, exclusively 
drives TGF-β-treated T cells to become Th17 
cells [64-67]. It seems IL-6 has a dominate 
effect on promoting Th17 cells compared to 
IL-2 promoting Treg cell differentiation. Our 
data demonstrated that naive CD4+ cells pref-
erentially differentiate into Th17 rather than 
Tregs in the presence of IL-6, IL-2 and TGF-β no 
matter whether low or high doses of IL-2 are 
included in the cultures although others have 
reported that IL-2 constrains Th17 cell differen-
tiation [86].

Foxp3+ Tregs conversion to Th17 and other T 
effector cells

While Foxp3+ nTregs suppress Th1 and Th2 cell 
differentiation and function, it is less defined 
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whether these cells similarly suppress Th17 dif-
ferentiation and function. Yang et al have 
reported that Foxp3 inhibited Th17 differentia-
tion by antagonizing the function of the tran-
scription factors RORγt and ROR. However, IL-6 
overcame this suppressive effect of Foxp3 on 
Th17 differentiation [87]. It has been known 
that adoptive transfer of nTregs to Th17-
mediated diseases was less therapeutic [24, 
27], suggesting that nTregs may be less effec-
tive on suppressing Th17 cell differentiation, 
function and Th17-mediated diseases.

In fact, nTregs can convert into Th17 cells and 
other T effector cells in the certain environ-
ments. As TGF-β either promotes Foxp3+ iTregs, 
Th9 or 17 cells depending upon other cytokines 
involved (Figure 1), and as nTreg cells express a 
membrane-bound form of TGF-β and this TGF-β 

has functional activities, it is reasonable to 
assume that IL-6 can convert nTregs to become 
Th17 and other T helper cells [30]. To demon-
strate this, Xu et al used the purified nTregs 
from Foxp3 GFP knock in-mice to exclude the 
possibility that CD4+CD25+Foxp3- non-Tregs 
made this conversion. We used both wild type 
and Foxp3 GFP knock-in mice to confirm this 
observation [34]. Endogenous TGF-β produced 
by nTregs is critically required for this conver-
sion since blocking TGF-β receptor I signal or 
using nTregs from TGF-β receptor II dominant 
mice resulted in the failure of Th17 conversion 
[33, 34]. Moreover, activation of nTregs with 
IL-6 resulted in decreased Foxp3 expression 
and suppressive activity both in vitro and in 
vivo. Furthermore, adoptive transfer experi-
ments revealed that nTregs treated with IL-6 ex 
vivo lost their ability to protect mice from a 

Figure 1. Multi effects of TGF-β on regulatory and effector T cells and interrelation between Treg and T effector cells. 
TGF-β inhibits the differentiation, proliferation and function of various immune cells including Th1, Th2 and Tfh cells. 
TGF-β also promotes iTreg, Th9 and Th17 cell differentiation depending upon the cytokine environment. Additionally, 
TGF-β inhibits maturation and function of other immune cells such as CD8+ CTL, NK cell, DC and macrophages. Both 
nTregs and iTregs suppress Th1 and Th2, only iTregs suppress Th17 cells. nTregs convert into Th1, Th2, Th17 and 
Tfh cells and lost suppressive activity, iTregs are resistant to T effector cell conversion except Th1 but maintaining 
suppressive activity.
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lupus-like disease [34]. Moreover, it has recent-
ly been demonstrated that nTregs can be con-
verted into Th17 cells in an in vivo model [88]. 
Others have also reported that Th17 cells 
derived from Tregs share common features 
with Th17 cells generated from naive precur-
sors, including expression of the chemokine 
receptor CCR6 [89]. This conversion is not the 
result of outgrowth of a contaminating Th17 
precommitted population because it is indicat-
ed by the demonstration of double-positive 
cells for the Treg transcription factor Foxp3 and 
IL-17 [34, 90]. Human nTregs also can convert 
into Th17 cells when stimulated with IL-1 and 
IL-6 although the role of TGF-β in this conver-
sion is less clear. IL-17 production from Treg 
cells also occurs  in vivo [91]. Thus, in an IL-1 
and/or IL-6 rich inflammatory milieu, nTregs 
may be unstable and lose the functional 
activity.

In addition to Th17 cell conversion, nTregs can 
be converted into other subsets of T effector 
cells. Wan and Flavell found that Foxp3+ nTregs 
can convert to Th2 cells when endoge-
nous  Foxp3  gene expression is attenuated in 
these cells [31]. Interestingly, T  cells express-
ing decreased Foxp3 still preferentially became 
Th2 effectors even in a Th1-polarizing environ-
ment. It is therefore likely that 
these  cells  instructed Th2 differentiation of 
conventional T  cells, which contributed to the 
immune diseases observed in these mice [31]. 
Moon et al also reported that acetyl salicylic 
acid  also changes  Th17-type into Th2-type 
inflammation cells in mice model with asthma 
[92]. When these cells were strongly stimulated 
with antigen or anti-CD3/CD28 antibodies, 
nTregs also lost Foxp3 and became Th1 cells 
[33]. IL-2 also promotes Treg cells to become 
Th1-like cells although Foxp3+INF-γ+ cells are 
still suppressive [93]. In human, nTregs can 
also be converted into Th1 cells and most lost 
suppressive activity (Lu L and Zheng SG, manu-
script submitted). Moreover, these cells can 
become T follicular helper (Tfh) cells [32]. Tsuji 
et al have demonstrated that adoptive transfer 
of nTregs to immune deficient mice, Foxp3+ 
CD4+ cells can differentiate into Tfh cells in 
mouse Peyer’s patches. The conversion of 
Foxp3+ T cells into Tfh cells requires the loss of 
Foxp3 expression and subsequent interaction 
with B cells [32]. 

Previous studies have clearly demonstrated 
that naive rather than memory CD4+ cells pref-

erentially differentiate into Foxp3+ Tregs cells in 
the presence of exogenous TGF-β [59]. It is no 
surprise that Th1, Th2 and Th17 cells are 
unable to differentiate into Foxp3+ Treg cells 
even they have been primed with exogenous 
TGF-β (Zheng SG et al, unpublished data). 
However, Th17 cells can be converted into Th1 
and Th2 cells, suggesting that Th17 cells are 
not stable phenotypes [94, 95]. The functional 
significance of Th17 to Th1 and Th2 cell conver-
sion is unclear so far. In addition, the epigenetic 
modifications were remarkably stable during 
these cells conversion [96].

In sharp contrast, TGF-β-induced iTregs were 
found to be completely resistant to the Th17 
conversion by IL-6. This difference cannot be 
explained by insufficient production of TGF-β by 
iTregs since both nTregs and iTregs expressed 
similar levels of membrane-bound TGF-β (20-
25%) and secreted similar levels of active TGF-β 
(about 40 ng/ml). Furthermore, the resistance 
of iTregs to Th17 conversion also cannot be 
explained by alterations in TCR stimulation 
since anti-CD3/CD28 activated nTregs can still 
differentiate into Th17 cells upon IL-6 stimula-
tion. To account for this difference between 
nTregs and iTregs, we found that the combina-
tion of IL-2 and TGF-β down-regulated IL-6 
receptor expression and function in activated T 
cells. We have observed that both cytokines 
markedly decreased IL-6 receptor alpha-chain 
(CD126) and beta-chain (CD132) expression on 
CD4+ cells and these cells expressed signifi-
cantly lower level of phosphorylated STAT3 
when stimulated by IL-6 [34]. Unexpectedly, 
Yang et al had a conversed report showing 
iTregs can convert into Th17 cells in the pres-
ence of pro-inflammatory cytokines [87]. To 
solve this contradiction, O’Connor et al re-
investigated the fates of both nTregs and iTregs 
in the pro-inflammatory condition. They did find 
that iTregs are completely resistant to Th17 
conversion although nTregs do in the presence 
of IL-6, IL-23 and TGF-β [97]. Interestingly, they 
also demonstrated that iTregs rather than 
nTregs became Th1-like cells. Although these 
Th1-like cells began to express T-bet and pro-
duce INF-γ, they are less pathogenic compared 
to conventional Th1 cells, conversely, they still 
suppressed naive T cell clonal expansion and 
protected against the development of EAE [97]. 

We further observed the differences of stability 
of both Treg cell subsets in vivo. About 50% of 
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nTregs converted to Th17 cells in draining LNs 
ten days after cells transfer to established col-
lagen-induced arthritis. Conversely, iTregs were 
completely resistant to Th1, Th2, and Th17 cell 
conversion. When these cells were sorted for in 
vitro analysis, nTregs mostly lost suppressive 
activity, whereas the functional activity of iTregs 
was mostly intact [88]. These results indicate 
iTregs are stable and functional in the inflam-
matory condition and may have a greater 
advantage to treat autoimmune and inflamma-
tory diseases compared with nTregs.

Nonetheless, others have also reported that 
TGF-β-induced iTregs were unstable in vitro 
[98] and in vivo following antigen-stimulation 
[99], and lack protective activity to prevent 
lethal graft versus host disease (GVHD) [98, 
100]. It has been claimed that the Foxp3 pro-
moter on TGF-β-induced iTregs but not nTregs is 
methylated and accounts for their instability 
[98]. However, we have recently observed that 
the methylation status in Foxp3 gene loci does 
not affect Foxp3 stability. Moreover, addition of 
atRA to TGF-β promoted iTreg stability and 
maintenance in vitro and in vivo and this effect 
is unrelated to CpG methylation in Foxp3 pro-
moter but related to acetylation of Foxp3 his-
tone [101]. Others have also observed protec-
tive human TGF-β-induced Tregs that exhibit 
methylated Foxp3 [35]. To explain these contro-
versial results, we consider the technical rea-
sons are possibly responsible for the genera-
tion of unstable, ineffective TGF-β-induced 
iTregs in these groups. They have used high 
concentrations of plate-bound anti-CD3 with 
TGF-β, whereas our group has used suboptimal 
concentrations of anti-CD3 and anti-CD28 
coated beads with IL-2 and TGF-β. It has been 
known that strong, sustained TCR stimulation 
activates the mTOR/Akt signaling pathway 
which facilitates Teff cell differentiation and 
inhibits Foxp3 expression and Treg differentia-
tion [102]. Treg generation is best established 
with suboptimal TCR stimulation that facilitates 
Foxp3expression [16].

These studies also raise the possibility that 
nTregs and iTregs may have distinct roles in the 
adaptive immune response. In response to 
microbial infections nTregs could possibly serve 
as a first line of host defense by differentiation 
to IL-17 producing cells, which contribute to 
neutrophil mobilization and have other pro-
inflammatory effects. After eradication of 

invading pathogens, the late appearance of 
TGF-β-induced iTregs would not only terminate 
the antigen-specific response, but also prevent 
the emergence of non-specifically stimulated or 
cross-reactive self-reactive T cells. Accordingly, 
failure of this mechanism could result in an 
immune-mediated disease.
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