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Abstract: During mammalian evolution, circulating levels of gonadotropins [i.e., luteinizing hormone (LH) and follicle-
stimulating hormone (FSH)] acquired regulation by environmental (e.g., light, temperature, water, food, predators, 
etc.), and social (e.g., sound, sight, aggression, crowding, etc.) inputs that determine the level of testosterone pro-
duction and secretion by the testis and systemic levels in the blood. This regulation became coordinated by interac-
tion between the retinohypothalamic-pineal and the hypothalamic-pituitary neural axes, which resulted in androgen 
levels and its ligand-dependent transducing receptor being the master downstream determinant of male reproduc-
tion. A major factor in this selection of androgen levels relates to the unique danger of mammalian reproduction 
for survival of the individual. During mammalian evolution, breeding needed for survival of the species became 
episodically (i.e., seasonally) timed by androgen levels. Seasonal breeding has great reproductive advantage in 
restricting energy requirements for reproduction and limiting dangers associated with procreation (i.e., survival of 
the species) at the expense of suppression of the flight instinct (i.e., survival of the individual) to the minimal time 
frame of the breeding season. Human males evolved away from strict seasonal breeding by chronically maintaining 
androgen levels, enabling human males to reproduce year-round and worldwide, rather than “locking” them into 
specific indigenous breeding ranges, like other mammals. The price for the reproductive “freedom” that arises from 
the loss of seasonal breeding is an increased probability of developing prostate cancer as a result of chronically 
maintaining a hyperplastic state in the prostate. In human males, this results in the loss of episodic pruning of 
genetically-mutated prostate cancer precursors that normally occurs during seasonal breeding. Instead, the con-
tinuous androgen-dependent stimulation of the growth of such precursors occurs during prostate carcinogenesis. 
This review provides the rationale for the development of a therapeutic approach using PSA-activated prodrugs to 
selectively deplete prostate-specific AR protein for chemoprevention of prostate cancer. 
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Evolution of the steroid receptor family

Our planet is 4.5 billion years old with life on 
Earth starting 3.5 billion years ago, Figure 1. 
Development of an oxygen rich atmosphere 
occurred 2.5 billion years ago with eukaryotic 
cells first evolving 800 million years later. After 
another billion years, the animal kingdom start-
ed. Over the next 500 million years, evolution 
continues eventually producing mammals char-
acterized by the development of complex endo-
crine systems allowing the organism to coordi-
nate the survival of the species vs. the individual 
via steroid receptor (SR) dependent transcrip-
tion. SRs are ligand-activated transcription fac-
tors that belong to the diverse nuclear receptor 
(NR) superfamily of proteins. Bacteria, yeast, 

and plants do not contain NRs, which are 
restricted to animals. All members of the SRs 
descend from a single ancestral receptor 
(AncSR), which branched off from the rest of 
the NR superfamily early [700 million years ago 
(Mya)] in animal evolution [1]. Subsequent du- 
plications of the AncSR gene 430 Mya pro-
duced three major SR subgroups: estrogen 
receptor (ER), corticosteroid receptor (CR), and 
the 3-ketogonadal steroid receptor (3-KGR). 
Over the next several hundred million years 
within the gnathostome lineage of bilaterally 
symmetric animals (i.e., jawed vertebrates), 
additional duplications within each of the 3 SR 
subgroups produced six steroid receptors: the 
ER to create estrogen receptors, ERα and Erβ; 
the CR to create a separate receptor each for 
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Figure 1. Summary of key events during mammalian evolution.

mineralocorticoids (MR) and glucocorticoids 
(GR); and the 3-KGR to create a separate re- 
ceptor each for progestagens (PR) and andro-
gens (AR). Significantly, the AR is the most 
recent evolutionary receptor in this family [1]. 

The elaboration of the SR family by gene dupli-
cation and ligand exploitation allowed increas-
ingly specific hormonal control over physiologi-
cal functions, particularly important for regula- 
ting the balance between survival of the indi-
vidual vs. the species in mammals. ER regula-
tion of reproductive maturation and function is 
the most ancient (i.e., 200 Mya) of all modes  
of steroid/receptor control. PR regulation over 
ovulation, oviposition, and other aspects of re- 
production is also quite ancient, but does not 
precede estrogen signaling [2]. AR control over 
sexual dimorphism (i.e., male vs. female pheno-
type) and spermatogenesis in mammals is a 
more recent (>150 Mya) evolutionary novelty. 

Evolution of the AR gene location on the X-
chromosome in mammals

The mammalian X and Y sex chromosomes 
originated within the last 300 million years 
from an ancestral pair of autosomes in a re- 
ptile ancestor, which diverged over time as the 
Y chromosome progressively degraded [3-5]. 

Birds and reptiles do not share the mammal X 
and Y chromosomes. In mammals, 5 strata of 
decreasing evolutionary age are observed lin-
early along the X chromosome. The oldest (i.e., 
200-150 Mya) being the centromere plus the 
majority of the q-arm which contains the AR at 
Xq12. The youngest (i.e., 60-50 Mya) being a 
portion of the proximal p-arm, suggesting that 
suppression of recombination occurred in a 
stepwise manner during evolution between the 
X and Y chromosomes [3-7]. During the evolu-
tion of mammals, before the split of protheria 
(i.e., monotrenes) from the metatheria (i.e., 
marsupials) and eutheria (i.e. placentals) bet- 
ween 200-150 Mya, only the AR among the 6 
SRs became fixed on the long arm of the X chro-
mosome (i.e., Xq12) in contrast to its location 
on autosomal chromosome 4 in chickens [8]. 
Thus, in mammalian males (i.e., XY), AR is a 
hemizygous (i.e., single copy) gene and is the 
non-redundant integrator of androgen-activat-
ed transcriptional signaling.

Evolutionary selection of androgen and the AR 
as the master regulator of mammalian male 
reproduction

During mammalian evolution, testicular pro-
duction and secretion of testosterone locally 
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Figure 2. Comparative anatomy of male accessory sex tissue in a series of mammals (rat, opossum, bull, dog, mon-
key and man). BL or B = bladder; U = urethra; PR = prostate; S = Seminal vesicle; BU = Bulbourethral gland; D or 
AG = ampulla of ductus (vas) differens; T = testis; CG = Coagulating gland (aka anterior prostate lobe); VP = ventral 
prostate lobe; LP = later prostate lobe; DL = dorsal prostate lobe; and VD = vas deferens.

into the testicular microenvironment and into 
the circulation became highly regulated by envi-
ronmental (e.g., light, temperature, water, food, 
predators, etc.), as well as social (e.g., sound, 
sight, aggression, crowding, etc.) inputs, coordi-
nated via the interaction of the retinohypotha-
lamic pineal and the hypothalamic-pituitary 
axes [9, 10]. This resulted in androgen and its 
ligand-dependent receptor (i.e., the AR) becom-
ing the master downstream transducer of th- 
ese neural outputs on embryonic development, 
postnatal growth, and maintenance of the male 
accessory sex tissues, as well as spermatogen-
esis, bone and muscle maturation, and libido. 
Accessory sex glands in males of various spe-
cies are named either for their anatomical posi-
tion in adult animals or for their assumed func-
tions. Male accessory sex tissues first appear 
540-480 Mya in the Platyhelminthes [i.e., flat-
worms] genera, Planaria and Dendrocoelum 
[11]. They are the most diverse organ system in 
the animal kingdom, varying widely even among 
mammals Figure 2. This diversity may have a 
selective advantage for maintenance of spe- 
ciation during evolution, since this is in signifi-
cance contrast to the remarkable similarities 

for most other organ systems (e.g., liver, lung, 
kidney, etc.) among mammals. 

The acquisition of the dominant role of andro-
gens and the elimination of estrogens as regu-
latory factors in male phenotypic development 
is a rather late (<150 Mya) event in mammalian 
evolution. It evolved in eutherian (i.e., placen-
tal) mammals due to the close connection 
between maternal and fetal circulation, which 
allows steroid hormones to pass the placental 
barrier. Estrogen and progesterone are required 
for the development and maintenance of the 
placenta, regardless of the sex of the develop-
ing mammalian fetus. Thus, the dichotomy of 
regulating sexual differentiation by male and 
female sex steroids, which occurs in earlier ver-
tebrates, was lost. Instead, phenotypic male 
development (i.e., male accessory sex glands 
coupled with spermatogenesis) acquired an 
absolute dependence upon a critical level of 
testicular androgen production coupled with 
anti-Mullerian hormone production to induce 
regression of the Mullerian ducts without which 
female development is the constitutive path-
way [12]. 
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In both spermatogenesis and male accessory 
sex gland development and maintenance, this 
Androgen/AR dependence occurs via andro-
gen-sensitive reciprocal paracrine interactions 
between mesenchymal stromal and epithelial/
seminiferous tubule cell compartments [12-
14]. Importantly, circulating testosterone is  
irreversibly converted to dihydrotestosterone 
(DHT) via the membrane-bound NADPH-de- 
pendent Δ4-3-ketosteroid 5α-oxidoreductase 
[i.e., SRD5A-1 & -2, (a.k.a. 5α-reductase type I 
& type II)] family of enzymes present in the stro-
mal cells of the male accessory sex glands [15]. 
Both testosterone and DHT can bind to the AR, 
however, the metabolic pathways in the acces-
sory sex glands are regulated so that DHT is 
present at a multifold molar excess compared 
to testosterone [16-18]. Additionally, DHT has a 
10-fold higher AR binding affinity than testos-
terone (i.e., Kd of ~0.1 nM for DHT vs. ~1.0 nM 
for testosterone) [19]. Thus, as will be dis-
cussed below, 5α-reductase amplifies the lev-
els of AR-dependent transcription within the 
male accessory sex glands as required for th- 
eir rapid (i.e., within 1-2 weeks) hyperplastic 
growth induced by the increase in the circulat-
ing level of testosterone needed for seasonal 
breeding.

Once formed, DHT binds to AR in stromal cells, 
stimulating the transcription and subsequent 
secretion of paracrine peptide growth and sur-
vival factors [e.g., IGF-I, EGF, FGF, PDGF] [10, 
19, 20]. Within the male accessory sex glands, 
there are a subset of epithelial cells expressing 
AR, which binds DHT to stimulate transcription 
and secretion of androgen-dependent tissue-
specific differentiation proteins that differ bet- 
ween mammalian species [e.g., transglutamin-
ase, prostate-specific antigen (PSA), human 
kallikrein 2 (hK2), prostatic acid phosphatase 
(PAP), microseminoprotein-beta (MSMB) in the 
prostate and semenogelins in the seminal vesi-
cles in humans; PAP, MSMB, prostatein, trans-
glutaminase, and probasin in the rat prostate; 
and PAP and arginine esterase in the dog pros-
tate]. Such AR binding, however, does not stim-
ulate their epithelial proliferation [19-22]. The 
AR-dependent locally produced stromal-derived 
paracrine growth and survival factors diffuse 
throughout their immediate microenvironment, 
entering their companion epithelial compart-
ments in male accessory sex glands. There, 
these factors bind to cognate receptors induc-
ing development and homeostatic proliferative 

maintenance of the epithelial compartment in 
the male sex accessory glands [19, 20]. Thus, a 
physiologically adequate level of circulating tes-
tosterone is chronically required for the mainte-
nance of the male accessory sex glands in the 
adult male eutherian mammal. This chronic re- 
quirement for testosterone derives from the 
necessity for androgens for homeostatic main-
tenance of the total epithelial cell number. 
Androgen does this via a stromal cell-depen-
dent paracrine stimulation of the rate of cell 
proliferation (i.e., agonistic ability of androgen) 
simultaneously coupled with inhibition of the 
rate of cell death (antagonistic ability of andro-
gen) [23].

In the testis, AR is expressed in Sertoli cells, 
peritubular myoid cells, Leydig cells, and peri-
vascular smooth muscle cells, but not in sper-
matogonia through mature sperm [24]. Here 
again, androgen binding to the AR-positive cells 
in the testis stimulates their transcription and 
subsequent secretion of paracrine factors (e.g., 
glioma-derived growth factor-I) which subse-
quently bind to their cognate receptors on sper-
matogonia to drive spermatogenesis [12]. Due 
to the presence of Leydig cells, testosterone 
concentration in the testes is >250-fold higher 
than in the peripheral blood in mammals, 
including humans [25]. Significantly, unlike the 
male accessory sex tissues where DHT is the 
major androgen, testosterone is the major 
androgen in the testes, exceeding the levels of 
DHT by 15- to 40-fold [26, 27]. The level of tes-
tosterone in the testes required for paracrine-
dependent spermatogenesis (i.e., ~50 nM [28]) 
is more than 10-fold higher than that required 
for host anabolic effects and paracrine-depen-
dent homeostatic maintenance of the male 
accessory sex tissues (i.e., 5 nM [29]). Thus, if 
exogenous testosterone is chronically provided 
to maintain a physiologic level of serum testos-
terone (i.e., 5 nM), which maintains libido and 
accessory sex organ function, endogenous tes-
tosterone production in the testes is lowered 
due to negative feedback hypothalamic-pitu-
itary loop. This results in lowering testicular tes-
tosterone to the circulating blood level and 
spermatogenesis is prevented [30, 31].

Seasonal breeding optimized survival of the 
species vs. the individual

A major driving factor in the selection of andro-
gen as the master regulator of male reproduc-
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Table 1. Seasonal variation in serum testosterone among a repre-
sentative series of feral mammals throughout the world

Feral Mammal
Serum Testosterone (nM)

Ratio 
(B/NB) ReferenceNon-breeding 

Season (NB)
Breeding 

Season (B)
Horse 5.5 +/- 1.0 10.4 +/- 2.1 1.9 [50]
Asian Black Bear 1.9 +/- 0.3 4.2 +/- 0.3 2.2 [51]
Muskrat 3.8 +/- 3.5 10.4 +/- 2.8 2.7 [52]
Desert Mouse 1.9 +/- 1.4 5.2 +/- 2.4 2.7 [53]
Arctic Ground Squirrel 3.1 +/- 0.3 11.8 +/- 0.3 3.8 [33]
White-tailed Deer 5.2 +/- 0.7 29.4 +/- 3.5 5.7 [54]
Coyote 1.4 +/- 2.4 11.4 +/- 3.5 8.1 [55]
Mole 4.5 +/- 0.7 36.9 +/- 11.8 8.2 [56]
Polar Bear 2.1 +/- 0.7 20.0 +/- 2.8 9.5 [57]
Racoon 0.7 +/- 0.3 9.3 +/- 3.5 13.2 [58]

tion during mammalian evolution relates to the 
unique danger of mammalian reproduction for 
the survival of the individual. During mammali-
an evolution, breeding needed for survival of 
the species became episodically (i.e., season-
ally) timed for optimal survival of the individual 
parent and offspring. During the seasonal peri-
od when breeding is not optimal, levels of tes-
ticular and circulating testosterone are at a 
nadir in feral non-human mammals, and thus 
male accessory sex glands, as well as sexual 
libido and sperm maturation, are also at a nadir. 
When environmental conditions (i.e., food/tem-
perature/light/social conditions, etc.) are app- 
ropriate, male mammals come into “breeding 
season”, which is induced by an increase in  
testicular testosterone producing a >2-10-fold 
increase in circulating testosterone, depending 
on the species Table 1.

This seasonal rise in testosterone induces the 
growth of the male accessory sex glands from 
their baseline to a “hyperplastic” condition 
needed for breeding within 1-2 weeks and sti- 
mulates spermiogenesis, which requires only 
30-75 days depending on the species. Im- 
portantly, this elevation in testicular and circu-
lating testosterone is only episodic, returning to 
a nadir usually within 1-2 months during which 
spermatogenesis stops and the “hyperplastic” 
male accessory sex tissues regress to their 
baseline state, thus defining a limited seasonal 
breeding period.

Such limited seasonal breeding has great 
reproductive advantage and was selected dur-

ing evolution to restrict the 
energy requirements for main-
taining male accessory sex gl- 
ands, sperm maturation, and 
sexual libido. This limits the 
dangers associated with the 
maniacal focus upon procre-
ation (i.e., survival of the spe-
cies) at the expense of sup-
pression of normal flight in- 
stinct in the presence of same 
species male competitors and/
or different species predators 
(i.e., survival of the individual) 
to the minimal timeframe es- 
tablished by the limited breed-
ing season [13]. Evolutionary 
pressure selected the develop-

ment of a neuroendocrine (i.e., pineal gland-
hypothalamic-pituitary) axis to restrict testos-
terone production in the testis to the high level 
needed for spermatogenesis and to elevate 
serum testosterone sufficiently to the level 
needed for male sex accessory gland growth to 
occur only the breeding season.

Arctic ground squirrels as a paradigm for an-
drogen/AR control of seasonal breeding

The artic ground squirrels (i.e. Spermophilus 
parryii) Figure 3, is a paradigm for such sea-
sonal breeding. They are the largest and most 
northern of the ground squirrels ranging from 
the Arctic Circle to northern British Columbia, 
and down to the southern border of the 
Northwest Territories, as well as Alaska and 
Siberia. Artic ground squirrels have unique 
physiological adaptations that allow them to 
survive during winter. Artic ground squirrels  
are obligate hibernators and adult males start 
hibernating as soon as they have enough body 
fat to survive the winter, often in late August 
when plenty of food is still available. During 
hibernation Figure 3 (left panel), artic ground 
squirrels adopt the lowest body temperature 
ever measured in a mammal. The body tem- 
perature of hibernating squirrels drops below 
freezing, a condition referred to as supercool-
ing. At intervals of two to three weeks, still in a 
state of sleep, hibernating squirrels shiver and 
shake for 12 to 15 hours to create heat that 
warms them back to a normal body tempera-
ture of ~98°F. When the shivering and shaking 
stops, body temperature drops back to the min-
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Figure 3. Male arctic ground squirrel. Left - hibernating in winter; Middle - emerged from hibernation; and Right - 
post-mating season.

imal temperature. This type of hibernation is 
rare among mammals.

In early April, they stop hibernating and emerge 
from their burrow, Figure 3 (middle panel), hav-
ing lost up to 40% of their body weight (i.e., 
compare Figure 3 middle vs. right panel) [32]. 
Despite this weight loss, their plasma testos-
terone level quickly (i.e., within days) increases 
nearly 4-fold, Table 1, and they become highly 
territorial with overt male-male aggression, and 
search for females [33]. Fights between males 
during this time are severe and lead to frequent 
wounding and even death. This aggression 
occurs even in the absence of females, which 
stop hibernating in late April. The peak of tes-
tosterone level in April is associated with sper-
matogenesis and coincides with the midpoint 
of when newly emerged females display estrus, 
as well as when mating takes place between 
mid-April to mid-May [32]. Importantly, this is 
followed by a rapid return to nadir in plasma 
testosterone and to aspermia beginning in 
June, which is a time when the surviving males 
now focus upon eating, not sex or fighting, to 
fatten up for their upcoming hibernation. Thus, 
the arctic ground squirrel is a paradigm for the 
ability of androgen and its receptor to override 
the survival instinct of the individual restrictive-
ly during the seasonal breeding period and 
instead reproduce for the survival of the 
species.

The problem with human males 

In contrast to other mammals, human males 
evolved away from strict seasonal breeding by 
acquiring the ability to chronically maintain 
serum testosterone (i.e., <10% variation in both 
total and bioavailable serum testosterone dur-
ing the year [34]) at a sufficiently high concen-
tration (i.e., >15 nM) to maintain the male 
accessory sex glands, spermatogenesis, mus-
cle mass/bone density, and libido in a fully 
stimulated adult state. Such a constant serum 
testosterone is a definitive advantage for the 
highly mobile human species. This is because it 
enables reproduction to occur year-round de- 
spite environment restrictions, allowing man to 
populate all of the biological niches throughout 
the world as opposed to “locking” humans to 
specific indigenous breeding ranges, like other 
mammals.

The price of such reproductive “freedom”, how-
ever, is an increase probability of developing 
prostate cancer by the human male due to two 
related reciprocal effects. The first effect is the 
loss of prostate protection provided by season-
al breeding. This is because seasonal breeding 
induces episodic cycles of male accessory sex 
gland regression from their hyperplastic state 
via apoptotic epithelial cell death when serum 
testosterone returns to nadir values as breed-
ing season ends. Such apoptotic death “pr- 
unes” epithelial cells within these glands, sup-
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pressing the possibility of their accumulating 
the multiple genetic errors needed for malig-
nant transformation. Without such pruning, 
such multi-step prostatic carcinogenesis is 
much higher in humans than any other mam-
malian species [35, 36]. 

The second effect is that during human pros-
tatic carcinogenesis, there is a conversion from 
AR-regulated stromal paracrine dependency by 
normal prostate epithelium to cancer cells 
acquiring autonomous stromal cell-indepen-
dent AR-stimulated malignant growth [19, 21, 
22, 37]. Such cell autonomous growth involves 
losing normal AR function as a growth suppres-
sor and instead acquiring the ability to act as 
an oncogenic gain-of-function stimulator of 
malignant growth [19, 21, 22]. These oncogen-
ic acquisitions “addict” prostate cancer cells to 
cell autonomous AR signaling. This addiction 
involves cancer cells acquiring cell autonomous 
AR transcription, preventing their apoptotic cell 
death while also inducing proliferation, making 
these cancers AR-dependent for their lethal 
growth [37]. 

Prospectus for the future

The loss of seasonal episodic cycling in serum 
testosterone prevents regressive pruning in the 
human prostate and instead chronically main-
tains the gland in a fully stimulated “hyperplas-
tic” state, which optimally stimulates the out-
growth of initiated prostate cancer cells. In this 
regard, the loss of seasonal breeding functions 
in humans as a “promoter” of prostate carcino-
genesis. This predicts that a reduction in pros-
tate androgen levels should decrease the prev-
alence of prostate cancer development. This 
hypothesis was initially tested clinically using 
5α-reductase inhibitors to lower prostatic DHT 
levels, since this is the major androgen in the 
normal prostate. Two large randomized pro-
spective clinical trials documented that oral 
treatment with 5α-reductase inhibitors (i.e.,  
finasteride in the PCPT trial and dutasteride in 
the REDUCE trial) lowered the incidence of 
pathologically detectable, low grade (i.e., Gle- 
ason 6) prostate cancer by ~25% over a 10-year 
period [38]. 

The two large-scale 5α-reductase inhibitor can-
cer prevention trials demonstrate, however, 
that there is not a prostate cancer-specific mor-
tality benefit from the use of 5α-reductase 

inhibitors to prevent prostate cancer; converse-
ly, strong data demonstrate that there is also 
no excess mortality [38]. This result is consis-
tent with the fact that while chronic treatment 
with the 5α-reductase inhibitor, finasteride, 
decreases prostatic DHT (i.e., from 18.6 +/- 1.4 
nM to 0 1.7 +/- 07 nM [39]), it also causes a 
reciprocal significant increase in prostatic tes-
tosterone (i.e., from 1.1 +/- 0.2 nM to 8.3 +/- 
0.7 nM [39]). This decrease of prostate cancer 
DHT coupled with a significant increase in pros-
tate cancer testosterone is also produced by 
dutasteride; thus inhibiting cancer growth, but 
not with the same efficacy as castration [40]. 
These results support that, although testoster-
one is not as potent as DHT, it is still efficacious 
in stimulating malignant prostate growth.

These combined results support the rationale 
that chemoprevention of prostate cancer re- 
quires blocking not only DHT, but also testoster-
one-induced AR transcriptional signaling. This 
can be achieved if prostate-specific expression 
of the AR is selectively inhibited. Such selective 
targeting is possible using the sequiterpene-
lactone, thapsigargin (TG) Figure 4A. TG is very 
lipophilic, and thus highly cell-penetrant, and 
once inside cells inhibits (IC50: 10 nmol/L) the 
critically important housekeeping SERCA 2b 
calcium pumps in the endoplasmic reticulum 
[41]. TG-dependent inhibition of SERCA pumps 
results in depletion of the endoplasmic reticu-
lum Ca+2, coupled with µmol/L elevation in the 
intracellular free Ca+2, which initiates a molecu-
lar cascade that inhibits Cap-dependent AR 
protein synthesis, resulting in depletion of both 
full-length AR protein and truncated variants 
(i.e., AR-V7), inducing their apoptotic death [41-
43]. Due to its highly lipophilic, cell permeant 
nature, TG is not deliverable as a systemic 
agent without causing host toxicity. 

Systemic delivery of TG and targeting its thera-
peutic efficacy restrictively to the prostate is 
possible, however, based upon: 1) the essen-
tially exclusive high level expression of PSA by 
the prostate among all other normal body tis-
sues Figure 5A, despite widespread expression 
of AR in many benign tissues Figure 5B [44]; 2) 
that PSA is a protease produced by prostate 
luminal epithelial cells that “leaks” into the 
extracellular fluid in the stromal compartment 
from both normal and malignant prostate tis-
sues [45]; 3) that PSA is enzymatically active in 
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Figure 4. Chemical structures of thapsigargin (TG) and a PSA-activated TG-based prodrug. A. Structures of the highly 
lipophilic, cell permeant TG and L12ADT; B. Structure of water-soluble, cell impermeant 4-Morpholinecarbonyl (Mu) 
N-terminal blocked-histidine-serine-serine-lysine-leucine-glutamic acid-leucine-12ADT (i.e., HSSKLQL-12ADT) pro-
drug. The arrow indicates the site of prostate-specific antigen (PSA) hydrolysis, which liberates the highly lipophilic, 
cell permeant Leu-12ADT (i.e., L12ADT).

this extracellular prostate fluid, but not when it 
is enters circulation [45]; and 4) there are 
unique peptide sequences [e.g., His-Ser-Ser-
Lys-Leu-Gln-Leu, (HSSKLQVL)], which only PSA 
hydrolyzes (i.e., between Gln and the terminal 
Leu) efficiently [45]. Based upon these facts, 
TG analogues containing amino acids [e.g., 
Leucyl-12-aminododecanoyl-TG, (L12ADT)], Fi- 
gure 4B, have been synthesized, which retain 
high cell penetrance and high potency (i.e., 
EC50<50 nM) to deplete AR protein and induce 
cell death [42]. These have been covalently 
linked via a peptide bond to such PSA cleav-
able peptide carriers to produce water-soluble 
peptide prodrugs (e.g., Figure 4B) for systemic 
delivery and selective targeting of the prostate 
[46]. When such a prodrug is delivered systemi-
cally via the blood, it remains extracellular and 
is efficiently hydrolyzed for restrictive liberation 
of the highly lipophilic cell permeant molecules 
only in sites where enzymatically-active PSA is 
present (i.e., the prostate cancer tumor micro-
environment) [46]. 

While the previous studies provide the ratio-
nale for such a PSA-activated TG-based pro-
drug approach, long-term chemoprevention 

testing will require the development of a depot 
formulation, which can be injected subcutane-
ously for maintenance delivery. To develop such 
a depot formulation, advantage is being taken 
of the fact that human serum albumin (HSA) 
has a single reactive free cysteine (cys-34) 
which has been used to produce albumin-
coupled prodrugs for clinical trials [47]. Based 
upon this realization, a second-generation PSA-
activated TG prodrug has been synthesized in 
which cys-34 of HSA is covalently bound to a 
“stabilized” maleimide (i.e., 2-fluoro-5-maleimi- 
dobenzoate) linker [48] that is covalently 
coupled to the N-terminus of the PSA-activated 
peptide ending in L12ADT, Figure 6 [49]. Pre- 
sently, this HSA-coupled PSA-activated prodrug 
is being formulated in a hydrogel matrix for sub-
cutaneous injection as a long-term depot form 
for prostate cancer chemoprevention.
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