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Abstract: Regular consumption of cruciferous vegetables has numerous health benefits, including reduced cancer 
risk and improved patient outcomes. Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables with 
a chemoprotective role against epithelial cancers, particularly of the bladder. Epithelial cells have several functions, 
including secretion, absorption, filtration, and protection from environmental insults. The specialized stratified epi-
thelium of the bladder has direct and frequent contact with carcinogenic agents, increasing the likelihood of cancer 
initiation at this site. Carcinogen exposure, particularly from cigarette smoke or occupational exposure to aromatic 
amines, are the most significant risk factors for bladder cancer due to their ability to activate inflammatory path-
ways, induce free radicals, and damage DNA. SFN acts as an antioxidant by activating phase II enzymes involved 
in carcinogen detoxification to prevent DNA damage and inhibit tumor initiation, modulates multiple signaling path-
ways to inhibit tumor growth and progression, and has anti-inflammatory and immune-modulating properties to 
help protect against cancer. Due to these chemoprotective mechanisms, SFN has been studied as both mono- and 
adjuvant therapy in several bladder cancer models. Here we present a review of the effects of SFN on carcinogen-
induced bladder cancer to support the inclusion of cruciferous vegetables as a chemoprotective strategy. 
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Introduction

Bladder cancer incidence and risk factors

Bladder cancer is the sixth most common can-
cer in the US and is more prevalent in males 
than in females [1-3]. The estimated incidence 
of bladder cancer and related cancer deaths in 
the US in 2023 are 82,290 and 16,710, res- 
pectively [2]. Clinically, patients often present 
with painless hematuria but may also experi-
ence urinary urgency, frequency, or dysuria. 
Patients with a late-stage disease may present 
with lymphadenopathy, flank pain, and weight 
loss [4, 5]. Annually, 90% of bladder cancer 
diagnoses are urothelial carcinoma. Most 
cases (70%) will not be muscle-invasive at the 
time of diagnosis, but there is a 50-80% chance 
of bladder cancer recurrence within five years 

of diagnosis in these patients. Approximately 
33% of newly diagnosed bladder cancers are 
muscle-invasive, and 4% present as distant 
metastatic disease [5, 6]. The five-year overall 
survival rate for non-muscle invasive bladder 
cancer is 77%. However, patients with distant 
metastases have a five-year survival rate as low 
as 6% [7]. 

The most significant risk factor for the develop-
ment of bladder cancer is a history of cigarette 
smoking, which is responsible for approximate-
ly 50% of bladder cancer cases in both men 
and women. Those who smoke have a three-
times greater chance of being diagnosed with 
bladder cancer than those who do not smoke 
[8, 9]. In older male populations, a 65+ pack-
year history of smoking leads to a relative risk 
of 3.6 for bladder cancer compared to never-
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smokers (95% confidence interval [CI] = 2.2-
4.6) [10]. The increased risk may, in part, be 
explained by increased DNA damage caused by 
smoking. For instance, DNA adducts, particu-
larly 4-aminobiphenyl (cigarette smoke carcino-
gen) DNA adducts, are higher in bladder can-
cers of smokers than in non-smokers [11]. 
Other well-documented risk factors for bladder 
cancer include schistosomiasis, prior pelvic 
radiation, chronic bladder inflammation, and 
exposure to certain medications and occupa-
tional toxins, including arsenic, aromatic amin- 
es, and aniline dyes [8, 12, 13].

Isothiocyanate metabolism and bioavailability

Phytochemicals are plant-produced com-
pounds that often serve as plant defense 
mechanisms and have been used for medicinal 
purposes for hundreds of years [14-17]. In 
recent decades, certain phytochemicals have 
emerged as potential or active anti-cancer ther-
apies [18-21].

Isothiocyanates are active plant phytochemi-
cals derived from inactive precursors, gluco-
sinolates, which are uniquely present in cruci-
ferous vegetables such as cabbage, kale, brus-
sels sprouts, and broccoli [22, 23]. Cruciferous 
vegetables of the Brassicaceae family are 
believed to have originated in Europe several 
thousand years ago [24]. They are rich in vita-
mins and minerals, including folic acid, vitamin 
A, iron, calcium, and zinc [25]. This family of 
vegetables harbor varying levels of glucosino-
lates, which contain sulfur groups that give cru-
ciferous vegetables their characteristic pun-
gent taste and smell [26]. The metabolism of 
glucosinolates begins with plant damage, such 
as chewing or chopping, which activates plant-
derived myrosinase enzymes that convert inac-
tive glucosinolates into isothiocyanates, thio-
cyanates, nitriles, goitrin, and epithionitriles. 
Myrosinase enzymes can also be produced in 
varied quantities by gut microbiota, which can 
assist in glucosinolate metabolism in the colon 
[26-28]. Isothiocyanates are believed to be 
important inducers of phase II detoxification 
enzymes and may play a role in chemopreven-
tion [29]. Their overall metabolism and bioavail-
ability depend on multiple factors, including 
mode of consumption, stomach acidity, gut 
microbiome, and genetic makeup [30, 31].

Once produced, isothiocyanates undergo a 
series of metabolic reactions, including conju-
gation with glutathione by glutathione-S-trans-
ferases (GSTs) [32, 33]. GSTs are phase II 
detoxification enzymes that neutralize endoge-
nous and exogenous compounds and help to 
reduce oxidative stress. In humans, there are 
two super-families of GSTs, microsomal and 
cytosolic. Cytosolic GSTs are coded for by at 
least 16 genes [34]. GSTs, particularly the cyto-
plasmic enzymes GSTM1 and GSTP1, play an 
important role in isothiocyanate metabolism. 
GSTM1 is highly expressed in cells of the liver, 
which may further support its role in metabo-
lism of SFN after oral consumption [30, 35]. 

A variety of polymorphisms have been de- 
scribed in the GST enzymes, particularly of 
GSTM1 and GSTT1 [36, 37]. While the overall 
frequencies of homozygous GSTM1- and GST- 
T1-null genotypes vary depending on racial 
and/or ethnic group, polymorphisms in GST 
enzymes exist across all populations [37]. For 
instance, GSTM1-null mutations affect up to 
53% of all racial/ethnic groups while GSTT1- 
null mutations affect up to 21% of Caucasian, 
64% of Asian populations, and 45% of African 
populations [35, 38]. These mutations lead to  
a lack of a functional protein product, which 
may alter the metabolism and efficacy of iso-
thiocyanates, particularly SFN, as chemopre-
ventive agents [35, 39, 40]. 

GSTM1 mutations are perhaps the most well 
studied of the GST enzyme polymorphisms. In 
mice, knocking out GSTM1 leads to increas- 
ed inflammation and oxidative stress [41]. In 
humans, epidemiologic studies suggest that 
individuals in the United States with active 
GSTM1 may gain a greater degree of protection 
from the consumption of cruciferous vegeta-
bles than those who are GSTM1-null [35]. 
However, epidemiologic studies in Asia suggest 
that GSTM1- or GSTT1-null individuals derive a 
higher degree of cancer protection from cruci-
fer consumption than those who are GSTM1- 
and GSTT1-positive [42, 43]. The differences in 
the predominant type of cruciferous vegetables 
consumed by Asian populations (Chinese cab-
bage) versus American populations (broccoli) 
may be one reason for these conflicting results 
[43]. Alternatively, GSTM1 metabolism of SFN 
may increase its secretion, and those with 
GSTM1-null mutations may ultimately have 
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reduced SFN secretion, and therefore increased 
circulating levels of the anti-carcinogenic com-
pound to combat cancer [44]. Finally, additional 
enzymes of the mercapturic acid pathway are 
required for isothiocyanate metabolism and dif-
fering levels of enzyme activity among individu-
als may also play a role in SFN activity and can-
cer prevention [44]. 

Individuals with GSTM1-null mutations may 
also have compensatory mechanisms for the 
loss of GSTM1 activity. Work done by Gasper,  
et al. indicated that GSTM1-null individuals 
metabolize SFN more rapidly within the first six 
hours after consumption, and excrete more uri-
nary SFN metabolites within a 24-hour period, 
compared to individuals who have functional 
GSTM1 proteins [35]. Additional investigations 
indicated that the half-life of SFN is greater in 
those with GSTM1-null mutations, but that the 
type and quantity of urinary SFN metabolites 
were similar to those who were GSTM1-posi- 
tive [45]. In respiratory epithelial cells with 
GSTM1-null mutations, SFN treatment led to a 
dose-dependent increase in overall GST activi-
ty, believed to be a compensatory mechanism 
of SFN metabolism [46]. Furthermore, in vitro 
analysis of GSTM1-null human lymphocytes 
showed that GSTM2 expression nearly doubled 
with SFN treatment, and GSTM2 also metabo-
lized SFN at a comparable rate to function 
GSTM1 protein [47]. 

Anticancer mechanisms of SFN

SFN is a bioactive compound with both antioxi-
dant and anti-inflammatory properties. SFN 
induces cancer cell apoptosis and cell cycle 
arrest while also activating enzymes responsi-
ble for detoxifying carcinogenic compounds 
[48, 49]. SFN also improves the efficacy of cer-
tain traditional chemotherapeutic regimens 
[50, 51]. SFN acts as a chemoprotective agent 
through various mechanisms, including the 
activation of phase II enzymes involved in car-
cinogen detoxification to prevent DNA damage 
and inhibit tumor initiation, as well as the regu-
lation of multiple signaling pathways to inhibit 
tumor growth and progression. SFN also pos-
sesses immune-modulating properties that 
help to protect against cancer [48, 49, 52]. 
Such functions, along with the selective toxicity 
towards transformed cells, make SFN a poten-
tial candidate for the treatment and prevention 

of several types of cancer, especially epithelial 
cancers associated with high carcinogen expo-
sure, like bladder cancer. Each of the anti-can-
cer mechanisms of SFN are reviewed below.

Antioxidant properties of SFN

Many of the most notable effects of SFN are 
mediated by its electrophilic properties and 
ability to activate phase II detoxification en- 
zymes. The best-established mechanism is via 
protein nuclear factor erythroid 2-related fac-
tor-2 (Nrf2) activation. Under normal condi-
tions, Nrf2 is bound by its inhibitor, Kelch-like 
ECH-associated protein 1 (Keap1). SFN inacti-
vates Keap1, allowing Nrf2 to translocate to 
the nucleus and activate specific antioxidant 
response elements (ARE) [53-55]. A lesser 
established mechanism proposed by Li, et al.  
is that SFN induces mild increases in reactive 
oxygen species (ROS), leading to transcription 
factor EB (TFEB) activation. TFEB plays a role in 
activating antioxidant response elements and 
regulating cellular autophagy, ultimately reduc-
ing overall oxidative stress. TFEB also acts as a 
potential arm of protein Nrf2 activation [55]. 

Nrf2 is an important leucine zipper transcrip-
tion factor that assists in drug metabolism  
by inducing antioxidant response element-
mediated expression of phase II detoxification 
enzymes, including NAD(P)H: quinone oxidore-
ductase and GSTs [56-58]. Under homeostatic 
conditions, Keap1 binds to and inhibits Nrf2, 
which is eventually ubiquitinated and degrad- 
ed [59, 60]. Accumulation of ROS and electro-
philes, due to SFN or other mechanisms, acti-
vates Nrf2 by modification of cysteine residues 
on Keap1, which weakens the association 
between Keap1 and Nrf2, allowing Nrf2 to dis-
associate from Keap1 and translocate to the 
cell nucleus [60, 61]. Once in the nucleus, Nrf2 
proteins bind ARE to stimulate the expression 
of phase II enzymes (N-acetyltransferase and 
glutathione S-transferase), which play crucial 
roles in detoxifying xenobiotics [61, 62]. 

While phase II enzymes typically detoxify carci-
nogenic compounds, phase I enzymes general-
ly activate xenobiotic compounds into their car-
cinogenic metabolites rather than inactivate 
them into neutral compounds [63-65]. In addi-
tion to activating phase II enzymes, SFN also 
decreases the expression of phase I enzymes, 
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especially cytochrome P450 iso-
enzymes 2E1 (CYP2E1) and 3A4 
in human hepatocytes [66, 67]. 
Both phase I and phase II xenobi-
otic metabolism occur predomi-
nantly in the liver [68]. 

Activating Nrf2 with a subsequent 
increase of phase II enzyme 
expression is an essential chemo-
protective mechanism of SFN in 
the bladder (Figure 1A). An exam-
ple of this was previously recog-
nized in human hepatocyte and 
hepatoma (HepG2) cell lines 
wherein SFN treatment increased 
Nrf2 and, therefore, glutathione 
levels [69]. Low doses of SFN (less 
than or equal to 5 μM) assisted  
in protecting both cell lines ag- 
ainst hydrogen-peroxide-induced 
damage by activating the Nrf2/
glutathione detoxification system. 
Cancer cells treated with SFN 
showed higher catalase levels, 
heme oxygenase 1, and NAD(P): 
quinone oxidoreductase-1 detoxifi-
cation enzymes [69]. In cultured 
prostate cancer cells and prostat-
ic adenocarcinomas in murine 
models, SFN treatment led to 
increased Nrf2 levels, with a sub-
sequent decrease in ROS caused 
by androgen deprivation. Further- 
more, Liu, et al. revealed that SFN 
treatment sensitized prostate can-
cer cells to radiation therapy via 
Nrf2 upregulation [70]. By reduc-
ing oxidative stress, SFN may play 
a role in preventing the DNA dam-
age, mutation, and inflammation 
that contribute to carcinogenesis. 

Anti-inflammatory properties of 
SFN

Chronic inflammation is a contrib-
uting factor to the emergence of 
various cancer types. The relation-
ships between pro- and anti-
inflammatory cytokines, as well as 
inflammatory cells and their cyto-
kine and chemokine milieus, play 
significant roles in the induction 
and progression of cancer [71, 
72]. High levels of ROS also create 

Figure 1. Chemoprotective effects of SFN. A. SFN mediates antioxidant 
response by Nrf2 activation of phase II enzymes with subsequent repair 
of tobacco carcinogen-induced DNA damage in the transitional epithe-
lium. B. SFN induces anti-inflammatory and immune responses by in-
hibiting the NF-κB pathway in epithelial cells. C. SFN induces epigenetic 
changes, cell cycle arrest, and apoptosis of transformed epithelial cells. 
Figure was created with BioRender.
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favorable environments for inflammation, 
tumor initiation, and proliferation through the 
oxidation of critical molecular structures, 
including lipids, proteins, and nucleic acids 
[73]. Through its action on the Keap1/Nrf2 
pathway and induction of ROS detoxifying 
enzymes, SFN may mitigate inflammation and 
inhibit tumor cell progression (Figure 1B) 
[73-75]. 

ROS also generate inflammation by increasing 
the levels of tumor necrosis factor-alpha (TNF-
α), which in turn increases the expression of 
the transcription factor Nuclear Factor Kappa  
B (NF-κβ) [76]. NF-κβ promotes oxidative stress 
and can induce inflammation if homeostatic 
conditions are not restored [73]. The inflamma-
tory molecules released in response to NF-κβ 
include interleukin-6 (IL-6), interleukin-1β (IL-
1β), and interferon-gamma (INF-γ), in addition 
to cyclooxygenase-2 (COX-2), vascular cell 
adhesion molecule 1 (VCAM-1), and intercellu-
lar adhesion molecule 1 (ICAM-1), all of which 
favor inflammation [77-80]. Alternatively, SFN 
treatment inhibits the release of NF-κβ from 
the inhibitory molecule, I-kB, and can prevent 
NF-κβ from binding to DNA, thereby reducing 
the expression of COX-2 and other inflammato-
ry mediators [81-84]. Similarly, SFN treatment 
has also been found to decrease the cellular 
release of IL-1β, IL-2, IL-6, and IL-10, reduce the 
expression of VCAM-1 and ICAM-1 on endothe-
lial cells exposed to lipopolysaccharide via 
downregulation of NF-κβ, as well as increase 
cell autophagy and apoptosis of transformed 
cells [76, 79, 85, 86]. 

In addition to altering cytokine expression, SFN 
treatment modulates the function of several 
innate and adaptive immune cell types. For 
instance, SFN was previously found to regulate 
the antibody-dependent cellular cytotoxicity 
response of natural killer cells, leading to the 
destruction of recognized cancer cells [87]. 
SFN also plays an immunomodulatory role in 
certain inflammatory conditions by polarizing 
macrophages to an alternatively activated/M2 
phenotype rather than a classically activated/
M1 phenotype [88-90]. The M1 subtype is 
associated with a pro-inflammatory response 
characterized by increased inflammatory cyto-
kines and ROS expression. Conversely, macro-
phages of the M2 subtype are associated with 
the production of anti-inflammatory cytokines 
and the activation of pathways that lead to  
antioxidant production [89, 91, 92]. 

Furthermore, SFN can reduce inflammation by 
inhibiting activated, non-transformed human T 
cells, especially TH17 cells, through increasing 
intracellular ROS levels, decreasing gluta- 
thione levels, and reducing the expression of 
RORgt, IL-17, and IL-22. The T cell activation 
markers CD25 and CD69 and the activation 
factor IL-2 are also decreased with SFN treat-
ment compared to untreated controls [75]. 
Recently, Shen et al. discovered that SFN treat-
ment potentiates the activities of chimeric  
antigen receptor T (CAR-T) cells in vitro and in 
vivo. CAR-T cells treated with SFN secreted 
more IFN-γ, perforin, and granzymes, and 
reduced CAR-T expression of programmed cell 
death 1 (PD-1), which binds programmed cell 
death ligand 1 (PD-L1) on tumor cells and pro-
motes CAR-T exhaustion. In xenograft models, 
CAR-T cells in mice given SFN showed reduced 
tumor progression and prolonged survival [93]. 
Through the modulation of T cell activity, SFN 
may decrease T cell-mediated inflammation, 
prevent autoimmunity and potential carcino-
genesis, and promote the death of transformed 
cells. 

DNA modulation by SFN

In addition to its effects on antioxidant res- 
ponses and inflammation, SFN alters cellular 
epigenetics by regulating histone deacetyl-
transferases (HDACs), which remove acetyl 
groups from histones, causing the repression 
of gene transcription (Figure 1C). The effects of 
SFN on HDACs have been shown in multiple 
models, including human colon and prostate 
cell lines, prostate cancer xenografts, and 
murine peripheral mononuclear cells [94]. 
Increased HDAC expression is a mechanism 
used by several cancer types to repress the 
expression of tumor suppressor genes and 
allow continued cell cycling and proliferation 
[95, 96]. HDACs also play a role in the DNA 
damage response at cell cycle checkpoints and 
during the processing of double-stranded DNA 
breaks [97]. SFN was previously shown to in- 
hibit HDACs competitively and protect against 
carcinogenesis [98-101]. For instance, in 
LNCaP and PC3 prostate cancer cell lines, SFN-
induced HDAC inhibition led to increased levels 
of the tumor suppressor p21 with subsequent 
cell cycle arrest and increased Bax levels, 
which induced cancer cell apoptosis [94, 102]. 
Furthermore, cell cycle analyses have shown 
that SFN inhibits cell cycle progression, particu-
larly in the sub-G1 and G2/M phases, with 
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associated reductions in cyclins B1 and D1, 
along with increased tumor suppressor pro-
teins p21 and p53 activity [103-105]. 

The mild increase in ROS generated by SFN 
may also help disrupt mitochondrial mem-
branes and cause the release of cytochrome c 
with subsequent apoptosis of cancer cells 
[106, 107]. In HeLa cells and HepG2 cells, SFN 
induces the formation of apoptotic bodies and 
causes cell cycle arrest in the sub-G1 phase. 
SFN also increases Bax expression and down-
regulates Bcl-2 and Bcl-XL, further evidence 
that SFN induces apoptosis in transformed 
cells [108]. Additionally, in a study on SFN-
induced apoptosis in prostate cancer cells, 
SFN led to the activation of caspase-3 and cas-
pase-9, triggering apoptosis in tumor cells 
[107]. 

By inhibiting phase I enzymes and activating 
phase II detoxification enzymes, SFN may 
reduce the activation of carcinogens and ROS 
that interact with cellular DNA, thus preventing 
DNA mutations or reducing the mutation bur-

den [109, 110]. Some research suggests that 
SFN increases DNA damage and prevents dou-
ble-stranded DNA break repair, leading to cell 
cycle arrest and apoptosis [111-113]. However, 
others report a decrease in DNA mutation bur-
dens. For example, in HepG2 hepatoma cells, 
SFN exposure for three hours reduced DNA 
adduct levels by 66% [114]. Collectively, these 
mechanisms help prevent tumor initiation and 
progression (see Table 1 for a summary of 
mechanisms and corresponding references). 

Origin of bladder cancer

The primary function of the bladder is to store 
urine until it is ready to be excreted [115]. The 
bladder wall is composed of four layers. From 
the outside to the inside, there is the adventi-
tia, the muscular layer, the submucosal layer, 
and finally, the mucosal layer, or urothelium 
[116, 117]. The urothelium is a layer of transi-
tional epithelium consisting of basal cells, inter-
mediate cells, and a superficial layer of umbrel-
la cells that line the urinary bladder cavity and 
act as an impermeability layer and are held 

Table 1. Anti-cancer mechanisms of sulforaphane and corresponding references 
Mechanism of Action Sources
Induction of Nrf2 Kensler et al. 2013 [49]; Dinkova-Kostova et al. 2017 [54]; 

Subedi et al. 2019 [85]; Wang et al. 2018 [76]; Liu et al. 2019 
[69]; Jo et al. 2014 [160]

Increased ROS Liang et al. 2018 [75]; Sing et al. 2005 [107]; Jo et al. 2014 
[160]

Cell cycle arrest Wang et al. 2015 [48]; Cheng et al. 2016 [103]; Zuryn et al. 
2016 [104]

Induction of apoptosis Wang et al. 2015 [48]; Sharma et al. 2011 [173]; Hahm and 
Singh 2010 [86]; Sing et al. 2005 [107]; Jo et al. 2015 [160]

Enhanced anti-cancer drug effects Calcabrini et al. 2020 [168]; Kerr et al. 2018 [167]
Micro-RNA activation Wang et al. 2016 [50]
Enhanced immune cell function Thejass and Kuttan 2006 [87]
Suppression of inflammation Ali et al. 2020 [89]; Pal and Konkimalla 2016 [88]; Heiss et al. 

2001 [82]; Shan et al. 2012 [79]; Sharma et al. 2011 [173]; 
Subedi et al. 2019 [85]; Hahm and Singh 2010 [86]

Downregulation of STAT3 Hahm and Singh 2010 [86]; Subedi et al. 2019 [85]
COX-2 suppression Woo and Kwon 2007 [84]; Sharma et al. 2011 [173]
Cytochrome P450 inhibition Maheo et al. 1997 [66]; Barcelo et al. 1996 [67]
Reduction of PD-1 and PD-1L expression Shen et al. 2021 [93]
HDAC inhibition Myzak et al. 2007 [94]; Jiang et al. 2016 [101]
Inhibition of DNA adduct formation Singletary and MacDonald 2000 [110]; Bacon et al. 2003 

[185]; Ding et al. 2010 [158]
Reduced AP-1 expression Dickinson et al. 2009 [186]
Altered DNA methylation profiles Li et al. 2020 [187]
Reduced polycomb group [170] gene expression Balasubramanian et al. 2011 [170]
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together by tight junctions [118]. Umbrella cells 
change morphology depending on whether the 
bladder is full of urine or empty. These cells 
become flattened and elongated when the uri-
nary bladder is full and, conversely, are taller 
and more cuboidal once the bladder is emptied 
[119]. When the bladder is relaxed, it consists 
of five to seven layers of cells, but when it fills 
with urine and is distended, the urothelium will 
become two to three layers [120]. Most bladder 
cancers begin in the transitional epithelium 
and can advance to deeper layers with cancer 
progression [121]. 

Carcinogen-induced field cancerization

Field cancerization 

Field cancerization in which cancers develop in 
epithelia exposed to environmental carcino-
gens is well-documented, and histologically 
detectable precancerous changes are present 
throughout large sections of the carcinogen-
exposed surface [122, 123]. Furthermore, evi-
dence of clinically detectable field canceriza-
tion in histologically normal epithelia is associ-
ated with precancerous changes in the form of 
mutation-harboring cell groups. These clonal 
mutations are thought to be the first detec- 
table manifestations of the multi-hit carcino-
genic process [124]. In carcinogen-induced 
cancers, damage resulting in cancer formation 
predates cancer by decades [124]. For exam-
ple, driver mutations can be detected in hema-
tological malignancies approximately ten years 
before the clinical diagnosis [125]. Bladder 
cancer often develops multifocally, and superfi-
cial bladder cancer has high recurrence rates. 
One possible explanation for these phenomena 
is field cancerization, wherein carcinogen expo-
sure causes DNA mutations at independent 
locations in the urothelium [126, 127]. This is 
supported by studies showing genetically-dis-
similar primary and recurrent tumors [128].

Chemical carcinogen-induced bladder cancer

Smoking is the greatest risk factor for bladder 
cancer and contributes to approximately 50% 
of diagnosed cases [129-131]. In patients with 
a history of cigarette smoking, bladder cancers 
generally have higher HER2 amplification muta-
tions that help drive the cancers, whereas 
those who do not smoke more commonly have 
PIK3CA mutations [132]. Mutations in the 

genes TP53, CDKN2B, and TERT are common 
in both smokers and non-smokers [133-137]. 

In addition to smoking, occupational exposure 
to certain carcinogens, such as aromatic 
amines, fossil fuels, aniline dyes, or certain 
metals like aluminum, account for approxi-
mately 20% of bladder cancer cases [12, 138, 
139]. Certain genetic factors can also contrib-
ute to developing bladder cancer. For instance, 
N-acetyltransferase and glutathione S-trans- 
ferase gene polymorphisms can affect the abili-
ties of these enzymes to detoxify certain car-
cinogens that may contribute to bladder cancer 
[140]. 

Even with early treatment, there is a significant 
likelihood of bladder cancer recurrence, and 
those with the invasive disease face poorer 
outcomes, even with aggressive treatment. 
Due to continued poor outcomes for those with 
bladder cancer, there is a need for new inter-
ventions to protect against and treat this dis-
ease. SFN is a possible intervention that is well 
tolerated and has no significant toxicities [141, 
142].

Smoking carcinogen-induced epithelial can-
cers

Each year, smoking contributes to 180,000 
cancer-related deaths in the US [143]. Ci- 
garette smoke contains over 70 carcinogens 
that increase cancer risks [144]. While many of 
the chemicals in cigarette smoke are carcino-
genic, many others are converted into car- 
cinogenic compounds by cytochrome P450 
enzymes [145]. These carcinogens and their 
metabolites can cause DNA adducts, contribut-
ing to tumorigenesis if not detoxified into harm-
less compounds, and have been shown to 
induce soluble factor profiles consistent with 
NF-κβ expression, including TNF-α, IL-1β, metal-
loproteases, and leukocyte-stimulating factors, 
among others, in mice [143, 146, 147]. 

Bladder cancer prevention with SFN

SFN in bladder cancer 

Early evidence indicates a potential role for iso-
thiocyanates, particularly SFN, in the chemo-
prevention of bladder cancer. Men who regu-
larly consumed cruciferous vegetables were 
found to have a lower relative risk (0.49) for 
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bladder cancer than men who did not con- 
sume cruciferous vegetables (P = 0.0082). This 
equated to a 51% risk reduction for those who 
consumed more than five servings of cru- 
ciferous vegetables weekly compared to those 
who consumed one serving or less [10, 148]. 
Another retrospective case-control study that 
analyzed isothiocyanate intake and its effects 
on bladder cancer risk discovered that in- 
creased isothiocyanate intake was associated 
with a 29% decreased risk of bladder cancer in 
past and current smokers and older individuals 
[149]. Increased cruciferous vegetable intake 
may also improve survival outcomes in patients 
with bladder cancer [150]. Raw cruciferous veg-
etables appear to provide the greatest risk 
reduction, most likely due to the higher yield of 
isothiocyanates [151, 152].

SFN and other isothiocyanates are secreted 
predominantly in the urine, further supporting 
the potential role of SFN in preventing bladder 
carcinogenesis [152, 153]. Shortly after dosing 
rats with broccoli sprout extract, Munday et al. 
observed that urinary isothiocyanate levels 
were 2-3 times greater in urine than in plasma 
[154]. Similarly, broccoli sprout consumption in 
humans led to isothiocyanate levels that were 
50 times greater in urine than in plasma eight 
hours after ingestion [155]. These studies indi-
cate that isothiocyanates are concentrated in 
the urine and thus contact the bladder epithe-
lium, the primary site for bladder cancer 
initiation. 

In N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-
induced bladder cancer models, Nrf2 regulates 
carcinogen detoxification genes and interacts 
with the p53 protein to further aid in chemopre-
vention. Increased tumor incidence and inva-
sion were observed in Nrf2 null mice treated 
with BBN [156, 157]. SFN inhibits DNA damage 
in murine bladder epithelium exposed to the 
cigarette smoke carcinogen 4-aminobiphenyl 
by activating Nrf2 and downstream phase II 
enzymes [158]. SFN also inhibits the ubiquiti-
nation and breakdown of Nrf2, thereby allowing 
for increased Nrf2 nuclear translocation and 
anti-cancer gene induction [159].

Bladder cancer cell culture studies have shown 
that SFN decreases cell viability and initiates 
apoptosis. In T24 urinary bladder cancer cells, 
SFN reduces cell proliferation and leads to 
chromatin clumping and fragmentation, in- 

creased cytochrome c release, caspase-9 and 
caspase-3 activation, and subsequent T24 cell 
apoptosis [160]. SFN treatment of T24 cells 
increased ROS generation, inducing mitochon-
drial dysfunction and cellular apoptosis. The 
ROS allowed for Nrf2 release from Keap1, as 
measured by the induction of heme oxygen-
ase-1. Moreover, SFN treatment increased the 
endoplasmic reticulum stress response path-
way, further contributing to T24 cell apoptosis 
[160].

In UM-UC-3 bladder cancer cells, sulforaphane 
also induces DNA fragmentation, caspase-9, 
and caspase-3 cleavage, mitochondrial dam-
age, and subsequent cellular apoptosis, in 
addition to G2-M cell cycle arrest in vitro [161, 
162]. In the UM-UC-3 murine xenograft model, 
mice treated with SFN showed a tumor volume 
reduction of 67%, compared to control tumor 
volume 15 days after initial treatment. At 24 
days of treatment, the average tumor volume 
was still 36% less in SFN-treated mice than in 
control mice. Interestingly, the tumors in mice 
treated with SFN decreased angiogenesis  
compared control tumors and had increased 
immune cell infiltration. There was also more 
than a 5-fold increase in the number of apop-
totic cells in tumors of SFN-treated mice com-
pared to tumors of control mice [163]. 

In rats fed broccoli sprout extract with high lev-
els of SFN before and during exposure to BBN, 
there was decreased bladder cancer occur-
rence and reduced tumor burden compared to 
controls given BBN alone. Importantly, no nega-
tive impacts were observed in the bladders of 
rats given SFN alone, indicating not only the 
potential efficacy of SFN in bladder cancer che-
moprevention, but also the safety of SFN treat-
ment [154, 164].

Finally, the chemoprotective mechanisms of 
SFN may play an enhanced role in treating  
bladder cancer when used in combination with 
traditional chemotherapeutic drugs and may 
even prolong the time to therapy resistance. 
The chemotherapeutic agent, Everolimus, is an 
mTOR inhibitor and was shown to have some 
anti-tumor activity in patients with urothelial 
carcinoma [165]. Justin et al. showed that  
when combined with Everolimus, SFN improved 
therapeutic effects by reducing RT112 cancer 
cell chemotaxis and invasion. There was 
increased cancer cell therapy resistance, inva-
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sion, and migration of tumors treated with 
Everolimus alone [166]. SFN has also shown 
promise in combination with cisplatin, doxoru-
bicin, and CAR-T cell therapy and may even help 
mitigate some of the toxic side effects of cer-
tain chemotherapeutics [93, 167, 168]. 

Discussion

SFN is an isothiocyanate found in cruciferous 
vegetables that have shown chemoprotective 
effects in various cancer models, including 
those of the bladder [158, 160, 163, 169, 170]. 
SFN induces phase II detoxification enzymes 
through the activation and nuclear accumula-
tion of Nrf2 while also decreasing phase I 
enzyme activation, particularly cytochrome 
P450 isoenzymes, which can convert many 
compounds into carcinogenic metabolites [60, 
62, 66, 67, 171]. In the urothelium, SFN also 
acts to decrease inflammation through the 
detoxification of ROS, inhibition of NF-κβ and 
COX-2 expression, and modulation of inflam- 
matory cytokines, including IL-1β, IL-2, IL-6, and 
IFN-γ [74, 75, 82-87, 172-174]. Finally, SFN 
reduces DNA damage through HDAC regula- 
tion, the induction of cell cycle arrest, and the 
apoptosis of transformed cells [94, 98-101, 
103, 104, 107]. SFN reduces tumor cell growth 
and invasion through the inactivation of sulfa-
tase-2, a key component in the Wnt and fibro-
blast growth factor signaling pathways in many 
human cancers [175]. Finally, SFN activates 
chemoprotective mechanisms on its own and 
acts synergistically with some traditional che-
motherapeutics to reduce tumor burden and 
limit the toxic side effects of traditional chemo-
therapy [166-168]. 

Besides its favorable biological activities, SFN 
can play a vital role in preventing and treating 
bladder cancer due to the active excretion and 
concentration in urine after isothiocyanate  
consumption [153-155]. Accordingly, there is 
compelling evidence that SFN inhibits urotheli-
al cell DNA damage induced by cigarette car-
cinogens and reduces overall bladder cancer 
risk in those who regularly consume cruciferous 
vegetables [10, 148, 158]. SFN-induced Nrf2 
activation has also been found to detoxify cer-
tain carcinogens from cigarette smoke and 
upregulate the expression of p53. SFN also 
induces cell cycle arrest and apoptosis in  
transformed bladder epithelium [156, 157, 
159-161]. Taken together, these studies pro-

vide strong evidence for the chemoprotective 
nature of SFN in various human epithelial can-
cers, including those of the bladder. 

Future studies 

Increased cruciferous vegetable intake has  
previously been associated with a decreased 
overall cancer risk [176]. Inverse associations 
between cruciferous vegetable intake, espe-
cially broccoli, and bladder cancer risk, as well 
as bladder cancer mortality have been report-
ed in epidemiological studies [177, 178]. The 
potent chemopreventive and chemotherapeu-
tic effects of SFN have been well documented 
in cell culture and animal models of bladder 
cancer [158, 179, 180]. However, to translate 
these findings to the bedside, it is essential to 
validate these findings in prospective cohort 
studies and to further investigate the effects of 
SFN-rich diets in humans, especially those with 
elevated bladder cancer risks. Further explora-
tion of dietary SFN in the prevention and/or 
treatment of bladder cancer may help facilitate 
a paradigm shift in clinicians’ use of food as 
medicine and encourage enhanced research 
and prescription of nutrition-based oncology 
interventions [181]. Currently, a prospective 
study designed specifically to evaluate the 
impact of cruciferous vegetable intake on blad-
der cancer prognosis in the context of polymor-
phic ITC-metabolizing genes is underway [182]. 
Clinical trials to examine the effect of SFN or 
SFN-rich dietary supplements alone or in com-
bination with other therapies in preventing 
bladder cancer recurrence are also warranted. 

Future studies of SFN in bladder cancer can 
emphasize supplemental cancer therapy and 
prevention. For cancer treatment, SFN can be 
used either as an alternative therapeutic agent 
or as a supplementary agent in combination 
with other chemo- or immunotherapies. SFN  
in food extract format, e.g., broccoli sprout 
extract, is commercially available, facilitating 
the clinical investigation of SFN in the patient 
population [183]. While cancer treatment with 
SFN is possible, the wider implication of SFN as 
a therapeutic agent may be its potential to pre-
vent primary or secondary cancers among high-
risk populations. 

Cruciferous vegetables are a rich dietary so- 
urce of SFN and are widely available in the US. 
As the initiatives behind food as medicine 
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expand, cruciferous vegetables could serve as 
a low-cost and low-toxicity regimen for long-
term use among populations at high risk of 
developing cancer due to a history of heavy 
exposure to smoking and carcinogens. Given 
the high recurrence risk that early-stage blad-
der cancer survivors face, studies on how to 
engage and encourage patients to increase 
their consumption of cruciferous vegetables to 
improve cancer outcomes are ongoing [184]. 
Overall, these lines of research may offer evi-
dence-based dietary recommendations to fight 
against carcinogen-induced cancers and can 
also have wider-reaching and paradigm-shifting 
effects on how modern medicine uses nutrition 
to tackle prevention and treatment challenges.
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