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Abstract: Genitourinary development is a delicately orchestrated process that begins in the embryo. Once complete, 
the genitourinary system is a collection of functionally disparate organs spread throughout the abdominal and pelvic 
regions. These distinct organs are interconnected through an elaborate duct system which aggregates the organs’ 
products to a common exit point. The complicated nature of the genitourinary system makes it highly susceptible 
to developmental disruptions that produce anomalies. In fact, genitourinary anomalies are among the most com-
mon class of human birth defects. Aside from congenital anomalies of the kidney and urinary tract (CAKUT), for 
males, these birth defects can also occur in the penis (hypospadias) and testis (cryptorchism), which impact male 
fertility and male mental health. As genetic technology has advanced, it has become clear that a subset of cases of 
genitourinary birth defects are due to gene variation causing dosage changes in critical regulatory genes. Here we 
first review the parallels between human and mouse genitourinary development. We then demonstrate how trans-
lational research leverages mouse models of human gene variation cases to advance mechanistic understanding 
of causation in genitourinary birth defects. We close with a view to the future highlighting upcoming technologies 
that will provide a deeper understanding of gene variation affecting regulation of genitourinary development, which 
should ultimately advance treatment options for patients.
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Introduction

The genitourinary system in the adult male is 
dual-purpose (blood filtration, fluid regulation, 
reproduction) complicated network of inter-
connected organ hubs that span the abdominal 
and pelvic cavities [1]. The adult system is the 
product of the carefully timed and tightly regu-
lated development of multiple progenitor cells 
and tissues. Further complicating the under-
standing of genitourinary development is the 
fact many of the parts must migrate during 
development to ultimately arrive at appropriate 
regions of the body plan to function. These all 
work to make genitourinary development stun-
ningly intricate but also fragile. Genitourinary 
birth defects are among the most common 
class of birth defects. Although still poorly 
understood, in the past decade there has been 
a rise in identifying instances of gene variation 
that disrupt genitourinary development produc-
ing some of the most common birth defects. 

Recent advances in imaging and sequencing 
analysis provide hope that the coming decade 
will deepen our mechanistic understanding of 
how variation of these specific genes leads to 
the observed anomalies.

Development of the male genitourinary sys-
tem in humans and mice 

Note: Human time points are the primary listing 
and in days, weeks, months; while all mouse 
timepoints are italicized in brackets and listed 
by embryonic day (E) and postnatal day (P).

Embryonic and fetal development of the male 
genitourinary system in humans and mice can 
be divided into two major developmental peri-
ods: before sex determination (Figure 1A), and 
after sex determination (Figure 2B). The sex-
dependent (reproductive tract) and sex-inde-
pendent (urinary tract) developmental path-
ways work in concert to form a complete genito-
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urinary system after birth (Figure 1C). These 
processes begin during the first trimester in 
human development and the second third of 
mouse development. The mouse is a powerful 
model for understanding genitourinary develop-
ment and defining genetic causation in clinical 
cases of genitourinary birth defects and male 
fertility. 

The intermediate mesoderm condenses to 
form the mesonephros at day 25 [E8.5] and 
metanephros at day 28 [E11.0]. The upper 
tract of the human genitourinary system first 
begins to form around week 5 [E10.5] with 
invasion of the mesonephros-derived ureteric 
bud into the metanephros. Ureteric bud growth 
and invasion into the metanephros ultimately 
establishes the collecting portions of the upper 

tract, while the metanephros will form the 
excretory portions starting around week 10 
[E11.5-E15.5]. For development of the lower 
tract the upper portion of the urogenital sinus 
will develop into the primitive bladder at week 4 
[E11.5] and establishes a formal connection 
with the primitive ureters between weeks 5-8 
[E12.0]. In the lower tract, the ventral cloaca 
divides to form the urogenital sinus anteriorly 
at week 4-7 [E10.5]. The urogenital sinus forms 
the urethra and prostate posteriorly and the 
primitive bladder anteriorly at week 4 [E11.5]. 
In humans the intermediate urogenital sinus 
will condense laterally to form paired bulboure-
thral (Cowper’s) glands during week 10 [2]. The 
mesenchyme of the bladder begins to differen-
tiate in weeks 9-10 so that by week 22 [E14.5] 

Figure 1. Genitourinary development can be divided into three major perinatal periods. A: Early in fetal development 
the gonad (1) and genital tubercle (2) are bipotential (green) and morphologically indistinguishable between the ge-
netic sexes. During this period the bladder (3) starts to elaborate and the mesonephros (4) derived ureteric bud (5) 
invades the metanephros (6) as the first step of kidney development. B: After sex determination in XY the presence 
of SRY initiates male reproductive tract development. This begins as the gonad is directed towards a testis (7) fate 
with the germ, supporting and steroidogenic cells in the testis also committing to a male (9) sex specific program 
(see Figure 2 for more details). Shortly after commitment to testis development testicular androgen production 
influences the genital tubercle towards penis (11) development. Similarly, the mesonephros and mesonephric duct 
(4) will complicate forming the outflow tubules that will transport sperm out of the adult testis (12, see Figure 3 for 
more details). C: After birth genitourinary structures of the reproductive and urinary tracts continue to elaborate into 
adult morphologies: adrenal gland (13), kidney (14), ureter (15), bladder (16). The male reproductive tract (blue) 
also further elaborates into adult structures epididymis (17), vas deferens (18), seminal vesicle (19), prostate (20), 
bulbourethral gland (21) with significant gross anatomical differences between the mouse penis (22), which con-
tains a baculum (23), and prepuce (24), and human penis (25) and prepuce (26).
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there are three clear layers: urothelium, lamina 
propria, muscle (from apical to basal) [3-5].

The gonad initially forms around week 4-5 
[E9.5] as the genital ridge, a thin layer of cells 
sandwiched between the mesonephros and 
coelomic epithelium. Initially the gonad is bipo-
tential, able to produce either an ovary or testis 
under the direction of the sex chromosomes 
(XX female/ovary, XY male/testis). The early 
gonad will undergo a series of morphological 
changes (thickening, rotation, shortening, etc.) 
to prepare for the migratory germ cells which 
begin to arrive at week 6 [E10.5] [6].

The purpose of the gonad is to house germ 
cells which will eventually enter meiosis to pro-
duce the haploid gametes (oocytes, spermato-
zoa), which confer fertility to the individual and 
ensure continuation of the species. Primordial 
germ cells originate extra-embryonically being 
specified near the allantois at week 3 [E7.5]. 
After specification primordial germ cells will 
enter the embryo proper to migrate along  
the hindgut to reach the bipotential gonad. 
Primordial germ cells enter the developing 
gonad at week 6 [E10.5] [7, 8]. By day 41-44 
[E11.5] the presence of the Y chromosome, 
specifically the testis determining gene SRY 
(Sex Determining Region Y), initiates the male 
fate program of sex determination that will 
commit the bipotential gonad to form a testis 
[6, 9-12] (Figure 1B). The somatic cells (sup-
porting and steroidogenic) of the developing 
testis environment influence the newly arrived 
primordial germ cells which transition to pro-

spermatogonia as they commit to the male fate 
(Figure 2A). Pro-spermatogonia are highly plu-
ripotent germ cells that undergo a rapid mitotic 
burst and then asynchronously transition into 
cell cycle arrest during week 16-20 [E14.5] [13-
17] (Figure 2B). The cell cycle arrest is a critical 
period when pro-spermatogonia undergo exten-
sive epigenetic regulation and differentiate  
to form spermatogonial stem cells by birth 
(Figure 2C). Spermatogonial stem cells of the 
adult testis will supply the pool of germ cells 
that continuously enter meiosis to produce 
sperm though a process called spermatogene-
sis (Figure 2D, 2E).

During this period of fetal male germ cell dif-
ferentiation the testis and mesonephros also 
continue to develop. Morphological changes 
continue, starting at week 7 [E11.5] the testis 
chords elaborate within the interstitium of the 
testis, which is simultaneously growing [18] 
(Figure 2A-C). The mesonephros also elabo-
rates and forms mesonephric tubules at the 
cranial end of the mesonephric duct (Wolffian 
Duct, nephric duct). Mesonephric tubules are 
the precursors of the rete testis and efferent 
ducts which subsequently will allow passage of 
spermatozoa through the epididymis and vas 
deferens both of which are produced by meso-
nephric tissue. The mesonephros will also form 
the seminal vesicles which supply semen with 
energy components in the form of fructose dur-
ing ejaculation (Figure 3). Concurrent with tis-
sue morphogenesis, the entire structure also 
actively migrates from the abdominal cavity to 
the scrotum. Testis migration is divided into a 

Figure 2. After gonadal sex determination in the male, cell populations of the testis drive morphogenesis. (A) Dia-
gram of the fetal testis with showing male germ cells (green), supporting cells (blue), area of steroidogenic cells (yel-
low), an vasculature (red, blood), which invade from the mesonephros (grey). (B) Whole mount immunofluorescent 
imaging of a E14.5 mouse testis with germ cells (green), supporting cells (blue), and blood supplying vasculature 
(red). (C) Whole mount immunofluorescent imaging of a P2 mouse testis with germ cells (green), supporting cells 
(blue), and blood supplying vasculature (red). (D) Cartoon diagram of the adult mouse testis (see Figure 3 for de-
tails). (E) Cross section immunofluorescent imaging of adult mouse seminiferous tubules showing different stages 
of active spermatogenesis (noted in Roman numerals) with developing germ cells (green) facilitated by supporting 
cells (blue). Scales are: 500 µm in (B and C), and 75 µm in (E).
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transabdominal phase from weeks 8-15 
[E13.0-E17.0] and inguinoscrotal phase from 
weeks 25-35 [P21-P28]. The phases are sepa-
rated by a pause in migration.

By the end of the first month the cloacal  
folds have united cranially to form the bipo- 
tential genital tubercle, and subdivided caudal-
ly to form urethral folds. Just lateral to the ure-
thral folds are the genital swellings. The bipo-

the baculum (Os Penis), while the human does 
not (Figure 3C). Also, in humans the urethral 
plate forms the urethral meatus and penile ure-
thra, while in the mouse the urethral plate 
forms only the penile urethra [23-26].

Collectively all of these processes in genitouri-
nary development rely heavily on canonical 
pathways responsible for: tubularization (SOX9/
FGF, BMP), mesenchymal to epithelial transi-

Figure 3. Mouse and human testis anatomy. (A, B) Testis, epididymis and 
vas deferens from human (A) and mouse (B); (A) is planstinated tissue and 
(B) is fresh tissue. (C, D) Diagrammatic representation of human (C) and 
mouse (D) testis interior. The human testis is divided into a series of radiat-
ing septa that each contain a highly coiled loop of seminiferous tubule (C). 
The seminiferous tubules of the mouse have a pole-to-pole looping swoop-
ing structure (D). Scale is 5 cm in (A) and 5 mm in (B). Image in (A) is part 
of a larger dissection published in Ruthig et al. 2016 Anatomy [1] in (C) was 
inspired by work of Netter [111]. 

tential structures that will form 
the external genitalia have 
appeared as the genital tuber-
cle and paired genital swellings 
[E10.5] [19]. At around 8 weeks 
gonadal sex determination in 
favor of the male pathway com-
mits the genital tubercle to 
forming a penis during the  
next 8 weeks of development 
[E15.5] [20]. This is under the 
influence of testosterone, the 
masculinizing hormone pro-
duced by Leydig cells of the 
fetal testis starting at week 8  
in the human [E15.5 in the 
mouse]. Initially the penile ure-
thra is formed by elongation 
and canalization of the urethral 
groove which is flanked later- 
ally by paired urethral folds. By 
week 12, the urethral folds will 
fuse medially on the ventral 
aspect of penis. This fusion 
encloses the tubular epithelial 
lumen derived from endoderm, 
called the urethral plate, and 
forms the penile urethra. How- 
ever, the most distal portion, 
the glanular region of the penis, 
is invaded by a solid urethral 
plate which must then canalize 
while the mesenchyme ventral 
to the canalization fuses to 
form a confluence that will fully 
tubularize the region [21]. This 
process also requires endoder-
mal reabsorption and epithelial 
remodeling to finalize the glan-
ular region of the urethra [22]. 
It is worth noting two major dif-
ferences in human and mouse 
penis development. The mouse 
penis contains a bone within,  
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tions (WT1 via Wnt/β-catenin), outgrowth/
branching (GDNF/RET) growth/patterning (Hed- 
gehog/TGFβ) [27-32]. Proper regulation of the 
sex hormones (androgens and estrogens) is 
also critical after sex determination for mascu-
linization of the male reproductive tract [33, 
34].

In general, the following reviews and textbook 
chapters served as references throughout this 
section [35-40].

Key genitourinary anomalies presenting a 
challenge to human health at birth 

Genitourinary anomalies are a very common 
class of birth defects. With externally reco- 
gnizable anomalies accounting for (11:1,000) 

early genitourinary development was initially 
derailed [41]. One major cause, among others, 
for male genitourinary birth defects are varia-
tions in genes responsible for regulating part(s) 
of the closely orchestrated pathways that col-
lectively produce a functional genitourinary 
system.

Gene dosage anomalies underlie a significant 
number of birth defects and syndromes

CRKL

The 22q11.2 region is the site of gene dele-
tions causing diGeorge Syndrome. Multiple 
studies established that a subset of patients 
with diGeorge Syndrome have genitourinary 
anomalies [50-52]. Follow up studies narrowed 

Figure 4. Classifications of hypospadias severity by urethral opening loca-
tion. Hypospadias is characterized by ectopic placement of the urethral 
opening, which can occur distally to proximally on the penis as the severity 
increases (denoted by colored bars [112]). Ectopic urethra can occur in 
conjunction with a foreskin that has failed to fuse ventrally “hooded fore-
skin”, and varying degrees of chordee, curvature, of the shaft of the penis 
(figure inspired by Piñeyro-Ruiz 2020 Frontiers Pediatrics and informed by 
[19, 20]). 

live births [41]. Among the 
externally recognizable anoma-
lies, 1:125 live male births oc- 
cur with hypospadias [NBDPN 
2019 Annual Report]. Hypo- 
spadias is a failure in urethral 
closure during development. 
Urethral closure is most depen-
dent on two key events: prepu-
tial swelling with ventrolateral 
growth, and bilaminar urethral 
plate remodeling into a tube. 
When these events do fail and 
cause hypospadias, there is a 
range of severity that can occur 
(Figure 4) [42, 43]. Failure of 
the testis to descend fully into 
the scrotum, cryptorchidism, 
affects 1:30 full-term live male 
births [44, 45] and increases 
the chance of infertility and tes-
ticular cancer risk [46, 47]. Con- 
genital anomalies of the kidney 
and urinary tract (CAKUT) in- 
clude conditions such as (re- 
nal agenesis/dysplasia/hypo-
plasia, obstruction sometimes 
causing hydronephrosis, vesi-
coureteric reflux) [48, 49]. 
CAKUTs represent 20-30% of 
all prenatally diagnosed gene- 
ral anomalies [41]. CAKUT pa- 
thologies can arise during any 
part of fetal development. Of- 
ten severity of the CAKUT is 
typically directly related to how 
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down many of these microdeletions encom-
passing CRKL (CRK Like Proto-Oncogene, 
Adaptor Protein) [52, 53]. Clinical cases of 
CRKL deletions have genitourinary anomalies 
that include bladder exstrophy, cryptorchidism, 
hypospadias, micropenis, and CAKUT occurring 
in 1.4% of non-syndromic males with genitouri-
nary birth defects [52, 53]. CRKL functions 
downstream of tyrosine kinase transducing 
intercellular signals as an adaptor protein [54, 
55]. Regulatory targets of CRKL include multi-
ple growth factors most notably fibroblast 
growth factors (FGFs) [56-59]. Genitourinary 
anomalies associated with CRKL loss are 
thought to be primarily due to an impaired 
development of the metanephric mesenchy- 
me. 

MAZ

MAZ (MYC Associated Zinc Finger Protein, aka 
SAF-1) is located within the 16p11.2 microdele-
tion/microduplication syndrome region and is 
important for genitourinary development [60]. 
Clinical genitourinary anomalies reported for 
cases of MAZ copy number variation include 
CAKUT, hypospadias, cryptorchidism, micrope-
nis [51, 60]. About 6.2% of non-syndromic 
males with genitourinary anomalies have copy 
number variants that encompass MAZ [60]. 
MAZ can act as a transcriptional initiator or ter-
minator; among MAZ targets are the promotor 
regions of WT1, MYC and Sp1 [61, 62]. MAZ 
regulation of Wnt morphogens is implicated as 
required for normal genitourinary development 
[60]. The Wnt/β-catenin pathway is critical to 
normal genitourinary development [30, 63-65].

KCTD13

KCTD13 (Potassium Channel Tetramerization 
Domain Containing 13) is yet another gene in 
the 16p11.2 minimal region identified by 
Tannour-Louet, et al., (2010) [51] which shows 
a link between gene variation and genitourinary 
anomalies. Patients with KCTD13 microdele-
tion and microduplication have hypospadias 
and cryptorchidism, though rarely just one de- 
fect [66]. KCTD13 is a binding partner adapt- 
er for the E3 ubiquitin ligase complex (BTB 
domain Cullin3 complex RING protein Rbx1 
(BTB-CUL3-RBX1) aka BCR E3 ubiquitin ligase 
complex) and confers substrate specificity to 
the BCR E3 ubiquitin ligase complex [67, 68]. 
Dosage changes in KCTD13 expression were 
shown to dysregulate androgen receptor local-

ization vitiating masculinization of the penis 
and testis development [66]. 

TBX6

In a study of 2,824 CAKUT cases a reductive 
approach was used to ultimately identify a new 
gene microdeletion in the larger common 
microdeletion region within 16p11.2 region in 
TBX6 (T-Box Transcription Factor 6). Inactiva- 
tion of TBX6 was correlated with a subset of  
the CAKUT cases with kidney anomalies [69]. A 
follow up study with increased clinical cases 
from two centers and multiple racial back-
grounds (Chinese and Caucasian/Hispanic) fur-
ther validated 16p11.2 microdeletion specifi-
cally in TBX6 as causative in kidney anomalies 
of CAKUT [70]. A second group recently corrob-
orated these findings in a study that linked 
TBX6 variation to vertebral and rib malforma-
tions and CAKUT [71]. TBX6 is a DNA-binding 
transcription factor with targets that include 
SOX2 and WNT3A [72, 73]. Dosage changes in 
TBX6 are implicated in causing dysregulation of 
the developmental pathways controlling ure-
teric bud invasion of the metanephros and ure-
teric bud branching [69-71]. 

VAMP7 

Tannour-Louet, et al., (2014) was the first to 
identify a dosage-sensitive gene microduplica-
tion in the pseudo-autosomal region 2 of the 
sex chromosomes that specifically duplicated  
a single gene, VAMP7 [74]. Which encodes a 
vesicle-trafficking protein that is part of the 
SNARE complex that was present in 3.6% of 
non-syndromic males with masculinization dis-
orders of the male external genitalia (cryptor-
chidism and/or hypospadias), but was not  
present in 8951 individuals with no genitouri-
nary anomalies. The studies were important 
because they showed that up-regulation of 
VAMP7 enhanced estrogen receptor action and 
to a lesser extent blunted androgen receptor 
action affecting virilization of the male genital 
tract during development resulting in an 
increased incidence of genitourinary birth 
defects. The over-expression of VAMP7 impact-
ed steroid hormone actions in ways not previ-
ously recognized. 

Exciting new frontiers

Although there are a growing number of identi-
fied genes that are linked to causing genitouri-
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nary anomalies, there is still limited mechanis-
tic understanding of how these genes usually 
regulate the complicated process of genitouri-
nary development and how this is aberrated 
with changes in gene dosage. However, a few 
recent advances in technology and develop-
mental biology show promise to help more 
deeply define mechanisms. Recent publica-
tions applying light sheet imaging to the devel-
oping genitourinary system have demonstrated 
how apt this technology is at capturing the 
interconnectivity between regions of the sys-
tem. Light sheet imaging also offers a lot of 
promise for advancing how genitourinary anom-
alies due to gene variation are imaged [75-79]. 

There was a recent surge in scRNA-seq datas-
ets representing many different tissue types in 
the developing and adult genitourinary tract 
including penis [80-82], germ cells [83-86], 
testis [87-91], kidney [92-95], prostate [96-98]. 
Some of these datasets were paired with  
some of the new spatial transcriptomic meth-
ods to validate scRNA-seq findings in tissue 
samples [80, 98]. The plethora of scRNA-seq 
datasets being produced can also serve as ref-
erences to deconvolute bulk RNA-seq datasets 
[99, 100]. There is a great benefit of using 
deconvolution to disentangle some of the 
muted transcriptomic signal that is hindered  
by the heterogeneity inherent in bulk RNA-seq 
samples when it is not be feasible to process 
the samples as scRNA-seq. This benefit has 
already begun to be utilized in genitourinary 
research [101-104]. 

In conclusion, with the advent of genomic tech-
nologies as well as next generation sequencing 
in recent years our understanding of the genet-
ic and genomic defects causing genitourinary 
birth defects in humans has rapidly expanded. 
The additional extensive studies of in vitro and 
in vivo models (mainly in mouse models), 
together with the use of advanced bioinformat-
ic analyses of complex single-cell RNA seq data 
has allowed researchers to not only precisely 
time and identify specific cell types critical to 
key developmental processes, but to also dis-
sect the complex interactions of multiple sig-
naling pathways critical for normal genitouri-
nary development. Of note, many of these 
developmental pathways critical to normal GU 
development are also needed for development 
of other organs, tissues or cells in the body. An 

example of this observation is the realization 
that individuals with gene-dosage changes in 
Maz not only have genitourinary birth defects 
but also may have a plethora of eye defects, 
including microphthalmia, anophthalmia and 
coloboma resulting from dysregulation of the 
Wnt/β-catenin pathway and disruptions in the 
network controlling ciliary margin patterning 
due to MAZ deficiency [105]. This phenotype 
together with microdeletions encompassing 
MAZ or damaging mutations in MAZ was identi-
fied in humans by both copy number variant 
assessment, as well as whole exome sequenc-
ing analysis [105]. CNVs in 16p11.2 in general 
are associated with microphthalmia, anoph-
thalmia and coloboma ocular malformations in 
humans [106, 107]. Importantly, deletions and 
duplications of chromosome 16p11.2 is re- 
ported as one of the most frequent genetic 
causes for autism spectrum disorders, schizo-
phrenia and other neurodevelopmental disor-
ders [108, 109] and suggests that a subset of 
patients seen by the urologist for surgical cor-
rection of genitourinary birth defects are syn-
dromic (undiagnosed) and who might benefit 
from an evaluation by a medical geneticist spe-
cializing in this area.
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