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Abstract: The axis of LIN-28B, let-7a and IGF-II has been shown to be involved in human diseases. Several func-
tional intronic single nucleotide polymorphisms (SNPs) rs314276 in LIN-28B and rs4320932 in IGF-II are found to 
be associated with epithelial ovarian cancer (EOC) or its risk factors. SNPs in pri- or pre-miRNAs may affect miRNA 
expression, but it is unclear whether rs731085 in let-7a-3 influences let-7a or pri-/pre-let-7a-3 levels. It is also 
not known if these SNPs in combination have a joint effect on EOC. Here we analyzed the LIN-28B/let-7a/IGF-II 
axis haplotype-specific association with EOC survival by genotyping these SNPs, and mainly assessed the effect of 
rs731085 genotype on let-7a and pri-/pre-let-7a-3 expression in 211 primary EOC samples. No statistically signifi-
cant association was found between the genotype of rs731085 and both let-7a and pri-/pre-let-7a-3 expressions. 
Multivariate Cox regression analyses showed that rs4320932, but neither rs314276 in LIN-28B nor rs731085 in 
let-7a-3, was significantly associated with patient overall and progression-free survival. Furthermore, the haplotype 
G-C-C was associated with increased risk of death, while the haplotype G-C-T was a favorable prognostic indicator. 
The adjusted hazard ratios for death (HRs) were 1.64 (95% CI: 1.19-2.26) for rs4320932, 1.13 (95% CI: 0.84-1.51) 
for rs314276, 0.89 (95% CI: 0.66-1.21) for rs731085, 7.48 (95% CI: 1.01-55.7) for the haplotype G-C-C and 0.14 
(95% CI: 0.03-0.70) for the haplotype G-C-T, respectively. These results suggest that the haplotype-specific effects 
are stronger compared to the sum of three individual SNPs, and that the haplotype G-C-C of the axis has an unfavor-
able effect on patient overall survival.
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Introduction

MicroRNAs (miRNAs), a group of small non-cod-
ing RNA, are important regulators in gene 
expression [1, 2]. It has been shown that miR-
NAs play important roles in a variety of physio-
logical processes and biological functions [1-3]. 
Let-7 is a well-characterized miRNA [4-9], and 
in human there are 13 family members (let-7a 
to let-7i) located on 9 different chromosomes 
[10]. Dysregultion of let-7 has been suggested 
to be involved in human diseases including 
cancer and metabolic disorders [7, 11-15]. In 

vitro experiments have shown that let-7a acts 
as a tumor suppressor by repressing oncogenes 
including the embryonic gene high mobility 
group A2 (HMGA2), and RAS [7, 16]. Poorly dif-
ferentiated ovarian cancer cells showed the 
deficiency in let-7 [17], and patients who had 
reduced let-7 expression had poor survival [13, 
18, 19]. Accumulating evidence also indicates 
that let-7 may affect the response of patients to 
chemotherapy or radiotherapy and disease out-
comes [20-28]. DNA methylation and post-tran-
scriptional modification are two major me- 
chanisms contributing to the reduced let-7a 
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expression in cancer [25, 29-32]. The promoter 
of let-7a-3 contains rich CpG sites, and their 
methylation was associated with the downregu-
lation of let-7a and its biological activity in 
human cancer [25, 33-35]. RNA binding pro-
teins LIN-28A and LIN-28B have also been 
demonstrated to be involved in post-transcrip-
tional modification of let-7a transcripts, block-
ing its maturation, and are negatively associat-
ed with let-7a expression [29-32]. 

LIN-28A and its homolog LIN-28B are important 
transcription factors in maintaining stem cell-
like properties and tumorigenicity, and thus 
termed as stem cell-associated proteins [25, 
36-39]. They share similar molecular structures 
in several RNA-binding domains, a cold-shock 
domain (CSD) and two retroviral-type CCHC zinc 
finger domains (ZFMs) [31, 40]. With the RNA-
binding domains, LIN-28A and LIN-28B are able 
to post-transcriptionally modify let-7a, affecting 
let-7a maturation and its abundance [29-32]. 
Down-regulation of let-7a releases its inhibitory 
effects on many oncogenes including k-RAS, 
c-MYC, HMGA2, cyclin D1 and insulin-like 
growth factor-II (IGF-II) [25, 29, 38, 41, 42]. LIN-
28B was first characterized to be overex-
pressed in human liver cancer [37]. Dysre- 
gulation of LIN-28B was subsequently found in 
other human cancers including brain, breast, 
ovary and head and neck, and the condition 
was associated with prognosis and treatment 
response [29, 43-45]. High LIN-28B expression 
in peripheral blood mononuclear cells was also 
shown to be positively associated with the risk 
of relapse and unfavorable features of hepato-
cellular carcinoma [46]. In vitro experiments 
show that LIN-28B/let-7a axis may also be 
involved in epithelial-mesenchymal transition 
(EMT) [47], tumorigenesis [48], and the pro-
gramming of hematopoietic stem cells [49, 50]. 
Moreover, there was a positive correlation 
reported between the expression of LIN-28B 
and IGF-II in cancer tissues [29, 51]. 

Insulin-like growth factor II is a mitogen, playing 
an important role in the development and cell 
proliferation. IGF-II overexpression in relation to 
increased risk of human cancer including ovar-
ian cancer has been reported previously [52-
56]. Loss of imprinting (LOI), DNA methylation 
and miRNAs (small and large) are underlying 
mechanisms regulating IGF-II expression [57-
59]. Enforced let-7a overexpression could lead 
to elevated levels of IGF-II transcripts [60]. The 

associations among LIN-28B, let-7a and IGF-II 
expression suggest that the LIN-28B/let-7a/
IGF-II axis as a whole may have biological impli-
cations [25, 29]. It has been reported that the 
LIN-28B/IGF axis is linked to the progression of 
head and neck cancer [51], and the LIN-28B/
let-7 axis promotes transformation, prolifera-
tion and invasion of human cancer [39, 61]. 

Gene-environment interaction plays an impor-
tant in cancer development and tumor progres-
sion. Genome-wide association studies (GWAS) 
have identified thousands of genetic suscepti-
bility variants for complex traits in human 
including risks for developing various types of 
cancer. However, the effect sizes of these 
genetic factors are small (less than 20%) [62, 
63]. Due to limited study power, most of the 
low-penetrance common variants may have 
been missed by GWAS. On the other hand, 
many complex traits or diseases like cancer are 
affected by a number of genetic variants col-
lectively, and each variant has a small effect on 
a trait or disease. The advantage of combina-
tion therapy over monotherapy as well as stron-
ger SNP prediction of patient survival by the 
pathway-based approach also suggest that 
multiple polymorphisms in a complex biological 
network may synergistically lead to a biological 
phenotype [64-66]. Even though some low-pen-
etrance variants individually have very subtle 
effect size, not reaching statistical significance, 
they may have biological effects collectively on 
human health [67]. Haplotype is one of those 
collective approaches to investigate the com-
bined effects of multiple variants on complex 
diseases. Previous studies have shown that 
rs4320932 in IGF-II was functionally associat-
ed with ovarian cancer risk and progression 
[68, 69], and that rs314276 in LIN-28B was a 
GWAS-identified expression quantitative trait 
locus (eQTL) and a risk factor in ovarian cancer 
[36, 70-76]. The variant of rs731085 in let-7a-3 
was not found to be associated with ovarian 
cancer [77], but the study was relatively small 
(n = 90). In addition, genetic variants in pre-
miRNA genes have been shown to affect miRNA 
expression [78-80]. The purposes of this study 
were to investigate the combined effects of 
multiple SNPs on ovarian cancer through the 
haplotype approach and the associations 
between rs731085 and both let-7a and pri-/
pre-let-7a-3 expression. To achieve the goal,  
we genotyped 3 candidate SNPs (rs314276, 
rs731085 and rs4320932) in the LIN-28B/let-
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7a/IGF-II axis to evaluate their prognostic val-
ues, and analyzed the expression of the genes 
to determine eQTL in epithelial ovarian cancer.  

Materials and methods

Patients and tumor samples 

This study was approved by the ethical review 
committee of University of Turin in Italy. With 
informed consents from patients, 211 fresh tis-
sues of epithelial ovarian cancer were collected 
at surgery in the Department of Gynecology 
and Obstetrics at University of Turin between 
October 1991 and February 2000. The speci-
mens were snap-frozen in liquid nitrogen imme-
diately after resection, and then transferred to 
a -80°C freezer for storage. Clinical and pathol-
ogy information on these patients was retrieved 
from the medical charts and pathology reports. 
According to FIGO and WHO criteria for disease 
stage and tumor grade [81], of the 211 patients, 
52 were diagnosed with stage I disease, 12 
with stage II, 133 with stage III, and 14 with 
stage IV. Tumor grades 1-3 were found in 34, 
40, and 137 patients, respectively. Patient age 
at surgery averaged 57.9 years (range: 26-82). 
Based on the WHO guidelines for ovarian tumor 
histology [82], papillary serous was 40.3%, fol-
lowed by endometrioid (19.4%), undifferentiat-
ed (17.1%), mucinous (8.5%), clear cell (7.6%), 
müllerian (6.6%), and other (0.5%). Most of the 
patients received standard post-operative plat-
inum-based chemotherapy after cytoreduction 
surgery, and were subsequently followed 
through June 2001 for disease progression. 
The median follow-up time was 31 months with 
the range from 0.6 to 114 months. At the end of 
the study follow-up, 92 patients died and 95 
had a progressive disease.

Each patient was evaluated for chemotherapy 
response, which was classified into four cate-
gories: (a) complete response, resolution of all 
evidence of disease for at least 1 month; (b) 
partial response, a decrease of ≥ 50% in the 
product of the diameters (maximum and mini-
mum) of all measurable lesions without the 
development of new lesions for at least 1 
month; (c) stable disease, a decrease of < 50% 
or an increase of < 25% in the product of the 
diameters of all measurable lesions; and (d) 
progressive disease, an increase of ≥ 25% in 
the product of the diameters of all measurable 
lesions or the development of new lesions. 

Genomic DNA and total RNA extraction 

The frozen tumor specimens, which had been 
examined by two independent pathologists to 
confirm greater than 80% of tumor cells con-
tained in each specimen, were pulverized man-
ually in liquid nitrogen, and approximately 100 
mg of tissue powder were used for the extrac-
tion of genomic DNA and total RNA using a 
standard phenol-chloroform approach. The 
quality and quantity of the extracted DNA and 
RNA samples was determined by a spe- 
ctrophotometer. 

Genotyping of LIN-28B, let7a3 and IGF-II SNPs

Genotypes of the LIN-28B SNP (rs314276, C/G) 
[36], let-7a-3 SNP (rs731085, C/A) [77] and 
IGF-II SNP (rs4320932, T/C) [68] were deter-
mined using the TaqMan® SNP genotyping 
assay (Applied Biosystems, Foster City, CA) fol-
lowing the manufacturer’s protocols as de- 
scribed previously elsewhere. Briefly, in a vol-
ume of 8 μl PCR reaction, 4 μl of 2X iTaqTM Fast 
Supermix with ROX (Bio-Rad, Hercules, CA) was 
mixed with pre-designed TaqMan® primers/
probes (Applied Biosystems), approximately 
10-50 ng of genomic DNA, and distilled water. 
The PCR conditions were initial denaturing at 
95°C for 10 min followed by 50 cycles of dena-
turing at 92°C for 15 seconds and annealing/
extension at 60°C for 1 min. The reactions 
were carried out in an ABI 7500 Real-time PCR 
system (Applied Biosystems). Ten percent of 
samples were run in duplicate for quality con-
trol, with 100% concordance.

Analysis of let-7a, pri-/pre-let-7a-3, lin-28B 
and IGF-II expression

Analysis of let-7a expression in tumor tissue 
was performed using the TaqMan® microRNA 
assay (Applied Biosystems) following the manu-
facturer’s instruction as described elsewhere 
[25]. Briefly, levels of let-7a and RNU48 (an 
internal control for normalization) expression in 
the samples were determined with the TaqMan® 
miRNA assay (Applied Biosystems) using the 
Chromo 4 Real-time PCR System (MJ Research 
Inc., Waltham, MA). In the PCR reaction (15 μl), 
0.3 μl of cDNA template was mixed with 7.5 μl 
of 2XTaqMan® Universal PCR master mix 
(Applied Biosystems), 0.75 μl of 20X probe/
primers (Applied Biosystems) of either let-7a or 
RNU48, and water. The PCR amplification con-
ditions were initial denaturing at 95°C for 10 
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min followed by 40 cycles of denaturing at 92°C 
for 15 seconds and annealing/extension at 
60°C for 1 min. 

Expressions of pri-/pre-let-7a-3, LIN-28B and 
IGF-II were analyzed using SYBR green-based 
RT-qPCR on the Chromo4TM Real-time PCR 
System (MJ Research Inc., Waltham, MA), and 
the sequences of the primers pri-/pre-let-7a-3, 
LIN-28B, and IGF-II, as well as the internal con-
trols RNU48 (for pri-/pre-let-7a-3 and LIN-28B) 
and GAPDH (for IGF-II) were as described previ-
ously elsewhere [29, 52]. In the PCR reaction 
(20 μl), 1 μl of cDNA template was mixed with 
10 μl of 2X Power SYBR® PCR master mix 
(Applied Biosystems), 200 nM of paired prim-
ers, and water. The PCR amplification included 
initial incubation at 50°C for 2 minutes, dena-
turing at 95°C for 10 minutes, and 40 cycles of 
denaturing at 95°C for 15 seconds and anneal-
ing at 60°C for 1 minute. Melting curves were 
analyzed after each run to verify the size of PCR 
product.

Each sample was analyzed in duplicate, and 
the analysis was repeated for those with CV 
above 5%.

Statistical analysis

Expression of let-7a was quantified as an 
expression index (EI), which was calculated 
based on the formula 1000 × 2(-ΔCt), where ΔCt 
= Cttarget gene - Ctinternal control. A Bayesian approach 
was applied to reconstruct haplotypes and esti-
mate their frequencies [83]. Hardy-Weinberg 
equilibrium (HWE) and the associations 
between clinicopathologic features and the 
haplotypes were analyzed by the Chi-square 
test. Survival analyses were performed to 
assess the associations of haplotypes and 
risks of disease progression and death using 
the Cox proportional hazards regression mod-
els, treating each haplotype as a continuous 
variable. Both haplotype-specific associations 
in a 1-degree-of-freedom test and a global test 
simultaneously fitting all haplotypes with pa- 

Table 1. Genotype distributions and their associations with gene expression and patient survival in 
epithelial ovarian cancer

Genotype N Frequency 
(%) n

Gene expression Death Relapse
Median (5th-95th) HR1 (95% CI2) HR (95% CI)

    rs731085 211 let-7a 0.89 (0.66-1.21) 1.10 (0.83-1.45)
    CC 85 40.3 85 4.47 (0.71-35.28)
    CG 91 43.1 91 4.63 (0.39-23.93)
    GG 35 16.6 35 4.63 (0.48-58.52)
P value for let-7a expression 0.671
P value for HWE 0.211
    rs731085 211 pri-/pre-let-7a-3
    CC 85 40.3 85 0.06 (0-5.68)
    CG 91 43.1 91 0.05 (0-1.91)
    GG 35 16.6 35 0.05 (0-41.67)
P value for pri-/pre-let-7a-3 expression 0.829
    rs314276 211 LIN-28B 1.13 (0.84-1.51) 1.08 (0.81-1.44)
    CC 95 45 95 0.05 (0-6.99)
    AC 80 37.9 90 0.001 (0-5.27)
    AA 36 17.1 36 0.01 (0-3.44)
P value for LIN-28B expression 0.029
P value for HWE 0.01
    rs4320932 211 IGF-II 1.64 (1.19-2.26) 1.80 (1.31-2.47)
    TT 124 58.8 117 14.3 (0-3008)
    CT 73 34.6 71 8.8 (0-9503)
    CC 14 6.6 14 12.7 (0-5661)
P value for IGF-II expression 0.982
P value for HWE 0.469     
1. HR: hazard ratio obtained from a multivariate Cox proportional hazard regression model based on the additive model of the SNPs (major 
allele homozygote = 0, heterozygote = 1, and minor allele homozygote = 2) and adjusted for patient age at surgery, disease stage, tumor grade, 
residual tumor size and histological type. 2. CI: confidence interval. 
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tient survival were performed [84]. The overall 
survival time and progression-free survival time 
were calculated as the time from surgery to 
death, relapse, or the last follow-up, respective-
ly. For chemotherapy response in our data anal-
yses, we grouped patients into two categories, 
‘responders’, which included complete re- 
sponse, and ‘non-responders’, which included 
partial response, stable disease and progres-
sive disease. All statistical analyses were car-
ried out using SAS version 9.3, and a p value 
less than 0.05 was considered as statistical 
significance. 

Results

Genotypes of SNPs in LIN-28B, let7a3 and IGF-
II and their associations with patient survival

Genotyping of the rs314276, rs731085 and 
rs4320932 polymorphisms in LIN-28B, let-
7a-3 and IGF-II, respectively, was successfully 
achieved in 211 epithelial ovarian cancer tis-
sues. The frequency distributions of the geno-
types are shown in Table 1. SNP rs314276 (P = 
0.010) but neither rs731085 (P = 0. 211) nor 
rs4320932 (P = 0.469) was deviated from 
HWE. The minor allele A frequency of rs314276 
was 0.36, and more homozygotes were 
observed than the theoretical expectation. 

Multivariate Cox proportional hazard regres-
sion analysis showed that the SNP rs4320932 
in IGF-II, but neither rs731085 in let-7a-3 nor 
rs314276 in LIN-28B, was significantly associ-
ated with the risks of both death and disease 
progression (Table 1). The adjusted hazard 
ratios (HRs) of rs4320932 in an additive model 
were 1.64 (95% CI: 1.19-2.26) for death (P = 
0.002) and 1.80 (95% CI: 1.31-2.47) for dis-
ease progression (P = 0.0003), respectively. 

Table 1 also shows no statistically significant 
associations between the genotype of rs- 
731085 and both let-7a expression (P = 0.671) 
and pri-/pre-let-7a-3 (P = 0.829), and between 
rs4320932 and IGF-II transcripts (P = 0.982), 
but a significant one between rs314276 and 
LIN-28B transcripts (P = 0.029). 

Associations of the haplotypes and clinico-
pathologic features 

Eight haplotypes were predicted based on a 
Bayesian statistical method, and their estimat-

ed frequencies and 95% CIs were shown as in 
Table 2. The highest frequency of haplotypes 
was C-C-T (0.273, 95% CI: 0.230-0.316), fol-
lowed by G-C-T, C-A-T, C-C-C, G-A-T, C-A-C, G-C-C 
and G-A-C. 

Associations of haplotypes with clinicopatho-
logic features are summarized in Table 2. 
Patients with a serous ovarian cancer had sig-
nificantly lower frequencies of G-A-C haplotype 
than those with a non-serous type (0.00002 vs 
0.043, P = 0.004). In contrast, patients with a 
serous type had higher frequencies of C-A-T 
than those with a non-serous one (0.224 vs. 
0.153, P = 0.063), respectively. Similarly, 
patients with a grade I-II tumor had significantly 
higher frequencies of C-A-T than those with a 
grade III disease (0.241 vs. 0.156, P = 0.030). 
In addition, patients with an advanced stage 
disease had higher frequencies of G-A-T haplo-
type compared to those with an early stage 
(0.121 vs. 0.061, P = 0.058), whereas the fre-
quency of G-A-C haplotype was lower in patients 
with an advanced stage disease than those 
with an early stage (0.017 vs 0.044, P = 0.082). 
However, none of the haplotypes were found in 
significant association with other clinicopatho-
logic features, including residual tumor size, 
debulking results and response to chemo- 
therapy. 

Associations of haplotypes and patient sur-
vival

Multivariate Cox proportional hazard regres-
sion models were developed, in which each 
haplotype was treated as a continuous vari-
able, and patient age at surgery, disease stage, 
tumor grade, residual tumor size and histologi-
cal types were included as covariates. We first 
performed a global test simultaneously fitting 
all haplotypes in one model, and the P value for 
this test was less than 0.0001 (data not shown). 

To study the haplotype-specific association 
with patient survival, we developed multivari-
ate Cox proportional hazard regression models, 
in which each individual haplotype and the 
covariate variables of patient age, disease 
stage, tumor grade, residual tumor size and his-
tological type were included, with or without the 
genotypes of the SNPs. The results are shown 
in Table 3. Before adjusting for the genotypes, 
two haplotypes were significantly associated 
with the risk of death. Patients who carried one 
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Table 2. Distribution of predicted haplotypes and their associations with clinical and pathological features in epithelial ovarian cancer

Variable N
  Haplotype frequency (%)     

C-A-C1 C-A-T C-C-C C-C-T G-A-C G-A-T G-C-C G-C-T
Frequency 0.055 0.183 0.108 0.273 0.023 0.099 0.053 0.206
95% CI2 0.033-0.077 0.146-0.220 0.078-0.137 0.230-0.316 0.009-0.037 0.071-0.128 0.032-0.075 0.167-0.244
Disease stage
    I-II 64 0.036 0.217 0.123 0.241 0.044 0.061 0.023 0.254
    III-IV 147 0.060 0.162 0.109 0.288 0.017 0.121 0.059 0.184
    P value 0.312 0.172 0.582 0.318 0.082 0.058 0.116 0.103
Tumor grade
    I-II 74 0.047 0.241 0.089 0.234 0.021 0.090 0.074 0.200
    III 137 0.057 0.156 0.117 0.292 0.025 0.102 0.046 0.206
    P value 0.634 0.030 0.372 0.247 0.785 0.689 0.220 0.863
Histological type
    Serous 85 0.051 0.224 0.125 0.277 0.00002 0.078 0.048 0.198
    Non-serous 126 0.056 0.153 0.099 0.272 0.043 0.114 0.053 0.212
    P value 0.808 0.063 0.399 0.908 0.004 0.224 0.734 0.735
Residual tumor size
    0 91 0.052 0.213 0.087 0.291 0.026 0.077 0.055 0.199
    > 0 116 0.059 0.152 0.122 0.270 0.024 0.114 0.054 0.205
    P value 0.741 0.111 0.255 0.614 0.855 0.210 0.906 0.811
Debulking results
    Opitmal 108 0.056 0.207 0.090 0.286 0.021 0.091 0.046 0.203
    Suboptimal 100 0.058 0.148 0.125 0.269 0.027 0.107 0.061 0.205
    P value 0.939 0.121 0.248 0.683 0.710 0.562 0.495 0.899
Response to chemotherapy
    Yes 128 0.049 0.200 0.090 0.286 0.024 0.106 0.044 0.201
    No 48 0.086 0.139 0.139 0.271 0.036 0.082 0.062 0.185
    P value  0.192 0.193 0.184 0.782 0.531 0.497 0.473 0.727
1. SNPs were arranged in the order of rs731085-rs314276-rs4320932. 2. CI: confidence interval.
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reported that excess homozygosity could 
improve estimation accuracy using the Ex- 
pectation-Maximization (EM) algorithm [85], 
and that the Bayesian algorithm holds robust 
estimation even at the violation of HWE [83]. 
The haplotype of C-C-T, which is composed of 
each major allele of the three SNPs, is the most 
common one with an estimated frequency of 
0.273. In contrast, the minor allele-composed 
haplotype G-A-C is the least common one with 
an estimated frequency of 0.023. 

By examining the effects of the genotypes on 
patient survival of epithelial ovarian cancer, we 
found in this study only rs4320932 in IGF-II, 
neither rs314276 in LIN-28B nor rs731085 in 
let-7a-3, was associated with the risks of death 
and relapse in multivariate analysis. Patients 
carrying one copy of minor allele C had a 64% 
and 80% increases in risk of death and relapse, 
respectively, compared to those who did not 

copy of the haplotype G-C-C had an increased 
risk of death compared to those who did not 
have it; the HR was 5.31 (95% CI: 1.49-18.9). In 
contrast, patients who carried one copy of the 
haplotype G-C-T had a decreased risk of death 
compared to those who did not carry it; the HR 
was 0.25 (95% CI: 0.11-0.62). These associa-
tions remained significant after adjusting for 
the genotypes. Their HRs conditional on the 
genotypes were 7.48 (95% CI: 1.01-55.7) for 
the G-C-C carriers, and 0.14 (95% CI: 0.03-
0.70) for the G-C-T carriers, respectively. By 
comparing the Wald chi-square statistics of 
both the full and reduced models, we found the 
haplotype G-C-C-specific association with the 
death risk was significant (P = 0.008), while the 
haplotype G-C-T-specific association with the 
death risk was borderline significant (P = 
0.069). We also found that three haplotypes 
(C-A-C, G-A-C, and G-C-C) individually were sig-
nificantly associated with disease progression 

before the adjustment for geno-
types; the carriers of each indi-
vidual of the three haplotypes 
had increased risk of relapse 
compared to those who did not 
carry them. Their HRs were 5.87 
(95% CI: 1.48-23.2), 13.8 (95% 
CI: 1.66-114), and 3.74 (95% CI: 
1.10-12.8), respectively. How- 
ever, the significances of these 
associations with disease pro-
gression turned null after the 
adjustment. Similarly, none of 
haplotype-specific associations 
with relapse risk were significant 
by comparing the full and 
reduced models. 

Discussion

In this study we demonstrated 
the associations of the LIN-28B/
let-7a/IGF-II axis haplotypes with 
patient survival in epithelial ovar-
ian cancer. With the genotypes of 
three candidate SNPs in three 
genes, eight haplotypes were 
predicted using a Bayesian 
model. Although there was a 
deviation of rs314276 in LIN-28B 
from HWE, this may not affect 
the haplotype estimation given 
that more homozygosities were 
found in this study. It has been 

Table 3. Multivariate analyses for haplotype-specific associa-
tions with death and relapse in epithelial ovarian cancer 

Haplotype1
Death    Relapse

HR2 95% CI3 P value  HR 95% CI P value
Unadjusted4

    C-A-C 3.55 0.85-14.8 0.082 5.87 1.48-23.2 0.012
    C-A-T 1.00 0.40-2.52 0.995 0.52 0.21-1.29 0.155
    C-C-C 2.63 0.97-7.14 0.057 2.20 0.87-5.58 0.097
    C-C-T 0.85 0.40-1.81 0.678 0.61 0.34-1.40 0.305
    G-A-C 4.39 0.44-44.3 0.210 13.80 1.66-114 0.015
    G-A-T 1.16 0.42-3.22 0.779 1.14 0.40-3.24 0.803
    G-C-C 5.31 1.49-18.9 0.010 3.74 1.10-12.8 0.035
    G-C-T 0.25 0.11-0.62 0.003  0.60 0.28-1.26 0.174
Adjusted5

    C-A-C 0.25 0.03-2.47 0.238 1.56 0.18-13.6 0.689
    C-A-T 0.87 0.16-4.62 0.868 046 0.07-1.76 0.204
    C-C-C 0.74 0.13-4.37 0.738 0.57 0.11-2.94 0.498
    C-C-T 2.69 0.58-12.3 0.204 3.05 0.74-12.7 0.124
    G-A-C 0.35 0.01-9.17 0.530 2.17 0.12-39.2 0.600
    G-A-T 2.87 0.63-13.1 0.174 1.82 0.38-8.62 0.451
    G-C-C 7.48 1.01-55.7 0.049 1.11 0.18-6.65 0.912
    G-C-T 0.14 0.03-0.70 0.016 0.46 0.11-2.02 0.305
1. SNPs were arranged in the order of rs731085-rs314276-rs4320932. 2. 
HR: hazard ratio obtained from a Cox proportional hazard regression model 
adjusted with patient age at surgery, disease stage, tumor grade, residual 
tumor size and histological type, and with or without rs731085, rs314276 and 
rs4320932. 3. CI: confidence interval. 4. The Cox models were conditionally 
adjusted without rs731085, rs314276 and 4320932 in an additive model. 
5. The Cox models were conditionally adjusted with rs731085, rs314276 and 
4320932 in an additive model (major allele homozygote = 0, heterozygote = 1, 
and minor allele homozygote = 2). 
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carry it. The conditional effects of both 
rs4320932 and rs314276 SNPs on patient 
survival of epithelial ovarian cancer were in 
consistence with the previous studies, in which 
the SNPs were individually analyzed [36, 68]. 
The SNP rs731085 is located at the 63 bp 
downstream of pre-let-7a-3, which was not 
associated with the risk of ovarian and breast 
cancer [86]. In contrast, several SNPs in pre-
miRNAs were significantly associated with can-
cer risk [87]. These findings suggest that the 
effect size of rs731085 in let-7a-3 on ovarian 
cancer may be too small to detect. We also did 
not find an association of rs731085 with the 
expressions of let-7a and pri-/pre-let-7a-3 in 
this study. 

When analyzing the combined effects of the 
three SNPs on patient survival with epithelial 
ovarian cancer, we found that patients with one 
copy of the haplotype G-C-C had an over 7-fold 
increase in risk of death compared to those 
who did not carry it, while patients with one 
copy of the haplotype G-C-T had an over 80% 
but borderline significant reduction in risk of 
death compared to those who did not carry it. 
These findings suggest that the combined 
effects of these SNPs in haplotype are much 
stronger than the effects of each individual 
SNP or the sum of their effects. It seems that 
the allele of IGF-II SNP determines the direction 
of effect, risk or protection. The underlying 
mechanism (s) of this modified direction by the 
alleles of IGF-II SNP rs4320932 is still unclear. 
In our previous report, it was shown that the 
allele C of IGF-II SNP rs4320932 significantly 
increased risk of death in epithelial ovarian 
cancer [68]. Although the IGF-II SNP rs4320932 
is intronic, the variant may alter local DNA con-
formation [68]. Studies also have reported that 
high LIN-28B expression is associated with 
increased risk of death and unfavorable malig-
nancies, and patients with the allele C of LIN-
28B SNP rs413276 has significantly higher LIN-
28B expression than those with the allele A 
[29, 36, 38]. Given that the expressions of LIN-
28B and IGF-II are positively correlated, the 
secondary structures of IGF-II RNA may also be 
affected by the allele C and T of rs4320932, 
thereby influencing the phenotype. Moreover,  
given the relative small sample size, our study 
results should be interpreted with caution. The 
study finding warrants further validation in 
independent studies with larger sample sizes. 

In summary, our study showed that the haplo-
type G-C-C in the LIN-28B/let-7a/IGF-II axis was 
an unfavorable prognostic indicator, while the 
haplotype G-C-T was a favorable one in epithe-
lial ovarian cancer, and that their combined 
effects were much stronger than the sum or 
each individual SNP effect. This finding sug-
gests that if combining them, the effects of 
SNPs with a small effect size may be amplified, 
and we should not overlook the joint effect of 
multiple common SNPs which have low pene-
trance. The effect of the LIN-28B/let-7a/IGF-II 
axis haplotype on overall survival of EOC war-
rants confirmation in additional studies. 
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