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Abstract: To investigate autonomic substrates of brainstem-gut circuitry identified using trans-synaptic tracing with 
pseudorabies virus (PRV)-152, a strain that expresses enhanced green fluorescent protein, and PRV-614, a strain 
that expresses enhanced red fluorescent protein, injecting into the rat rectum wall. 3-7 days after PRV-152 injection, 
spinal cord and brainstem were removed and sectioned, and processed for PRV-152 visualization using immuno-
fluorescence labeling against PRV-152. 6 days after PRV-614 injection, brainstem was sectioned and the neuro-
chemical phenotype of PRV-614-positive neurons was identified using double immunocytochemical labeling against 
PRV-614 and TPH. We observed that the largest number of PRV-152- or PRV-614-positive neurons was located in the 
gigantocellular reticular nucleus (Gi), lateral paragigantocellular (LPGi), rostral ventrolateral reticular nucleus (RVL), 
solitary tract nucleus (Sol), locus coeruleus (LC), raphe magnus nucleus (RMg), subcoeruleus nucleus (SubCD). 
Double-labeled PRV-614/tryptophan hydroxylase (TPH) neurons were concentrated in the RMg, LPGi and Sol. These 
brainstem neurons are candidates for relaying autonomic command signals to the gut. The autonomic substrate of 
brainstem-gut circuitry likely plays an important role in mediating different aspects of stress behaviors.

Keywords: Brainstem-gut circuitry, transsynaptic tract-tracing, pseudorabies virus

Introduction

Knowledge on the neural circuit bases of brain-
stem-gut crosstalk can help us to explain many 
mechanisms associated with the bidirectional 
communication system between the central 
nervous system and the gastrointestinal tract, 
e.g., enteropathy and neurological function or 
certain psychiatric conditions [1-4]. Chronic re- 
ctal pain syndromes are therapeutically chal-
lenging because both physical and drug thera-
py management often are ineffective by pain 
physicians [5]. There is growing evidence that 
the neuronal connections to the rectum are 
important for studying the pathogenesis and 
treatment of digestive symptoms and chronic 
rectal syndrome [6-13]. The recent observation 
provided the interaction between irritable bo- 
wel syndrome and cortico-basal ganglia-thala-
mocortical loops [7, 14]. A major challenge in 
the cerebral neuronal connections to the rec-

tum is to unravel the complex matrix of func-
tional connections that characterize neuroa- 
natomical loops or circuits within the central 
nervous system [15]. 

Retrograde transneuronal transport of pseu- 
dorabies virus (PRV) has proven to be especial- 
ly useful to unravel multi-synaptic pathways 
within autonomic circuits [16-28]. There is gen-
eral agreement that a self-amplifying virus trac-
er PRV-152, a strain that expresses enhanced 
green fluorescent protein (GFP), and PRV-614, a 
strain that expresses enhanced red fluorescent 
protein (RFP), have been successfully used as 
transneuronal tracers in the central nervous 
system [17, 20-22, 29-42]. Previous physiolo- 
gical investigations have suggested the exis-
tence of the brain-gut axis that coordinates the 
crosstalk of enteric and central nervous system 
[43-45]. Traditionally these brain-gut crosstalks 
have been postulated to be mainly involved in 
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cess to food and water. After PRV-152 or PRV-
614 injection, they were housed individually. All 
animal treatments and procedures conformed 
to the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals and 
were approved by the local Animal Care and 
Use Committee.

Virus injections, perfusion and tissue prepara-
tion

After rats were anesthetized with a mixture of 
ketamine and xylazine, the anterior wall of the 
rectum at a distance of 2 mm from the anal 
verge was exposed for injection under direct 
vision. 2 µl injections of PRV-152 (PRV-152 in- 
jection group, n=16) or PRV-614 (PRV-614 in- 
jection group, n=3) was injected into the rec-
tum wall (0.5 µl per injection at 4 injection sites 
per rat) using a 30-gauge needle connected to 
a Hamilton syringe (10 µl) under microscopic 
guidance [35, 36, 46-48]. After each injection 
site was swabbed with a cotton-tip applicator  
to minimize nonspecific viral spread [48].

In PRV-152 group, the time course of infection 
was empirically determined by carefully observ-
ing the pat tern of infect ion at exactly 3 d (n=3), 
4 d (n=3), 5 d (n=4), 6 d (n=3) and 7 d (n=3) 
survival times. After a survival time of 3-7 d 
(PRV-152 group), or after survival for 6 days 
(PRV-614 group), the animals were deeply an- 
esthetized and euthanized with an injection of 
sodium pentobarbital [49, 50], and perfused 
through the heart with 100 ml of 0.9% saline 
solution, followed by 200 ml of 4% (W/V) para-
formaldehyde made in 0.1 mol/L sodium phos-
phate buffer (pH=7.4). After the brain tissues 
were embedded in optimal cutting temperature 
(OCT) compound, series of transverse sections 
were cut at 30 μm-thick using a freezing micro-
tome as groups of 4 sections per sample. As a 
note, this study focused on transverse sections 
from the spinal cord and brainstem region. 

Fluorescence immunohistochemistry and tis-
sue analysis

PRV-152-infected neurons express the green 
fluorescent protein and PRV-614-infected neu-
rons express the red fluorescent protein for 
direct visualization under fluorescence micro-
scope. A band pass filter for Alexa 488 (excita-
tion of 500 nm, emission of 535 nm) was used 
to identify cells infected by PRV-152. The red 

Table 1. distribution of PRV-152-labeled neu-
rons following injection into the rectum wall

Areas
PRV-152-positive neurons

d3 d4 d5 d6 d7
Spinal cord +/- + + +
RPa +/- + + ++ +
RVMM (RMg+LPGi) +/- + ++ +++ ++
RVL + ++ +++ +
A5 + + + +
Sol + + ++ +/-
DMV +/- + + +/-
Amb +/- + + +/-
LC + ++ +++ +
SubCD + ++ +++ +
Gi +/- ++ ++ +/-
Icp +/- + + +/-
LPN + +++ +++ +
PRN ++ ++ ++ +/-
PAG, ventrolateral ++ ++ +++ +
PAG, dorsal + ++ ++ +
The number of PRV-152-positive neurons was qualita-
tively estimated in the whole brains of mice. Semi-quan-
titative estimates of the signals are indicated as follows: 
+++ (high: more than 20 PRV-152-positive neurons 
per brain section); ++ (moderate: between 10 and 20 
PRV-152-positive neurons per brain section); + (low: less 
than 10 PRV-152-positive neurons per brain section); +/- 
(low, inconsistent staining across the animals: less than 
5 PRV-614-positive neurons per brain section in most 
animals but with no staining observed in some animals); 
and - (No PRV-152-positive neurons). Amb: the nucleus 
ambiguous, LC: locus coeruleus. Gi: the gigantocellular 
reticular nucleus, LPGi: lateral paragigantocellular, 
RVL: rostral ventrolateral reticular nucleus, Sol: solitary 
tract nucleus, RMg: raphe magnus nucleus, SubCD: 
subcoeruleus nucleus, RPa: raphe pallidus nucleus, Icp: 
inferior cerebellar peduncle, PAG: periaqueductal gray, 
LPN: lateral parabrachial nucleus, PRN: Pontine reticular 
nucleus.

neuropeptide and neurotransmitter, e.g. brain-
gut peptide, 5-HT, etc. There are no data about 
brainstem modulating the rectal function. The 
aim of this study was to identify the autonomic 
substrates of brainstem-gut circuitry identified 
using trans-synaptic tracing with pseudorabies 
virus recombinants PRV-152 and PRV-614.

Material and methods

Animal maintenance and care

Adult male Sprague Dawley rats (200-250 g 
body weight) were maintained in a standard 
12-h light, 12-h dark cycle with ad libitum ac- 
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Figure 1. Micrographs of transverse sections from the medulla oblongata 6 days after PRV-152 injection. (A) Coronal 
medullary section (Bregma -11.64 mm). (Ba-Bf) High-magnification, split-channel images of the corresponding Gi, 
LPGi, RVL, Amb, Sol and SPVe area, respectively, shown in (A), illustrating a cluster of virally labeled (green) neurons. 
4 V, 4th ventricle. Amb, ambiguus nucleus. Gi, gigantocellular reticular nucleus. GiA, gigantocellular reticular, alpha. 
Icp, inferior cerebellar peduncle. LPGi, lateral paragigantocellular. Py, pyramidal tract. pPr, prepositus nucleus. Rob, 
raphe obscurus nucleus. RPa, raphe pallidus nucleus. RVL, rostral ventrolateral reticular nucleus. Sol, solitary tract 
nucleus. SPVe, SpVe spinal vestibular nucleus. Scale bar 1 mm for (A).

fluorescence of CY3 was used to identify cells 
infected by PRV-614, whereas the green fluo-
rescence of Alexa Fluor 488 was used to iden-
tify neurons containing 5-HT, and the blue fluo-
rescence of Alexa Fluor 350 was used to id- 
entify TPH-containing neurons. Images were 
overlaid using Adobe Photoshop, and double-
labeled neurons were presented as yellow or 
pink. The neuroanatomical nomenclature is 
defined from the rat atlases of Paxinos and 
Franklin [51]. Photographs were taken with a 
fluorescence microscope Olympus IX81 (Oly- 
mpus, Tokyo, Japan) and the resulting TIFF files 
were imported into the software (Version 10, 
ACD Systems, Inc.). 

Results

Temporal pattern of multisynaptic projections 
after PRV-152 injection into the rectum wall

Animals used in this study (n=15) were arranged 
into five groups based on their survival times 

(Table 1): earliest survival group (survival ti- 
me=3 days, n=3), short survival group (4 days, 
n=3), intermediate survival group (5 days, n=3), 
late survival group (6 days, n=3) and latest sur-
vival group (7 days, n=3). Initial analysis fo- 
cused on qualitative characterization of areas 
that contained PRV-152-infected neurons. 

Injection of PRV-152 into the rectum wall result-
ed in the uptake, replication, and transsynap- 
tic passage of the virus through circumscribed 
groups of neurons. The central distribution of 
PRV-152-immunolabeled neurons generally in- 
creased with extended post-injection survival 
times, although the presence and extent of 
central PRV-614 labeling varied among individ-
ual cases within each survival time group (Table 
1). At survival times of 3-7 d, no cellular dam-
age or lysis, which could result in the release of 
PRV-152 into the extracellular space and the 
nonspecific spread of the virus, was detected  
in infected neurons, except in the spinal cord  
at the longest survival times (>6 d).
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Figure 2. Micrographs of transverse sections from the locus coeruleus 6 days after PRV-152 injection. (A) Coronal 
medullary section (Bregma -9.84 mm). (Ba-Be) High-magnification, split-channel images of the corresponding CGA, 
LC, SubCD, SubCV and RMg area, respectively, shown in (A), illustrating a cluster of virally labeled (green) neurons. 
4 V, 4th ventricle. CGA, central gray, alpha part. LC, locus coeruleus. RMg raphe magnus nucleus. RPa, raphe pal-
lidus nucleus. SubCD, subcoeruleus nucleus, dorsal part. SubCV subcoeruleus nucleus, ventral part. Scale bar 1 
mm for (A).

6 days after PRV-152 injection into the rat rec-
tum wall, transsynaptically and retrogradely 
labeled PRV-152-immunoreactive (green) neu-
rons were distributed throughout the medul- 
la (Figures 1 and 2). The greatest number of 
stained neurons was found in the gigantocellu-
lar reticular nucleus (Gi), lateral paragigantocel-
lular (LPGi), rostral ventrolateral reticular nucle-
us (RVL), solitary tract nucleus (Sol), locus 
coeruleus (LC), raphe magnus nucleus (RMg), 
subcoeruleus nucleus (SubCD). Labeling in the 
raphe pallidus nucleus (RPa), ambiguus nucle-
us (Amb) and inferior cerebellar peduncle (Icp) 
was less intense (Figure 1Bd and 1Bf).

Infection of serotonergic neurons 6 days after 
PRV-614 injection into the rectum wall

6 days after PRV-614 injection into the rectum 
wall, PRV-614-labeled neurons were distribut-
ed throughout the brainstem (Table 2). The 
greatest number of PRV-614-immunoreactive 
stained neurons was found in the RMg, LPGi, 

RVL, LC, SubCD, and PAG region (Table 2). We 
defined the rostral ventromedial medulla re- 
gion as including the RMg and LPGi. Most TPH-
positive cells were found in the Rpa, RVM, RVL, 
LC and PAG, whereas fewer TPH-positive neu-
rons found in the RMg, Sol DMV, and PRN 
(Table 2). Double-labeled PRV-614-/TPH-
positive neurons were mainly located in the 
RVM area, and 66.7% of the virally infected 
neurons in the RVM were also TPH-immu- 
noreactive (Table 2).

Discussion

The current study exploited the functions of 
PRV-152 and PRV-614 from the rectum wall as 
trans-synaptic tracing agents that are capab- 
le to infect the brainstem neuron. Consensus 
exists on the importance of the brain-gut axis in 
affecting the clinical outcome after gastrointes-
tinal disorder [1, 52]. There is growing evidence 
that the neuronal networks have a well-estab-
lished role in coordinating the crosstalk of br- 
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ain and gut. Our observations suggest that sev-
eral areas may participate in the integration  
of brainstem-gut circuitry. It is known that the 
spread of the PRV infection is an indicator of 
neuronal interconnectivity [53-56]. Many areas 
labeled, e.g., RVM, Sol, LC and PAG, have an 
important role in the regulation of autonomic 
nervous system. The data presented showed a 
broad central representation of autonomic ef- 
ferent neurons involved in rectum control. To 
our knowledge, this is the first description of 
CNS structures directly involved in rectal neuro-
nal control.

It is known that the Sol have pivotal roles in the 
interpretation and relaying of peripheral infor-
mation via sensory vagal afferent fibers [57-
59]. We found many PRV-152-labeled neurons 
in the Sol of the dorsal vagal complex (DVC) 
within the brainstem, and these results sup-
ported previous tracing and neurophysiological 
investigations showing the Sol is well known  
for its role in viscerosensory processing [58], 
suggesting that signals from the rectum such 
as rectal distension are crucial in transmitting 
information via vagal afferents to the Sol in the 
caudal brainstem.

The rostral ventrolateral medulla (RVL) primari-
ly regulates the autonomic nervous system  

[60, 61]. We also reported here the character-
ization of the polysynaptic connectivity from 
the rectum to PRV-152-labeled populations of 
neurons in RVL by using viral tracing system. 
Consistent with data from rats [10, 50, 53, 60], 
these neurons in RVL regions targeted the rec-
tum involved in autonomic regulation.

It is demonstrated that tryptophan hydroxylase 
(TPH) is the rate-limiting enzyme in the synthe-
sis of 5-HT in the CNS and has been used in  
the past as a measure of serotonin synthesis 
[62-67]. 5-HT-expressing neurons in the me- 
dulla oblongata are thought to form a “medul-
lary 5-HT system” that regulates energy bal-
ance and potentially integrates autonomic fu- 
nctions, according to the physiological level 
[68]. There is a major projection of spinal sero-
tonergic axons originating from an anatomically 
discrete group of 5-HT-expressing neurons in 
the medulla that constitutes the descending 
5-HT pathway to the spinal cord [69, 70]. We 
demonstrated the presence of PRV-614/TPH 
dual-labeled neurons in the RVL, and RVM, sug-
gesting that these TPH-positive neurons can 
project directly or indirectly to the rectum. Many 
anatomical studies have demonstrated that all 
TPH-immunoreactive neurons within the cau- 
dal raphe nuclei are also immunoreactive for 

Table 2. Quantitative analysis of double-labeled PRV-614-/TPH positive neurons 6 days after PRV-614 
injection

Areas PRV-614-positive 
neurons

TPH-positive 
neurons

% PRV-614-positive  
neurons co-expressing TPH

% TPH-positive neurons  
co-expressing PRV-614

RPa ++ + 25 50
RVMM +++ ++ 36.4 66.7
RVL +++ + 28.6 37.5
A5 + +/- * *
Sol ++ + 9.1 16.7
DMV + +/- * *
Amb + +/- * *
LC +++ + 12 42.9
SubCD +++ + 18.2 66.7
Gi ++ ++ 35.7 45.5
LPN +++ +/- * *
PRN ++ +/- * *
PAG +++ + 7.4 25
The number of positive neurons per region from a 1:4 subset of sections: +/-, 1-5, but not in all mice; +, 6-10; ++, 11-20; +++, 
>20; *, some co-expression was observed, but the percentages were not calculated unless all mice showed co-expression. 
Amb: the nucleus ambiguous, LC: locus coeruleus. Gi: the gigantocellular reticular nucleus, LPGi: lateral paragigantocellular, 
RVL: rostral ventrolateral reticular nucleus, Sol: solitary tract nucleus, RMg: raphe magnus nucleus, SubCD: subcoeruleus 
nucleus, RPa: raphe pallidus nucleus, PAG: periaqueductal gray, LPN: lateral parabrachial nucleus, PRN: Pontine reticular 
nucleus.
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glutaminase, the synthesizing enzyme for glu- 
tamate [71, 72]. These TPH-/glutamate-immu-
nopositive caudal raphe neurons project to 
many different regions of the neuroaxis, inclu- 
ding the spinal cord [73, 74], and regulate au- 
tonomic outflow to the rectum via the sympa-
thetic and parasympathetic preganglionic neu-
ron. Together, the data from these studies in 
vivo and in vitro suggest that a subset of the- 
se medullary projection neurons transmits in- 
formation about rectum-related internal stimu- 
li and modulates the activity of the rectum by 
dual glutamatergic and serotonergic mecha- 
nisms.

Conclusion

It’s confirmed the ability of PRV-152 and PRV-
614 to retrogradely infect chains of trans-syn-
aptically linked neurons and examined the loca-
tions of the brainstem neurons that innervate 
the rectum. 
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