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Abstract: Tacrolimus is an immunosuppressant with a narrow therapeutic index and pharmacokinetic variability. 
This variability may be attributed to genetic variants in gene CYP3A5 associated with Tacrolimus metabolism. Stud-
ies focusing on genetic variants in the CYP3A5 gene associated with Tacrolimus metabolism have been published, 
a meta-analysis of these published articles may provide a direction that can change the future research and clinical 
management of renal transplant patients. In this systematic review and meta-analysis, we have reviewed and ana-
lyzed the studies and clinical trials conducted to determine the association between genetic variants of CYP3A5 and 
Tacrolimus metabolism from the PubMed database and clinical trials (www.clinicaltrials.gov). This meta-analysis 
also assessed the correlation of CYP3A5 genotype (rs776746) with concentration/dose (Co/D) of Tacrolimus in re-
nal transplant patients. The 59 published articles on genetic association of the CYP3A5 on Tacrolimus doses were 
reviewed for this systematic review. Meta-analysis showed that the Tacrolimus Co/D ratio is significantly lower in the 
CYP3A5 expressor group as compared with non-expressor in Asian, European as well as in mixed populations at 
any post-transplant period (P<0.0001). Our study further confirmed that the CYP3A5 variant (rs776746) is clinically 
relevant for the dose determination of Tacrolimus. Variations in Tacrolimus Co/D have been found to be significantly 
linked to the patient’s CYP3A5 genetic variant (rs776746). The addition of other genetic variants involved in the 
pharmacokinetic of Tacrolimus may determine efficient regimen for drug dose. Our meta-analysis confirmed that 
the CYP3A5 genetic variant (rs776746) analysis is relevant in personalizing the Tacrolimus dose determination in 
renal transplant patients.
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Introduction

Tacrolimus, a calcineurin antagonist, is an 
immunosuppressive agent used in solid organ 
transplantation. It improved graft survival rates 
and reduced the acute rejection chances in 
transplant recipients. Its use has been set back 
due to notable inter- and intra-variability in its 
pharmacokinetics [1]. This fluctuation can be 
reduced by modifying the dose and monitoring 
Tacrolimus blood levels. Despite this personal-

ized strategy, the risk of graft rejection (8-15%) 
and patient survival remains static [2]. Although, 
Tacrolimus associated adverse drug events do 
precipitate even after its therapeutic blood- 
level.

CYP (Cytochrome P450) enzymes control ar- 
ound 75% of metabolic reactions [3]. The CYP3A 
(Cytochrome P450 Family 3 Subfamily A) gene 
family is a known phase I metabolism-related 
gene family. The CYP3A family has four major 
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genes, CYP3A4, CYP3A5, CYP3A7, and CYP- 
3A43. The CYP3A4 and CYP3A5 genes are 
involved in several drug-related reactions such 
as the deactivation and activation of drug com-
pounds and excretion of drug compounds [4]. It 
has been reported that CYP3A4 and CYP3A5 
genetic variants affect the treatment of dise- 
ases by altering the drug metabolism [5-7]. 
Several genetic variants have been identified in 
CYP3A4 and CYP3A5 genes. Genetic variants 
of these genes are responsible for diverse  
gene expressions, which are associated with 
variable drug response. A genetic variant of the 
CYP3A5 gene is implicated in Tacrolimus drug 
response, which explains around 50% of the 
variability in Tacrolimus metabolism and clear-
ance [8]. CYP3A5 gene (rs776746) single nucle-
otide polymorphism (SNP) located in the 3rd 
intronic region at 6986 position results in the 
transition of A>G nucleotide creating a cryptic 
splice site, regulates the expression and meta-
bolic activity of the CYP3A5, affecting Tacro- 
limus pharmacokinetics [9].

CYP3A5*3 allele forms an altered protein  
by alternative splicing of the CYP3A5 mRNA. 
CYP3A5*3-altered protein activity is known to 
be associated with low Tacrolimus dose re- 
quirement [10]. The CYP3A5*1 has been asso-
ciated with an increase of CYP3A5 activity and 
may allow renal function after renal transplan-
tation [11]. Several studies have shown that 
CYP3A5 expressors (CYP3A5*1 homozygous or 
heterozygous allele) require 50-100% higher 
Tacrolimus doses compared to CYP3A5 non-
expressors (CYP3A5*3) homozygous variant 
alleles [12, 13]. 

GWAS (Genome-wide Association study) could 
be a promising way to discover new SNPs by 
associating it with disease development and 
drug pharmacokinetics. NGS (Next generation 
sequencing) serves as a powerful tool for the 
identification of novel pathogenic genotypes. 
As a result, these approaches are anticipated 
to aid in the identification of novel genetic alter-
ations that can be applied to accurately deter-
mine the Tacrolimus pharmacokinetics. Fur- 
thermore, a patient’s clinical status can influ-
ence Tacrolimus pharmacokinetics, therefore 
clinical considerations or lab parameters relat-
ed to Tacrolimus pharmacokinetics are requir- 
ed for estimation of Tacrolimus trough concen-
tration by dose ratio (Co/D) [14].

The goal of this systematic review and meta-
analysis is to provide a brief scenario on cur-
rent pharmacogenomics studies of Tacrolimus 
metabolizers and their involvement in drug 
response variability among renal transplant 
patients. Pre-determine pharmacogenetics ma- 
rkers will be useful for designing personalized 
immunosuppressive regimens. 

Tacrolimus pharmacology, pharmacokinetic 
and pharmacodynamic

Tacrolimus forms a complex by binding to immu-
nophilin called FK-binding protein-12 (FKBP12). 
This complex of drug-immunophilin interacts 
with calcineurin and blocks phosphatase activ-
ity. As a consequence, translocation of nuclear 
factor of activated T-cells (NF-AT) to the nucle-
us is inhibited by decreasing the transcription 
of cytokine genes-Interleukin (IL-2), tumor ne- 
crosis factor-alpha (TNF-α), IL-3, IL-4, CD40L 
(Cluster of differentiation 40 ligand), granulo-
cyte-macrophage colony-stimulating factor, in- 
terferon-gamma and T-lymphocyte [15].

Tacrolimus is useful for improving kidney graft 
survival and reduces the incidence of graft 
rejection in renal transplant patients. Tacro- 
limus is accompanied with a wide range of 
adverse effects, especially nephrotoxicity, neu-
rotoxicity, and post-transplant diabetes melli-
tus (PTDM). Hypertension, Cardiomyopathy, al- 
opecia, hyperkalemia, hypertriglyceridemia, 
hypomagnesemia, hirsutism, Hemolytic uremic 
syndrome (HUS), and gingival hyperplasia, lym-
phoproliferative disorders have also been doc-
umented [16]. Nephrotoxicity caused by Tacro- 
limus can be non-reversible and may lead to 
loss of kidney graft [17]. The CYP3A5 nonex-
pressor recipient may show to have a higher 
risk of CNI nephrotoxicity as they are slow 
metabolizers and may require comparatively 
lower dose to maintain the allograft, while the 
expressor recipient may be more likely to have 
acute rejection due to their fast-metabolizing 
nature and thus they require higher dose for 
long-term graft survival [18]. 

Tacrolimus pharmacokinetic profile is diverse 
among patients. Mostly, plasma drug concen-
tration peaks within 0.5-1 hr of oral administra-
tion. Bioavailability ranges from 4 to 89% due 
to first-pass metabolism and efflux mechanism. 
The half-life (t1/2) is 3.5-40.5 hrs. 99% of the 
Tacrolimus binds to plasma protein (Alpha-1-
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acid glycoprotein (AAG), Albumin). Its immuno-
suppressive effect can be achieved when drug 
reaches the lymphatic area. CL/F (drug appar-
ent clearance) is 9.3 ± 0.96 L/hr, Vd/F (distribu-
tion volume) is 101 ± 2 L, and t½β (elimination 
half-life) is 7.5 hrs. After biotransformation in 
the liver, approx. 15 metabolites are produc- 
ed with primary metabolite, 13-0-Demethyl-
Tacrolimus having 10% of the property of its 
parent drug. The CYP3A family is the key player 
for metabolism. CYP3A5*1 is a wild-type allele 
that has normal enzyme activity. It is important 
to note that CYP3A5*1/1 and CYP3A5*1/3  
carriers are fast metabolizers of Tacrolimus, 
whilst *3/3 carriers are slow metabolizers. 
CYP3A4, CYP1A2, CYP2A6, CYP2B6, CYP2C8, 
CYP2C9, CYP2D6, CYP2E1, CYP3A43, and 
CYP3A7 also contribute to Tacrolimus metabo-
lism. Kidney clearance contributes for less than 
1% while 99% of drug is eliminated through 
feces [19]. 

Tacrolimus undergoes extensive hepatic clear-
ance, genetic variations in enzyme coding for 
its metabolism may account for some variabili-
ty in its pharmacokinetics. Numerous research 
has been conducted in recent years to investi-
gate the association between CYP genetic vari-
ants and Tacrolimus trough blood concentra-
tion (Co), with the results compared and di- 
scussed in multiple publications. Despite the 
hurdles in determining the clinical effects of 
various genetic polymorphisms, these investi-
gations concur that gene polymorphisms influ-
ence the distribution and metabolic activity of 
CYP3A5. 80% of the Caucasian population 
were found to be *3/*3 carriers which resulted 
in suppressed expression of the functional  
protein [9]. It is the most utilized pharmacoge-
netic predictive marker for determining the 
Tacrolimus dosage. Expression of CYP3A4 is 
regulated by CYP3A4*22 polymorphism (rs- 
35599367 C>T in intron 6), decreasing expres-
sion of enzyme and increasing Tacrolimus blood 
level [18]. Hence, a combined study of CYP3A5 
and CYP3A4, along with other metabolizing 
genes could be of great use to design a person-
alized Tacrolimus therapy.

Relevance of pharmacogenetics of metaboliz-
ers

Phases of metabolism

Different xenobiotics follow varied pathways of 
metabolism, either phase 1 and/or phase 2. 

Furthermore, certain medications are trans-
formed directly into non-toxic metabolites, 
which are easily removed from the body 
because most of these inactive metabolites 
are aqueous. Metabolites are eliminated th- 
rough urine (the most common route), bile, 
breathe, or perspiration, depending on their 
chemical makeup. While a few agents are 
transformed to intermediate metabolite (func-
tional/toxic), which is further converted to 
aqueous form for its excretion. In comprehen-
sion, drug biotransformation converts the drug 
into a water-soluble form for its elimination. 
Because the enzymes involved in drug metabo-
lism (primarily the CYP450 family) are proteins, 
so they are susceptible to genetic variations 
[21].

75-80% of xenobiotics are metabolized by a 
large group of enzymes called CYP450s. 3 
prominently involved sub-families of CYP450  
in drug metabolism are CYP1, CYP2, and CYP3 
[20]. 

Pharmacogenetic relevance of metabolizers

Metabolizers convert the drug into its metabo-
lite (active/inactive), regulating drug efficacy, 
and elimination pathway. They are abundantly 
expressed in hepatocytes, regulating the me- 
tabolism of drugs. 

Inter-individual heterogeneity in metabolizers 
functionality is a significant aspect to consider 
when explaining the drug actions. As many 
‘variable’ factors like age, disorder, drug-drug 
interactions, or environmental substance inter-
play, the functionality of proteins might alter 
throughout the patient’s life [22]. Furthermore, 
genetic polymorphism might affect drug metab-
olism accounting for drug response variations.

And so, metabolizer pharmacogenetics is a 
major field for clinical pharmacology to examine 
and integrate it into personalising therapy. 
Although pharmacogenetic researches have 
focused primarily on polymorphisms of meta-
bolic enzymes in recent years, the scientific 
community has also clearly pointed out the 
concerns for the same. Furthermore, several 
SNPs have been discovered for CYP3A5, CYP- 
3A4, and CYP3A7 genes. Many of them are  
now regarded as clinically relevant for the pre-
diction of drug actions (Table 1).
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Table 1. SNPs identified in CYP3A5 gene [26]
Allele rs ID Nucleotide and amino acid change Tacrolimus metabolism
*1 - Wild type Normal function
*2 rs28365083 27289G>T (T398N) Limited/no data
*3A rs776746 6986T>C (splicing defect) Decreased
*3B rs28383468 3705C>T (H30Y) Decreased
*3D rs56244447 7249T>G (L82R) Decreased
*3F rs28365085 31551T>C (I488T) Decreased
*3K rs41279854 29753T>C (F446S) Decreased
*3L rs72552791 3775A>G (Y53C) Decreased
*4 rs56411402 14665T>C (Q200R) Limited/no data
*5 rs55965422 12952A>G (splice defect) Limited/no data
*6 rs10264272 14690C>T (splice defect) Function loss/neutral
*7 rs41303343 27131_27132insA (346frameshift) Function loss
*8 rs55817950 3699G>A (R28C) Decreased
*9 rs28383479 19386C>T (A337T)

6986T>C
Decreased

Tacrolimus pharmacokinetic is strongly influ-
enced by metabolic pathways. Metabolizers 
(CYP3A) may also affect the delivery of Tacro- 
limus to the graft at targeted concentration.  
An SNP in the CYP3A5 gene (rs776746; 6986 
A>G) causes a variation in CYP3A5 protein 
enzymatic properties, which influences Tacro- 
limus therapeutic level. CYP3A5*1 (wild-type) 
allele encodes for functional enzyme protein. 
Homozygous AA (*1/*1) or heterozygous AG 
(*1/*3) carriers are characterized as fast/
intermediate metabolizers (expressors) due to 
enhanced metabolic activity while the homozy-
gous GG (*3/*3) genotype decreases the 
Tacrolimus metabolism and is thus referred as 
a non-expressor [19, 23]. 

The presence of the CYP3A5 variants, ethnicity, 
and post-transplantation duration can all af- 
fect Tacrolimus pharmacokinetics. The studies 
found that patients with the CYP3A5 (GG or 
*3/*3) polymorphism, i.e., non-expressor, had 
prominently increased Tacrolimus Co/D than 
patients with the expressors, at various post-
transplant periods [17]. As there are no pooled 
trials with identical clinical variables, ethnicity, 
or post-transplantation length, these analyses 
have certain limitations.

To characterize an individualized therapy of 
Tacrolimus it is important to understand the 
significant diversity in its response among re- 
cipients. Other genes influencing Tacrolimus 
pharmacokinetic are CYP3A4, ATP-binding cas-

sette sub-family B1 (ABCB1), Cytochrome P450 
oxidoreductase (POR), Pregnane X receptor 
(PXR), UDP-glucuronosyltransferase-1 (UGT1), 
and CYP3A7 [19]. Multiple gene variation analy-
sis can derive a better predictive value for drug 
responsiveness as well as its dose require-
ment. Hence, covering the whole range of 
genes influencing Tacrolimus pharmacokinetics 
can broader the window of drug dose determi-
nation and patient care. These could be impor-
tant biomarkers that should be included in 
future scientific research to establish their cor-
relation for individualizing immunosuppressive 
regimens in transplanted recipients.

CYP3A5 (cytochrome P450 family 3 subfamily 
A member 5)

Tacrolimus is a major substrate for CYP3A5 
encoded by the CYP3A5 gene on chromosome 
7q21.1. It is a 52.5-kDa (Kilodaltons) protein 
expressed in the prostate and liver [24]. Appro- 
ximately 50% of xenobiotics are metabolized by 
CYP3A5, including several macrolide antibiot-
ics, immune modulators, antivirals, calcium 
channel blockers, statins, neoplastic agents, 
anti-depressants, hormones [22]. Out of sever-
al polymorphs of CYP3A5, *3/3 (rs776746, 
6986 A>G) resulting in non-functional protein is 
the most extensively studied [19].

Different SNPs shown in Table 1 [26] are identi-
fied for the CYP3A5 gene found to be responsi-
ble for influencing Tacrolimus metabolism. *1 is 



Systematic and meta-analysis of CYP3A5 influencing Tacrolimus efficacy

279 Am J Clin Exp Urol 2023;11(4):275-292

a naturally existing wild-type allele with opti-
mum metabolic activity. It is distributed in 
5-15% Caucasians, 73% African Americans, 
and 15-35% of 26 Asians [25].

Method

A PubMed search of the studies on CYP3A5 
genetic variants and its association with 
Tacrolimus was collected in between January 
2010 to December 2022. Out of 125 publica-
tions, 59 were included in this review to accom-
modate the analysis points. Keywords used 
were ‘Tacrolimus’ ‘renal transplant’, ‘CYP3A5’ 
‘Pharmacokinetics’. Clinical trials carried out 
for genetic association of CYP3A5 on Tacro- 
limus were obtained from www.ClinicalTrial.gov. 
29 different trials were found, 14 trials were 
excluded due to search criteria (drug-drug inter-
actions, method development for Tacrolimus 
concentration estimation, comparison of dif- 
ferent formulations on pharmacokinetics and 
dynamics of Tacrolimus). High throughput 
screening methods (HTS), GWAS were collected 
from the PubMed database with 7 outcomes. 
keywords- ‘Tacrolimus’ ‘high throughput sc- 
reening studies’, ‘Genome-wide association 
studies’, ‘renal transplant’. Additional keywords 
used for PubMed search: ‘Tacrolimus’ ‘Single 
nucleotide polymorphism’, ‘metabolism’, ‘phar-
macogenetics’, ‘pharmacogenomics’, ‘CYP3A5’ 
‘outcome’, ‘renal transplant’.

Association of CYP3A5 genotype with Tacroli-
mus pharmacokinetics 

Tacrolimus is prominently metabolized by 
CYP3A5 [25]. Any mutation in this enzyme will 
alter Tacrolimus metabolism as well as clear-
ance and, ultimately its bioavailability. Diffe- 
rent variants of this enzyme are responsible for 
alterations in its therapeutic concentration 
[26]. SNP in CYP3A5 cause 40-50% variations 
in Tacrolimus biotransformation and elimina-
tion [29]. Transition of Adenine to Guanine 
(A>G) nucleotide at 6986 positions located at 
the 3rd intronic region will develop a defected 
splice site in mRNA generating abnormal stop 
codon, responsible for non-functional CYP3A5 
gene (rs776746) in hepatic tissues. Individual 
carrying one/several replica of CYP3A5*1 (wild 
type) generates functional gene and wider 
expression in hepatic tissues. Those individu-
als are characterized as CYP3A5 expressors/
fast metabolizers. One carrying CYP3A5*3 vari-

ant is classified as CYP3A5 non-expressors/
homozygous/slow metabolizers as they expr- 
ess a low amount of active CYP3A5 enzymes 
[30]. 

Polymorphisms in the CYP3A5 gene are ob- 
served commonly and are found to be correlat-
ing to Tacrolimus dose requirement and phar-
macokinetics. A large number of studies (Table 
2) from different populations concluded that 
homozygous carriers require low strength to 
maintain therapeutic concentration and attain 
elevated Tacrolimus Co in blood. They are also 
associated with late attainment of Co during the 
early period of post-transplantation. 

As per the discussion and studies shown in 
Table 2, the genetic association of CYP3A5 
genotypes and haplotypes with Tacrolimus dos-
ing can be postulated. These genotypes are 
one of the responsible factors contributing to 
drug response variabilities. Determination of 
these genetic variants and their actions on the 
pharmacokinetics of the drug will ameliorate 
the therapeutic drug actions, reduce the ad- 
verse outcomes associated with Tacrolimus, 
and minimize the over-exposure of the drug in 
patients [59]. It can also help clinicians to 
design an optimized immunosuppressive thera-
py to overcome the over-exposure of the drug.

High-throughput screening (HTS) studies

The use of automated equipment to analyze 
hundreds to millions of samples for biological 
activity is known as high throughput screening 
(HTS). HTS approaches help to filter many 
genes (e.g., GWAS) and are proved to be more 
appropriate for determining interlinked SNPs 
affecting Tacrolimus pharmacokinetics. This 
type of study should give the perception of  
the complexities of the biological interactions 
[60]. These studies found novel SNPs of inter-
est that gene candidate techniques had previ-
ously missed. A genetics research method 
known as a genome-wide association study 
(GWAS) is used to correlate certain genetic vari-
ations to specific diseases. This process scans 
the genome of huge samples to identify genetic 
markers that can be used to predict disease. 
Once such genetic markers have been identi-
fied, they can be used to understand the genet-
ic association with disease progression and to 
design more effective preventative and treat-
ment methods [14].
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Table 2. Association studies of CYP3A5 variants and Tacrolimus pharmacokinetics in renal transplant 
patients
Genotype rs ID Nucleotide Study outcomes Effect on metabolism References
*3/*3 (CC) rs776746 6986T>C Higher Co Decreased [31]

Higher Co Slower [32]
Lower CL/F Reduced elimination [33]
Broad AUC0-12 h with Proton pump 
inhibitors (PPIs)

It increased Tacrolimus blood 
level

[34]

Elevated Co at day 3 of post-transplant Decreased elimination [35]
Increased Tacrolimus levels Lower metabolic rate [36]
Lower doses were required Slow metabolism [37]
Lower doses required, higher risk of 
organ rejection, and nephrotoxicity

Suppressed metabolism [38]

Lower mean dose Slow metabolism [39]
Increased AUC0-24 h, Cmax and Cmin than 
expressors

Decreased metabolism [40]

Higher Tacrolimus blood level Slow elimination [40]
Average Co was beyond the therapeu-
tic range

Slow excretion of Tacrolimus [41]

Greater Co than expressors Decreased metabolism [42]
Increased Tacrolimus exposure in 
blood and fewer doses are required

Suppressed metabolic and 
excretion rate

[43]

Higher Cmin than *1/*1 Depressed biotransformation [44]
Increased trough levels Low metabolic rate [45]
Greater AUC, lower dose, Cmax and 
clearance

Lower metabolic and elimina-
tion rate

[46]

*1/*1 (TT) Wild-type 
(rs776746)

Higher doses, elevated clearance and 
Cmax, lower AUC0-12 h

Increased clearance and 
metabolism

[46]

Less Co/D ratio compared to non-
expressers

Elevated metabolism [27]

It decreased Co at day 3 of post-trans-
plant, higher doses requirement

Increased metabolism and 
clearance

[35]

Depressed Tacrolimus levels, high 
Tacrolimus dose required

It increased the metabolic 
profile

[28]

Risk of delayed graft functions (DGF) It increased metabolic activity [36]
Doses required were higher Elevated biotransformation [38]
43.3% reduced Co than non-expres-
sors

Excessive metabolism [29]

Two times increased CL/F ratio than 
*3/*3

Excessive elimination [47]

36.3% enhanced Tacrolimus dose 
needed. Reduced Co/D

Excessive excretion and me-
tabolism

[48]

Lower bioavailability in single day dos-
ing (QD) compared to non-expressers

Tacrolimus Co was below the 
therapeutic window due to 
rapid clearance of the drug

[49]

Higher doses were needed for desired 
Cmax, dose-adjusted Co, and AUC0-12 h

Higher metabolism [50]

Higher doses are required Rapid elimination [51]
The elevated dose needed, 33.9% 
advanced Cmax

Fast metabolism [52]

Lower Co than the therapeutic range Faster excretion [41]
Narrow AUC0-24 h than homozygotes A rapid removal of drugs from 

the body
[53]

Increased excretion of a drug by 1.88 
factor

Rapid removal [54]

More Tacrolimus dose required in 
case of once a daily dosing

Eliminates quickly [55]
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*1/*3 (TC) rs776746 1.5 times increased CL/F ratio than 
*3/*3

Rapid elimination [47]

Increased CL/F or lower Km Easy excretion [56]
1.74-factor elevation in Tacrolimus 
elimination

Elimination is enhanced [54]

66% increased elimination of once-
daily prolonged-release Tacrolimus

Rapid clearance [57]

(TT, CT, CC) rs15524 Co/D was more in TT genotype than 
CC and CT

Increased elimination in TT car-
riers than CC and CT carriers

[58]

66 outcomes were obtained for HTS studies on 
pharmacogenomics of Tacrolimus from year 
1999-2022. 7 studies were included in the 
review (Table 3).

Clinical trials on pharmacogenetic study on 
Tacrolimus

29 clinical trials were reported from clinical- 
trials.gov worldwide to date, which intends to 
study the association of CYP3A5 genotype with 
Tacrolimus dose and concentration. Keywords 
used for the search were Renal transplanta-
tion, “Tacrolimus” and “CYP3A5” Out of 29 tri-
als, 14 clinical trials were removed due to 
unmet search criteria (drug-drug interactions, 
method development for Tacrolimus concen- 
tration estimation, comparison of different for-
mulations on pharmacokinetics and pharmaco-
dynamics of Tacrolimus).

Clinical trials were mainly focused on the deter-
mination of the initial dosing strategy based  
on genotyping of CYP3A5 genetic variants. The 
primary objective of the 3 studies (NCT009- 
35298, NCT04825262, and NCT00552201) 
belonging from China, Singapore, and France, 
respectively, was to design an optimized initial 
dosing strategy of Tacrolimus which is the 
utmost step to avoid Tacrolimus-related ad- 
verse outcomes. As per the studies, genotyping 
of CYP3A5 will allow physicians to know the 
patient’s genotype and their dose requirement. 
Prior genotyping will surpass the burden of 
drugs as well as the economy, improving graft 
and patient survival rates. Moreover, these 
findings might also help to potentiate Tacroli- 
mus efficacy, safety, and rapid attainment of its 
therapeutic concentration in blood.

Five trials intended to study the impact of multi-
gene on Tacrolimus pharmacokinetics. A study 
from the University of IOWA, US (NCT012885- 
21) evaluated the effect of haplotypes formed 

from 3 SNPs of ABCB1 gene (C1236T, G2677T, 
C3435T) to anticipate the possibility of drug-
drug interaction (DDI) between Tacrolimus and 
ketoconazole. CYP3A5 non-expressors were 
divided based on ABCB1 haplotypes (CGC vs. 
TTT) with and without ketoconazole treatment. 
These findings can help to identify drug-drug 
interactions (DDIs) predictive genomic markers 
and help physicians to modify drug prescribing 
patterns. The influence of CYP3A5, 3A4, and 
p-gp on Tacrolimus and cyclosporin pharmaco-
kinetics was studied among Egyptian renal 
transplant patients (NCT03830255). Prevalen- 
ce of these variants with patients’ therapeutic 
outcomes at the post-Tx (Transplantation)  
period was also noted. A cumulative study 
(NCT02707822) on the association of multi-
gene including CYP3A5, 3A4, ABCB1, and POR 
on Tacrolimus ADME (Absorption, Distribution, 
Metabolism, and Excretion) properties was car-
ried out on Taiwan renal recipients. They also 
analyzed the association of other factors such 
as absolute protein and bilirubin, AST (Aspart- 
ate aminotransferase), ALT (Alanine amino-
transferase), sex, age, and DDI with Tacrolimus 
dose and concentration. A study (NCT0346- 
5410) from Spain developed a pharmacokin- 
etic model for identifying CYP3A4*22 and 
CYP3A5*3 SNPs and hematocrit as responsi- 
ble variables for Tacrolimus inter-variability out-
comes. The study planned to implement a phar-
macogenomics approach to de-novo patients, 
which will help to tailor the personalized treat-
ment for each patient based on the targeted Co 
values and the patients with CYP3A4*22 and 
CYP3A5*3 SNPs. A pharmacokinetic study 
(NCT00411944) from Belgium studied the 
influence of multi-gene including CYP3A5*1, 
CYP3A4*1B, MDR1 G2677T/A and C3435T 
SNPs on Tacrolimus availability to understand 
the interplay between CYP3A5, CYP3A4 and 
MDR1, Tacrolimus-associated ADRs (Adverse 
drug reactions). 
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Table 3. High throughput screening (HTS) approach for determining the influence of CYP3A5 SNPs in 
Tacrolimus pharmacokinetics
Sr. 
no

No. of 
patients Outcomes Site References

1. 1446 Prominent SNPs were detected on chromosome 7 according to the Manhat-
tan plot. rs35599367 (P=2.21e17), was known to decrease functional 
variation among CYP3A4 gene (CYP3A4*22). In our population, the minor 
allele frequency (MAF) for the CYP3A4*22 variation was 0.054. 11 more 
SNPs were found to be important on chromosome 7.

Deterioration of 
Kidney Allograft 
Function (DeKAF) 
genomics study

[61]

2. 1979 Out of 17 SNPs, rs776746, rs10264272, and rs41303343 were found to 
be significant for influencing pharmacokinetic of Tacrolimus.

[62]

3. 1133 GWAS and rare variant analysis was conducted for frequent variants only 
in cohort 1 (n=346). CYP3A5*3 (rs776746) was found to be statistically 
relevant for influence on Tacrolimus pharmacokinetics. Its p-value at 7-day, 
1-Mon, and 3-Mon were 4.8×10-16, 9.6×10-31, and 1.6×10-37 respectively.

Republic Korea [63]

4. 853 30 variations within 12 genes were included in the GWAS panel. Results 
concluded that most of the patients were carriers of 3/4 Diplotypes while 
17.4% had 5/>5 Diplotypes.

[64]

5. 455 25 SNPs showed association with Tacrolimus levels (P<105), with 8 of these 
being significant as GWAS (P<1.025*10-7). SNPs found to be correlated 
were having MAF of 0.07 to 0.35 out of 25, 21 were located on chromo-
some 7, with 14 of them mapped to pharmacogenes (CYP3A4, CYP3A5, 
CYP3A7, and CYP3A7-CYP3AP1) as per GWAS Manhattan plot. Significant 
SNP was rs776746 (P=9.71*10-13).

7 centres of 
Canada

[65]

6. 357 28 of the variations had p-values of 1*105, and five of them were sig-
nificant at the genome-wide level (P<5*108). The pseudogene CYP3AP2 
(rs17161880, P=9.29*1014, and rs34880695, P=1.03*1012) has the 
most significant variants (rs17161880, P=149.26*1014, and rs34880695, 
P=141.03*1012). CYP3A5*3 was the most significant SNP.

DeKAF study [66]

7. 229 PSL1&2 strategies were defined for diversity in dose and follow-up. All the 
operations were statistically significant (P<0.001). CYP3A5 and 3A4 were 
found to be associated at all the time points in the model. In PSL2 model, 7 
SNPs of CYP3A4, CYP3A5, CYP3A7, CYP3A43 and ATP binding cassette C8 
(ABCC8) showed influence on Co/D.

Tactique cohort 
study, France

[67]

A pilot study (NCT01655563) was conducted 
on Canadian pediatric renal, cardiac, and liver 
transplant recipients to establish a genetic 
association with rapid Tacrolimus concentra-
tion achievement and age and genotype. The 
study concluded that dose decided as per age 
and genotyping rapidly and precisely attained 
desired Tacrolimus concentration compared to 
the conventional method. Additionally, they 
also found age- and genotyping-guided dosing 
regimens helped to minimize the period of 
recovery (examined by the ability of kidneys to 
eliminate creatinine from blood) and ADRs [57]. 

A prospective study (NCT03173820) from 
Thailand studied the association of CYP3A5 in 
both the induction and maintenance phase of 
Tacrolimus to know whether the implementa-
tion of genotype-based dosing can allow attain-
ing therapeutic concentration rapidly in both 
the phases. The study will also assess the ef- 
fect of CYP3A5 on post-Tx outcomes. A similar 

kind of study (NCT03020589) was conducted 
at California, US studied the direct correlation 
of CYP3A5 genotype with Tacrolimus Co and 
post-Tx outcomes. 

Influence of CYP3A5 on Tacrolimus level and 
rejection rate at early post-Tx period was stud-
ied among Thai renal recipients (NCT023777- 
91). As per the trial, identification of CYP3A5 
variants can allow for ease in reaching initial 
Tacrolimus dose, concentration and improves 
Tacrolimus outcome. A comparative study of 
correlation of CYP3A5 genotype on Tacrolimus 
OD (Once a day) and BID (Twice a day) 
(NCT01884480) was performed on Canadian 
kidney transplant patients. They found the 
patients who required higher doses after con-
version from BID to OD were CYP3A5 non-
expressors. This study might lead to better  
dosing strategy for OD of Tacrolimus. A study 
(NCT02356146) from Thailand found a signifi-
cant correlation was found between CYP3A5 
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gene, Tacrolimus Co, and dose. A study from 
Belgium (NCT02311010) with an objective to 
optimize the Tacrolimus therapy in combination 
with mycophenolic acid and corticosteroids on 
basis of CYP3A5 genotype of an individual. As 
per the study Tacrolimus Co level can be an indi-
cator to identify if the drug has attained its 
therapeutic level.

Meta-analysis

Literature survey

Publications were searched from PubMed  
database. Keywords used for the survey were 
CYP3A5 polymorphism, renal transplantation, 
kidney transplantation, Tacrolimus (FK506/Pro- 
graf), and graft rejection. There were no lan-
guage restrictions in the search, and only stud-
ies based on humans were included. Cross ref-
erences were investigated further to broaden 
the scope of the relevant article search. Two 
researchers worked independently on the data-
base search.

Data selection and eligibility criteria

According to the eligibility criteria, the selected 
papers were checked for data relevancy. Two 
independent researchers examined the arti-
cles, and disagreements were settled through 
conversation. The first author’s name, year of 
publication, total number of cases/controls, 
drug Co/D, and CYP3A5 genotyping (CYP3- 
A5*1/*1, CYP3A5*1/*3, and CYP3A5*3/*3) 
among renal transplant patients are taken from 
each study. Co/D was collected for week-1, 
months 1, 3, 6, and 12. 

Studies included in the review were: a) research 
papers with systematic data, b) renal trans-
plant recipient studies, and c) Tacrolimus Co/D 
correlated with CYP3A5 genotype. Studies we- 
re excluded on basis of inappropriate data, 
reviews, and patients with other transplant 
cases.

Statistical analysis

Tacrolimus pharmacokinetics studies were plo- 
tted on forest plot using MedCalc (version 
20.007) software. Association of CYP3A5 with 
Tacrolimus Co/D was calculated using standard 
mean difference (SMD). As per the heterogene-
ity test, the fixed/random effect model was 

decided to determine the size of the study. In 
the case of P≤0.05 (Cochran’s Q-test), random 
model was selected with an inconsistency  
coefficient [I2 (95% uncertainty intervals)]. 
Moreover, the variance between the studies 
was determined by Tau2 random model. 
Publication bias was detected by Egger’s test 
and Begg’s test. P≤0.05 was considered a sta-
tistically significant bias.

Results

Publication selection

The pattern of study selection related to impact 
of CYP3A5 variants with Tacrolimus Co/D is rep-
resented in figure (Figure 1). Electronic datas-
ets were explored using above keywords, and 
13,812 publications were obtained. Each arti-
cle was inserted in Mendeley desktop for title 
and abstract screening. The studies involved in 
meta-analysis include the studies of CYP3A5 
gene polymorphism and Tacrolimus pharmaco-
kinetics (n=18). Studies involved in the review 
were from 2010-2022.

Out of 13,812 publications, 13,794 studies 
were excluded due to undefined time-points  
for association of Tacrolimus Co/Dwith CYP- 
3A5*1/*1, *1/*3, *3/*3, association of Tac- 
rolimus Co/D with multiple genes, graphical 
presentation of Tacrolimus Co/D vs. CYP3A5 
expressors and non-expressors, comparative 
metabolic studies of Tacrolimus and other 
immunosuppressive agents, and impact of 
other drugs on Tacrolimus pharmacokinetics. 
The goal of the present meta-analysis is to  
correlate the CYP3A5 genotype with Tacrolimus 
metabolism (n=18). Publications were selected 
from 2010-2022 PubMed. 

Tacrolimus Co/D studies

Out of 18 studies, 2 studies belonged to Spain, 
2 from China, 2 from Korea, 3 from India, 2 
from France, and single studies from The 
Netherlands, Japan, Thailand, Argentina, and 
Poland, and 2 from Italy. 6 studies belonged to 
Caucasian population and 12 studies included 
Asian population. 3 cohorts included a mixed 
population-Caucasian (76-94%), Asian (2-10%), 
and African (4-14%). Ethnicity of one study 
group was unknown. Each study was cohort 
and was conducted at hospital/institute prem-
ises. N1 and N2 represents the CYP3A5 nonex-
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Figure 1. Flow-chart of study 
selection in meta-analysis.

pressors (CYP3A5*3/*3) and CYP3A5 expres-
sors (CYP3A5*1/*1, *1/*3) respectively. 

Tacrolimus Co/D studies in Asian group

There were 12 studies consisting of the Asian 
population (n=12). Time points considered  
for Asian population Tacrolimus Co/D were on 
week 1, and months 1, 3, 6, and 12. There was 
no significant variation in the mean differences 
of Tacrolimus Co/D among Asian groups, ac- 
cording to the findings. At all-time points, a con-
siderably low SMD (-1.54, -1.87, -1.012, -0.928, 
and -0.900) revealed a significantly lowered 
collective Co/D ratio in Asian CYP3A5 expres-
sors (Figure 2). Percentage of CYP3A5 expres-
sors and non-expressors found among Asian 
population was found to be 63.94% and  
36.71% respectively. The publication bias was 
tested by Egger’s rank correlation and Begg’s 
regression tests. Begg’s test was insignificant 
at all time points, whereas Egger’s test was 
also insignificant at all time points except at 12 
months. Therefore, our study does not have 
publication bias in studied time point (Figure 
2).

Tacrolimus Co/D studies in Caucasian group

There were 8 studies consisting of the Cau- 
casian population (n=8). Time points consid-
ered for Caucasian population Tacrolimus Co/D 
were on week 1, and months 1, 3, 6, and 12. 
There was no significant variation in the mean 
differences of Tacrolimus Co/Din Caucasian 
groups, according to the findings. At all-time 
points, a considerably low SMD (-0.09, -0.57, 
-0.501, -0.245, and -1.94) revealed a signifi-
cantly lowered collective Co/D among Asian 
CYP3A5 expressors (Figure 2). Percentage of 
CYP3A5 expressors and non-expressors found 
among Caucasian population was found to be 
81.44% and 18.55% respectively. No publica-
tion bias was observed while analyzing Egger’s 
and Begg’s tests (Figure 2). 

Discussion

CYP3A5 is an isoenzyme belonging to the  
cytochrome P450 monooxygenase family abun-
dantly distributed in hepatic tissues and con-
verts Tacrolimus to its metabolites via oxidative 
and reductive pathways. Genetic variants of 
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Figure 2. Association of tacrolimus Co/D ratio with CYP3A5 variants at Week 1, Month 1, 3, 6, and 12 of post-transplant.
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CYP3A5 gene results in variations of its meta-
bolic functions and are classified as CYP3A5 
expressors (CYP3A5*1/*1, *1/*3) and CYP3- 
A5 nonexpressors (CYP3A5*3/*3) [68]. The 
CYP3A5*3 allele results due to transition of 
A>G at 6986 position creates a cryptic splice 
site, forming a non-functional protein, which 
has found to be an important driver in 
Tacrolimus metabolism [69]. Diversity in attain-
ing Tacrolimus blood concentration during the 
initial post-transplant period is dependent on 
CYP3A5 genetic makeup. These variations are 
also an attributing factor for graft rejection or 
Tacrolimus-associated toxicities. As per the 
correlation of CYP3A5 genotype and Tacrolimus 
pharmacokinetics, CYP3A5*1/*1 and *1/*3 
carriers require increased doses to attain tar-
geted concentration to prevent graft rejection 
while CYP3A5*3/*3 is recommended with 
lower doses to avoid adverse drug events [12, 
18].

In the present meta-analysis, the association 
of CYP3A5 expresser and non-expresser with 
Tacrolimus Co/D has been shown. Out of 18 
studies considered, the prevalence of CYP3A5 
expressors in Asian population was found to  
be 63.94%, while in Caucasian population, it 
showed 81.44% [70, 74, 78]. CYP3A5 non-
expressors were prevalent among Asians com-
pared to Caucasians due to lower expression of 
CYP3A5*3/*3 genotype [73, 77]. The primary 
conclusion from meta-analysis was a signifi-
cant decrement in Tacrolimus Co/D ratio in case 
of CYP3A5 expressors due to increased meta-
bolic rate than non-expressors. Our study de- 
picts the stringent dose monitoring in CYP3A5 
expressors to prevent renal graft rejection.

Maintenance of an optimal Co with changeable 
Tacrolimus dosages by Therapeutic drug moni-
toring (TDM) has been a prominent difficulty in 
transplantation throughout the starting phase. 
The first Tacrolimus dosage is determined by 
body weight and then changed as per the Co. 
Various studies have published the data on 
association of CYP3A5 genotype with Tacroli- 
mus response [37, 71, 76, 82]. Instead of a 
body weight, consideration of the CYP3A5 gen-
otypes prior to initiating Tacrolimus therapy 
may aid in obtaining an early target Tacrolimus 
level. This method is thought to reduce the inci-
dence of rejection and drug-induced events, as 
well as provide clinical advantages at short- 
and long-term post-transplantation [79, 83].

The strength of our meta-analysis states the 
broad literature survey using selection criteria. 
Moreover, we included relative studies show- 
ing correlation of CYP3A5 with Tacrolimus phar-
macokinetics from 2010 to 2022. We have 
some shortcomings, firstly, we have only in- 
cluded the genetic association of CYP3A5 with 
Tacrolimus pharmacokinetic [80, 81]. Secondly, 
genetic association with the onset and progres-
sion of drug-induced adverse events such as 
nephrotoxicity, neurotoxicity, and acute graft 
rejection were not included in the review. 
Studies and data regarding graft rejection and 
multiple genetic effects on Tacrolimus were not 
included. We divided our data as per the Asian 
and Caucasian groups to identify the genetic 
association of CYP3A5 on Tacrolimus concen-
tration in both populations. Ethnicity is thought 
to be one of the important factors for genetic 
distribution. The frequency of the CYP3A5 func-
tional (A) allele in kidney recipients has been 
documented in various ethnicities. The CYP3A5 
expressors were prevalent among Africans 
(47%), Asians (22-28%), and Europeans (8-11%), 
as per our meta-analysis [72, 75]. The clinical 
studies should be designed which covers the 
genetic polymorphism affecting all aspects of 
pharmacokinetics and ethnicity using advance 
sequencing methods such as whole exome 
sequencing and GWAS studies in future which 
may provide a better prediction of Tacrolimus 
trough concentration. An Artificial intelligence 
model can also be developed which might help 
in designing better personalized Tacrolimus 
therapy based on multiple gene variants and 
ethnic variability.

Conclusion

In conclusion, there are a few gene variations 
known as drugmetabolizers. Variations in Ta- 
crolimus Co/D have been found to be signifi-
cantly linked to patient’s genetic makeup. Al- 
though there are considerations that promote 
exploration of the influence of CYP3A5 isoen-
zyme, where CYP3A5 polymorphisms are of sp- 
ecial importance in understanding Tacrolimus 
variabilities in pharmacokinetics and pharma-
codynamics. As a result, it’s likely that the phar-
macogenomis approach of studying polymor-
phisms of metabolizers may help in predicting 
drug concentrations in blood and its response 
which may help in tailoring personalized tre- 
atment and preventing renal graft rejection. 
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Understanding of distribution of CYP3A5 in vari-
ous ethnic populations among kidney recipi-
ents may aid clinicians in achieving targeted 
Tacrolimus dose. 
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