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Abstract: Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in a diverse array of cellular 
processes including mitotic progression and the DNA damage response pathway. PP2A has been classically char-
acterized as a tumor suppressor and missense mutations affecting PP2A catalytic activity have been identified in 
gynecologic malignancies and breast cancers. However, increasing evidence indicate that inhibition of PP2A may 
represent a viable strategy to overcome tumor cell senescence, a major contributor to treatment resistance after 
administration of conventional chemotherapies and radiation. This review overviews the tumor suppressing and 
tumor promoting properties of PP2A, as they pertain to the broad cancer spectrum as well as specifically to common 
tumors affecting women. Furthermore, therapeutic interventions targeting PP2A as a means of sensitizing tumor 
cells to treatment are discussed, including pre-clinical study of a novel small molecule inhibitor, LB100, currently 
under phase 1 clinical trial evaluation. As these studies demonstrate, PP2A represents an increasingly attractive 
molecular target, whose modulation may provide opportunities to overcome treatment resistance in gynecologic 
and breast cancers. 
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Introduction

Gynecologic malignancies and breast cancer 
are among the most common and devastating 
cancers in women. Endometrial malignancies 
are the most common of all gynecologic can-
cers worldwide with a mortality rate of approxi-
mately two persons per 100,000 women [1]. 
Likewise, cervical cancer affects a significant 
portion of the worldwide population, particular-
ly in developing countries, where 17.8 women 
in 100,000 are afflicted with this disease, half 
of whom succumb to cancer-related deaths [2]. 
Ovarian cancer, while making up only 3% of 
cancers affecting women, remains the most 
deadly gynecologic cancer due to late stage 
diagnosis and treatment resistance [1]. On the 
other hand, breast cancer is the most frequent-
ly diagnosed cancer in females worldwide mak-
ing up 26% of cancer diagnoses, and also con-
tributes to 14% of all cancer-related deaths [3]. 
Yet despite the significant advances made and 
the enormous resources expended on studying 

these malignancies, these tumors often pres-
ent at an advanced stage requiring the use of 
adjuvant chemo or radiation therapy [4, 5]. 

Great advances have been made in broad-
spectrum chemotherapy and radiation as well 
as molecularly targeted therapies for gyneco-
logic and breast cancers. Platinum-based che-
motherapeutics among others together with 
radiation have demonstrated efficacy in many 
gynecologic cancers and have become part of 
many standard therapeutic regimens [6, 7]. 
While upwards of 75% of patients exhibit 
responses to these treatments, the five-year 
overall survivals for advanced ovarian, endome-
trial, and cervical cancers remain dismal at 
27%, 17%, and 16%, respectively, highlighting 
the high rates of resistance that develop against 
chemo and radiation therapies [8]. For exam-
ple, in ovarian cancer, primary bleomycin, eto-
poside, cisplatin (BEP) chemotherapy has a pri-
mary response rate of between 60-80%, but 
recurrent tumors tend to have drastically 
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Figure 1. A simplified schematic demonstrating downstream effects of PP2A 
activation after DNA damage. Upwards and downwards arrows denote in-
creases and decreases in protein activity, respectively. LB100 reverses these 
patterns, suppressing cell cycle arrest and stabilization of p53.

increased intrinsic resistance to cisplatin in 
particular, and survival after recurrence even 
with optimized chemotherapy and anti-VEGF 
therapy is generally short-lived [9]. In breast 
cancer, standard practice has advanced 
beyond conventional chemotherapeutics to 
include drugs targeting tumor-specific proper-
ties. Examples include trastuzumab for HER2 
over-expressing tumors and hormone-regulato-
ry therapies like the selective estrogen recep-
tor modulator, tamoxifen, and the aromatase 
inhibitor, anastrozole [10, 11]. However, re- 
sponses of advanced or recurrent breast can-
cer to these targeted therapies, even when 
supplemented by traditional chemotherapeu-
tics, can be as low as 30% with response dura-
tions as low as 6 months [12, 13]. 

Although many mechanisms of treatment resis-
tance exist across gynecologic and breast can-
cers, one common and particularly trouble-
some consequence is the induction of tumor 
cellular senescence after exposure to conven-
tional DNA-damaging radiation and chemother-
apies [14]. This has been shown in ovarian can-
cer, in which induction of senescence promotes 
resistance to paclitaxel [15]. Likewise, a unique 
subset of senescent breast cancer cells has 
demonstrated resistance to carboplatin [16]. In 
recent years, there has been growing interest in 
targeting of protein phosphatase 2A (PP2A), as 
a means of overcoming cell cycle arrest and 
induction of senescence after administration of 
genotoxic agents. To this end, the small mole-

cule inhibitor, LB100 (Lixte 
Biotechnology Holdings, Inc., 
East Setauket, NY), has shown 
promise in overcoming senes-
cence through the inhibition 
of PP2A and is currently under 
phase 1 clinical trial investiga-
tion. In this mini-review, we 
overview PP2A function, as 
well as describe its potential 
applications in overcoming 
gynecologic and breast can-
cer senescence and treat-
ment resistance. Additionally, 
we discuss previous work of 
experimental PP2A inhibition 
in these cancers as well as 
two key pre-clinical studies 
that demonstrated LB100 
could overcome TRAIL and 

cisplatin resistance in breast and ovarian can-
cer cells, respectively. 

A brief overview of PP2A functions

PP2A is a serine/threonine phosphatase, com-
prised of three subunits. Subunits A and C are 
both structural and catalytic, while subunit B 
serves a regulatory function [17, 18]. As a ubiq-
uitous molecule, PP2A has many functions of 
interest to cancer research, including roles in 
mitosis, cell survival, and apoptosis. Studies in 
various human cancer cell lines have demon-
strated that PP2A signaling plays a positive 
regulatory role in the Wnt/beta-catenin signal 
transduction pathway, promoting cell prolifera-
tion and migration [19, 20]. However, PP2A also 
plays a complex role in regulating cell survival 
or death in the context of cytotoxic stresses. 
ATM/ATR signaling directly activates and stabi-
lizes PP2A through phosphorylation in response 
to DNA damage, leading to PP2A-mediated 
dephosphorylative inhibition of Akt signaling, 
including downregulated activity of the Akt-
target MDM2. This ultimately results in phos-
phorylation and diminished activity of Mdm2 
[21]. Phosphorylated Mdm2 is an E3 ubiquitin 
ligase and targets p53 for proteasomal degra-
dation [22]. As such, activated PP2A promotes 
p53 stabilization via its inhibition of the Akt-
Mdm2 signaling cascade [23]. Additionally, 
PP2A directly dephosphorylates and stabilizes 
p53, thereby promoting cell cycle arrest and 
DNA damage repair [24]. In the context of irrep-
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arable DNA damage, p53 induces cell death via 
activation of pro-apoptotic factors such as BAX, 
NOXA, and PUMA. In addition to mediating cell 
cycle arrest through p53 activation, PP2A also 
suppresses cdk1-driven cell cycle progression 
and G1/S transition arrest [25]. Similarly, PP2A 
mediates G2/M arrest through inactivation of 
Plk1, a protein that localizes to centrosomes 
during mitotic spindle formation and promotes 
G2/M transition [26]. The downstream conse-
quences of PP2A activation after DNA damage 
are illustrated in a simplified schematic (Figure 
1).

The role of PP2A in oncogenesis

In the context of cancer research, PP2A has 
been classically regarded as a tumor suppres-
sor gene. Missense mutations affecting the 
scaffolding A subunit of PP2A have been 
described in a significant proportion of gyneco-
logic cancers, including 5-9% of low-grade ovar-
ian carcinomas and 20-41% of high-grade 
endometrial serous carcinomas [27-29]. They 
have also been found in breast cancer, albeit at 
much lower frequencies [30]. The majority of 
these mutations have been detected in exons 5 
and 6 affecting the alpha-helix structure and 
are postulated to alter substrate recognition 
and/or phosphatase activity via disruption of 
interaction between the A and B subunits [31, 
32]. Nobumori et al. found missense mutations 
affecting the regulatory B subunit across a vari-
ety of human cancer cell lines, including uterine 
leiomyosarcoma, and demonstrated subse-
quent variable loss in the ability of PP2A to bind 
p53 [33]. Shouse et al. found similar results in 
lung cancer, suggesting missense mutations of 
the B subunit may disrupt p53-dependent 
tumor suppression and thus facilitate oncogen-
esis [34]. 

In further support of a tumor suppressive role 
for PP2A, many cancers overexpress cancer-
ous inhibitor of PP2A (CIP2A), reviewed by De et 
al. [35]. CIP2A is an endogenous protein, which 
antagonizes PP2A-mediated ubiquitination of 
the proto-oncogene, c-Myc, thus stabilizing 
c-Myc transcriptional activity [36]. Indeed, 
CIP2A overexpression has been reported in 
39% of breast cancers [37], 53% of cervical 
cancers [38], and 66% of ovarian cancers [39]. 
Yu et al. showed that while high levels of CIP2A 
were clinically correlated with increased tumor 
aggression in breast cancer patients, they also 

predicted greater chemotherapeutic sensitivity 
[40]. Likewise, Laine et al. demonstrated in an 
in vivo CIP2A-deficient mouse model that xeno-
grafted breast cancer tumors became senes-
cent and that proliferation of tumor cells was 
halted [41]. Taken together, these findings  
highlight that while CIP2A may promote de- 
regulation of the cell cycle leading to tumor 
growth, CIP2A may also antagonize tumor 
senescence, which in the context of chemore-
sistant cancers, may be a desirable therapeutic 
strategy. Moreover, as CIP2A is an endogenous 
inhibitor of PP2A, these studies indirectly sug-
gest that PP2A inhibition may render senescent 
tumor cells susceptible to chemotherapeutic 
intervention.

Inhibition of PP2A to overcome tumor senes-
cence 

Indeed, PP2A inhibition has become an increas-
ingly tantalizing target to potentially overcome 
therapeutic resistance in various tumors. It is 
well recognized that tumor cell senescence is a 
major contributor to the inefficacy of conven-
tional DNA-damaging chemotherapies and 
radiation that preferentially exert their cytoxic 
effects upon actively dividing cells [14]. 
Contributing to this phenomenon is PP2A-
mediated suppression of Ras signaling, which 
normally promotes the G2/M transition and 
stabilizes c-Myc [42]. In turn, the transcriptional 
activities of c-Myc contribute to increased cell 
proliferation [43]. As such, previous pre-clinical 
studies utilizing gynecologic and breast cancer 
cell lines have demonstrated that targeting 
PP2A activity may overcome chemoresistance. 
Liang et al. reported that siRNA-induced silenc-
ing of PP2A overcame Chk2-mediated cell cycle 
arrest in ovarian cancer cells after exposure to 
cisplatin and also prevented activation of other 
downstream players in the ATM/ATR DNA dam-
age response pathway, including p53 [44]. 
McDermott et al. reported that PP2A inhibition 
with okadaic acid sensitized a chemoresistant 
HER2-positive breast cancer cell line (SKBR3-L) 
to HER2-targeted treatment with lapatinib [45]. 
Okadaic acid is a cytotoxin, naturally produced 
by the marine sponge, Halichondria okadai, 
with profound anti-PP2A activity [46]. It has 
been studied along with cantharidin, another 
natural compound made by the blister beetle 
family, as a scientific means of evaluating PP2A 
inhibition [47]. However, both of these com-
pounds are highly toxic in human beings, pre-
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cluding their use as pharmacologic agents [48, 
49]. 

To circumvent the limitations of okadaic acid 
and the cantharidins, the small molecule 
LB100 (Lixte Biotechnology, Inc.) was recently 
developed to competitively inhibit PP2A enzy-
matic activity. Initially evaluated as a sensitiz-
ing agent to temozolomide in glioblastoma cells 
[50], the chemo-sensitizing and radio-sensitiz-
ing properties of LB100 have since been cor-
roborated in numerous cancer types, including 
sarcoma [51], pheochromocytoma [52], naso-
pharyngeal carcinoma [53], hepatocellular car-
cinoma [54], and pancreatic cancer [55, 56]. 
Consistent with these studies, Xu et al. utilized 
LB100 to evaluate the efficacy of PP2A inhi- 
bition in overcoming resistance to TRAIL-
mediated apoptosis in breast cancer [57]. 
TRAIL is a member of the tumor necrosis family 
and is an important initiator of the extrinsic 
apoptosis pathway [58]. Among other tumor 
types, breast cancer has been associated with 
TRAIL signaling resistance, contributing to both 
chemoresistance and tumor metastasis [59, 
60]. Utilizing TRAIL-resistant BT549 breast can-
cer cells, Xu et al. demonstrated that TRAIL 
exposure led to abrogation of apoptosis via 
PP2A-mediated dephosphorylation of Src, a 
non-tyrosine kinase essential to TRAIL resis-
tance [61]. However, treatment with LB100 
overcame resistance to apoptosis after TRAIL 
treatment to a degree on par with the TRAIL-
sensitive breast cancer cell line, MDA231. 

More recently, Chang et al. studied in-depth the 
efficacy of LB100 in sensitizing ovarian cancer 
cells to cisplatin treatment [62]. This study uti-
lized previously characterized cisplatin-resis-
tant cell lines, SKOV-3 and OVCAR-8, in addi-
tion to patient-derived cell lines harvested both 
prior to and after acquisition of cisplatin resis-
tance. The authors showed that LB100 expo-
sure impaired activation of key DNA damage 
response players, including BRCA1, JNK, Chk1, 
and Chk2, after treatment with cisplatin. Cell 
cycle analysis and immunofluorescence experi-
ments evaluating DNA damage demonstrated 
persistent DNA double-strand breaks, forced 
cell cycle progression, and resultant cell death 
secondary to mitotic catastrophe. In vitro data 
were confirmed in vivo in SKOV-3 xenografted 
mouse models; the addition of LB100 to cispla-
tin treatment slowed tumor growth five-fold 
without any systemic signs of toxicity, com-

pared to cisplatin administration alone. Toge- 
ther, these promising studies in the context of 
the growing LB100 literature prompted the 
evaluation of LB100 for human use in an ongo-
ing phase 1 clinical trial (NCT01837667).

Conclusion

In conclusion, there is increasing evidence to 
support targeting of PP2A as a means of over-
coming therapeutic resistance. Although classi-
cally characterized as a tumor suppressor, 
PP2A is becoming a molecule of interest in cir-
cumventing induction of tumor senescence in 
response to traditional chemotherapies and 
radiation, relying on active cell division. LB100 
represents the first foray into treatment of 
human patients with targeted PP2A therapy 
and may yield promising options for the many 
suffering from treatment-resistant cancers. 
Regardless, accumulated data to date suggest 
that inhibition of PP2A represents a novel and 
attractive means of approaching intractable 
tumors and holds great potential for the future 
of gynecologic and breast cancer treatment.
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