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Melanocortin-4 receptor in subthalamic nucleus  
is involved in the modulation of nociception
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Abstract: Deep brain stimulation of the subthalamic nucleus (STN-DBS) stimulation produces significant improve-
ment of overall pain related to Parkinson disease; however, the mechanisms underlying analgesic effects of STN-
DBS are still unknown. This report describes direct neuroanatomical evidence for the central melanocortinergic-
opioidergic circuits in the STN. We investigated melanocortin-4 receptor (MC4R) and mu-opioid receptor (MOR)-
positive expression of the STN in MC4R-GFP transgenic mice using fluorescence immunohistochemical detection. 
Immunohistochemistry showed a large number of MC4R-GFP- and MOR-positive neurons within the STN region, 
and approximately 50% of MC4R-GFP-positive neurons coexpressed MOR. The results of this study showed direct 
neuroanatomical evidence for the central melanocortinergic-opioidergic signaling in the STN region. These findings 
contribute to the view of melanocortinergic-opioidergic circuits in the subthalamic nucleus as a reliable source of 
modulating of nociception with therapeutic potential for alleviating pain.
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Introduction

Several studies have shown that deep brain 
stimulation of the subthalamic nucleus (STN-
DBS) stimulation produces significant improve-
ment of overall pain related to Parkinson dis-
ease (PD) in patients with advanced PD [1]. 
However, the mechanisms underlying analgesic 
effects of STN-DBS are still unknown. In a previ-
ous study, we demonstrated MC4R positive 
expression in different subpopulations of STN 
neurons [2, 3]. There is growing evidence that 
MC4R, a well-established mediator in the regu-
lation of energy homeostasis, may play an im- 
portant role in pain sensation [4-6]. Μu-opioid 
receptor (MOR) is necessary for the analgesic 
effects of opioids, which are important media-
tors of the nociceptive response [7]. Pagano  
et al demonstrated that cortical stimulation 
increases the nociceptive threshold of naive 
conscious rats with opioid participation [8]. The 
study from Fonoff et al showed that epidural 
electrical motor cortex stimulation elicited a 
substantial and selective antinociceptive effe- 
ct, which was mediated by opioids [9]. We ex- 
plore the hypothesis that possible mechanism 
of subthalamic nucleus stimulation for alleviat-

ing pain may involve in the central opioidergic-
melanocortinergic circuits. The main objective 
of this study is to provide direct neuroanatomi-
cal evidence for the central melanocortin-opioi-
dergic circuits in the STN in melanocortin-4 re- 
ceptor (MC4R)-green fluorescent protein (GFP) 
transgenic mice [2, 10-21], using fluorescence 
immunohistochemical detection.

Materials and methods 

Animals

The procedures used in this study were appro- 
ved by the Institutional Animal Care and Use 
Committee. All efforts were made to prevent 
animal suffering and to use the minimum num-
ber of animals. Male transgenic melanocortin- 
4 receptor (MC4R)-green fluorescence protein 
(GFP) knock-in mice (25-30 g), obtained from 
Dr. Joel Elmquist (UT Southwestern Medical 
Center, USA) and then bred to generate male 
and female mice, were used for this study [3, 5, 
22-28]. Mice were genotyped as described by 
Rossi and colleagues [29]. Mice were group-
housed in a stress-minimized facility where 
they had free access to food and water and 
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were maintained on a 12 h light/dark cycle 
(8:00 a.m.-8:00 p.m.).

Preparation of tissue sections

The mice were deeply anesthetized with the 
mixture of ketamine (10 mg/ml) and xylazine 

(0.5 mg/ml) by intraperitoneal injection and 
perfused transcardially with normal saline, fol-
lowed by a fixative containing 4% paraformalde-
hyde in 0.1 mol/L phosphate buffer (pH 7.4). 
The brains were removed and placed in 4% 
formaldehyde for 24 h and then cryoprotected 
in 30% sucrose (in 0.1 M PB). The brains were 

Figure 1. MC4R-GFP and MOR positive cells in the STN. (A1) MOR expressing neurons; (A2) MC4R-GFP expressing 
neurons in same section as (A1); (A3) overlap of (A1) and (A2), depicting distribution of MC4R-GFP-IR and MOR-
bearing neurons. (B1-B3), amplified views of (A1-A3), respectively. RMC, Red nucleus, magnocell part; IPR, Inter-
pedunc nucleus, rostral; IPC, Interpedunc nucleus, caudal. Pn, Pontine nucleus. Scale bar: 100 µm for (A1-A3); 50 
µm for (B1-B3).
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sectioned (25 µm) on a freezing microtome (Lei- 
ca Microsystems Inc., Nussloch, Germany) and 
collected into 0.1 M PBS (phosphate buffer 
solution).

Fluorescence immunohistochemistry

The freezing sections were first incubated in 
0.3% 10× Triton for 30 minutes at 37°C to get 
cell permeabilization and then washed by the 
0.1 M PBS for 3 times. To block endogenous 
peroxidase activity, the sections were exposed 
to 10% normal Donkey Serum for 30 min at 
room temperature. Then, the sections were cut 
at 30 μm using a cryostat and used for double 
immunofluorescence detection according to 
published protocols. Briefly, they were incubat-
ed in the anti-GFP rabbit serum (A6455, life 
technologies, 1:1000) for 12 h at 4°C and then 
washed again as above, followed by Biotin-sp-
conjugated AffiniPure Donkey anti-Rabbit IgG 
(Jackson ImmunoResearch, 1:2000) for 2 h at 
room temperature without any light. Then they 
were stained by Cy3-conjugated streptavidin 
(Jackson ImmunoResearch, 0.5 µg/ml) for 30 
minutes at temperature in a dark circumstance. 
This was the first course of our double label im- 
munohistochemistry. These sections were then 
incubated in Goat polyclonal MOR (c-20) Anti- 
body (sc-7488, Santa Cruz, 1:200) overnight at 
4°C after washing for 3 times. Then they were 
natured in the FITC-conjugated Mouse-anti-
Goat IgG (H+L) (Jackson ImmunoResearch, 1: 
1000). Finally, the sections were washed in  
0.1 M PBS, mounted on gelatin-coated slides, 
dried, and observed via the fluorescence micro-
scope (Leica DM2500). When taking pictures, 
we defined the FITC as the red while the Cy3 as 
the green.

Tissue analysis

The sections were visualized by using an Olym- 
pus IX81 photomicroscope equipped with epi-
fluorescence with a filter set for visualization. 
MOR-positive cells were identified with red fluo-
rescence; MC4R-GFP-expressing cells were 
recognized by green fluorescence. Images were 
overlaid using Adobe Photoshop, and double-
labeled cells were presented as yellow (green/
red). 

Results 

We checked the green fluorescent protein ex- 
pression in the melanocortin-4 receptor-GFP 

reporter mouse by immunohistochemistry stai- 
ning, and found a large number of GFP-positive 
neurons within the STN region.

Fluorescence immunohistochemistry showed a 
large number of MC4R-GFP-and MOR-positive 
neurons within the STN region (Figure 1), and 
approximately 50% of MC4R-GFP-positive neu-
rons coexpressed MOR, indicating that they 
were opioidergic.

Discussion

Using a line of mice expressing GFP under the 
control of the MC4R promoter, we provided 
neuroanatomical evidence of MC4R expression 
in the STN for the modulation of nociception in 
transgenic mice. Fluorescence immunohisto-
chemistry revealed that approximately 50%  
of MC4R-GFP-positive neurons coexpressed 
MOR, indicating that they were opioidergic. 
These findings extend our knowledge about the 
distribution of MC4R and MOR in rodent STN 
neurons. 

The study from Pellaprat et al confirmed that 
STN-DBS induced a substantial beneficial ef- 
fect on pain in PD, independently of its motor 
effects and mood status of patients [30]. 
Ciampi et al reported that STN-DBS contributed 
to relieve pain associated with PD and specifi-
cally modulated small fiber-mediated sensa-
tions [31]. Otherwise, Pagano pointed that 
deep brain stimulation increased the nocicep-
tive threshold of naive conscious rats with opi-
oid participation [8]. Therefore, opioidergic sig-
naling in the subthalamic nucleus may involve 
in modulation of nociception.

The study from Kapoor showed MC4R antago-
nists and their emerging role in pain manage-
ment [32]. Starowicz also reported peripheral 
antinociceptive effects of MC4R antagonists in 
a rat model of neuropathic pain [33]. Otherwise, 
Chu pointed that MC4R induced hyperalgesia 
and allodynia after chronic constriction injury 
by activation of p38 MAPK in dorsal root gan-
glion and spinal cord [34, 35]. Thus, we hypoth-
esized that STN-DBS inhibited the up-regula-
tion of MC4R in the spinal and peripheral noci-
ceptive pathways in painful neuropathy, which 
were in agreement with a previous study in 
which clinical pain alleviation after STN-DBS 
may be considered as a consequence of a 
direct central modulation of pain perception, 
via increased mechanical pain and tolerance 
thresholds [36].
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In conclusion, data presented here provide 
direct neuroanatomical evidence for the central 
melanocortinergic-opioidergic circuits in the 
STN region. Based on the above analyses, we 
propose a hypothesis that melanocortinergic-
opioidergic signaling in the subthalamic nucle-
us involves in modulation of nociception, sug-
gesting that deep brain stimulation of the STN 
may alleviate pain by the central melanocortin-
ergic-opioidergic circuits.
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