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Abstract: Fibroblast growth factor (FGF) is a secreted ligand that is widely expressed in embryonic tissues but its 
expression decreases with age. In the developing prostate, FGF5 has been proposed to interact with the Hedgehog 
(Hh) signaling pathway to guide mitogenic processes. In the adult prostate, the FGF/FGFR signaling axis has been 
implicated in prostate carcinogenesis, but focused studies on FGF5 functions in the prostate are limited. Functional 
studies completed in other cancer models point towards FGF5 overexpression as an oncogenic driver associated 
with stemness, metastatic potential, proliferative capacity, and increased tumor grade. In this review, we explore 
the significance of FGF5 as a therapeutic target in prostate cancer (PCa) and other malignancies; and we introduce 
a potential route of investigation to link FGF5 to benign prostatic hyperplasia (BPH). PCa and BPH are two primary 
contributors to the disease burden of the aging male population and have severe implications on quality of life, 
psychological wellbeing, and survival. The development of new FGF5 inhibitors could potentially alleviate the health 
burden of PCa and BPH in the aging male population.
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Introduction

In the aging male population, prostate cancer 
(PCa) is one of the principal contributors to 
overall health burden [1]. PCa is the second 
most frequently diagnosed malignancy in men 
worldwide with highest incidence rates ob- 
served in elderly men (>65 years of age) [2]. In 
the United States, PCa remains the leading 
new cancer diagnosis of men and is projected 
to cause 11% of cancer-related deaths among 
U.S. men in 2023 [3]. Mechanisms for the 
development of clinically relevant PCa often 
involve mutational events or dysregulation im- 
pacting the function of androgen receptor (AR), 
a ligand induced transcription factor which 
mediates cell proliferation, migration, invasion, 
and differentiation [4]. Targeting of AR through 
androgen deprivation therapy (ADT) is the cur-
rent standard of care but relapse and disease 
progression are common [5]. Localized PCa 

has a 5-year survival rate of close to 98% in  
the USA, but survival statistics decrease in 
other global populations [2, 6]. Men who de- 
velop distant stage PCa or ADT insensitive cas-
tration-resistant prostate cancer (CRPC) have  
a 5-year survival rate of around 32% [6]. 
Additionally, studies have shown that the num-
ber of men diagnosed with late stage PCa is 
increasing over time [6] while treatment strate-
gies for late stage PCa and CRPC remain inef-
fective [7]. Therefore, new therapeutic targets 
are necessary to improve overall survival of 
patients with PCa. 

In the presence or absence of malignancy, 
benign enlargement of the prostate transition 
zone known as benign prostatic hyperplasia 
(BPH), is an increasingly common diagnosis 
among aging males [8]. Individuals with BPH 
often present with lower urinary tract symptoms 
(LUTS) which may include poor urinary flow, hes-
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itancy, nocturia, and incontinence [9]. Together 
BPH/LUTS impairs quality of life, severely im- 
pacts psychological well-being, and heavily 
contributes to the health burden of the aging 
male population [9]. BPH is commonly treated 
with 5α-reductase inhibitors (5ARIs) to reduce 
the conversion of prostatic testosterone to 
dihydrotestosterone (DHT) [10-12]. DHT is a 
potent activator of AR, and limiting DHT produc-
tion offers an alternative to ADT approaches  
to reduce prostate volume [11, 12]. However, 
existing therapeutic options are currently insuf-
ficient, and identification of new molecular tar-
gets to combat BPH will help to further alleviate 
the health burden in aging men. 

The fibroblast growth factor (FGF) family in- 
cludes 22 proteins that regulate signaling pa- 
thways crucial for tissue growth, morphogene-
sis, development, and repair. FGF5 is one of  
18 secreted canonical FGFs within this family 
of ligands [13-15]. Secreted FGFs exert their 
downstream function through binding with FGF 
receptors (FGFRs). This receptor family includes 
four canonical receptor tyrosine kinases (RTKs) 
with substantial sequence homology (FGFR1-4) 
and one related FGFR (FGFRL1, also known as 
FGFR5) [14, 15]. Alternative splicing of the FGF 
ligands and receptors further contributes to the 
functional complexity of this signaling network 
[16]. 

Available literature on the functions of some 
FGF ligands is limited. Gaps in knowledge are 
particularly evident when considering FGF5, 
despite its overexpression being identified in 
many human cancers (Table 1). Functionally, 
FGF5 was identified as an inhibitor of hair 
growth when it was determined that angora 
mice are genetically deficient for FGF5 (FGF5go/
FGF5go). Angora mice display abnormally long 
coats as a consequence of prolongation of the 
anagen phase of the hair cycle due to the 
absence of FGF5 [17, 18]. Since this discovery, 
increased expression of FGF5 has been stud-
ied as a contributing factor to hair cycle dys-
function and it was hypothesized that reduction 
in FGF5 activity could counteract male pattern 
baldness [19, 20]. These studies have prompt-
ed the development and discovery of candidate 
FGF5 inhibitors [19, 21]. However, knowledge 
of the functions of FGF5 and the therapeutic 
relevance of FGF5 inhibitors in cancer and 
other diseases is limited.

Since the identification of the FGF/FGFR sig- 
naling axis as a critical player in cancer, there 
has been an increased interest to develop  
therapeutics that inhibit FGFR signaling [22]. 
Candidate drugs targeting FGFRs have yielded 
varying degrees of success in cancer therapeu-
tics due to heterogeneity of the FGF/FGFR fam-
ily and frequency of resistance mutations to 
existing inhibitors [22]. A few small molecule 
tyrosine kinase inhibitors (TKIs) of FGFRs are 
now FDA approved to treat a limited number of 
cancer types with targetable genetic changes 
in FGFRs [22]. As these drugs inhibit multiple 
FGFRs they can cause side effects due to 
actions in normal tissues and cancer cells can 
develop resistance to specific FGFR inhibitors 
[22]. Therefore, a detailed investigation of the 
molecular functions of FGF ligands and their 
receptors in cancer development and progres-
sion is needed to establish new therapeutic tar-
gets within this signaling axis. 

During prostate development, homeostasis, 
and disease, the roles of FGF5 are largely un- 
defined. However, a small body of work de- 
scribes potential associations between FGF5 
expression and the following pathways: Hed- 
gehog (Hh) signaling, androgen receptor (AR) 
signaling, and Sex Determining Region Y-box 2 
(SOX2) signaling [23-26]. These studies have 
set the stage for further investigation of the 
roles of FGF5 in the context of prostate devel-
opment and disease. In this review we will  
provide an overview of FGF5 and its signal- 
ing through FGFRs. Observational studies that 
have implicated FGF5 in prostate development, 
homeostasis, and cancer will be emphasized 
and we will discuss efforts that point towards 
FGF5 as an interesting candidate for functional 
investigation. Mechanistically, FGF5 has been 
vastly understudied in the context of PCa, BPH, 
and other cancers. We propose that develop-
ment of FGF5 inhibitors could offer a viable 
mechanism for therapeutic advancement in 
multiple disease types. 

Overview of FGF, FGFRs, and the FGF5/FGFR 
signaling axis

FGF5/FGFR signaling networks

FGF5 was first identified in 1987 through a 
screen for potential new oncogenes capable of 
transforming NIH3T3 murine fibroblasts [27]. 
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Table 1. Summary of basic findings from functional studies investigating the oncogenic roles of FGF5 overexpression in cancer

Cancer type FGF5 expression Mechanism of 
action Proposed role in tumorigenesis Model to study disease Citation

Breast Cancer 60-fold upregulation of FGF5 
mRNA in stroma

Hh signaling 
pathway

Cell plasticity, proliferation, and stemness Triple negative breast cancer (TNBC) patient 
derived xenograft

[102]

Pancreatic cancer Overexpression of FGF5 
mRNA

MAPK signaling 
pathway

Proliferation 12 patient samples; COLO-357 cell line [101]

Esophageal squamous cell  
carcinoma (ESCC)

Reduced FGF5 expression Undefined Confers resistance to definitive chemoradiotherapy 117 ESCC samples; 11 ESCC cell lines [103]

Hepatocellular carcinoma (HCC) Overexpression of FGF5 MAPK signaling 
pathway

Proliferation, metastasis 192 HCC patient samples; 5 HCC cell lines; 
HCC mouse model

[104]

Glioblastoma multiforme (GBM) Overexpression of FGF5 
mRNA and protein

Undefined Cell proliferation, viability, migratory capacity, angiogenesis, 
and malignancy

Astrocytic glioma patient samples (grades I-III) 
and GBM; GBM cell lines T98G, U373, MGC

[100]

Osteosarcoma (OS) Overexpression of FGF5 
mRNA and protein

MAPK signaling 
pathway

Dedifferentiation, metastasis, increased tumor size and 
stage

15 OS patient samples; U2OS, SAOS, MG63 
cell lines; nude mouse orthotopic model

[98]

Melanoma >50-fold upregulation of 
mRNA

MAPK NFAT 
signaling axis

Clonogenicity and invasion in vitro; tumor growth, angiogen-
esis, and proliferation in vivo

28 human melanoma cell lines; murine xeno-
graft model

[99]

Papillary Thyroid Carcinoma (PTC) Overexpression of FGF5 
mRNA and protein

Undefined Cell growth, proliferation, colony formation 30 human patient samples; Human PTC cell 
lines TPC-1 and K1

[113]
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Figure 1. The FGF/FGFR signaling pathway. A. An FGF ligand (red) binds with a HSPG or Klotho cofactor (blue) to 
extracellular immunoglobulin-like domains on a compatible FGFR. B. Ligand binding stimulates a conformational 
change and promotes receptor dimerization. C. FGF-FGFR monomers dimerize to activate the FGFR. D. Autophos-
phorylation of the tyrosine kinase domains on the activated FGFRs stimulates downstream signaling pathways from 
the FGFR [16].

FGF5 can undergo alternative splicing yield- 
ing two different transcripts that encode two 
FGF5 isoforms - a 268 amino acid (AA) protein 
referred to as FGF5 or a 123 AA protein referred 
to as FGF5S [28]. Although the FGF5S variant 
was not initially characterized as a functional 
isoform of FGF5, both isoforms have been 
shown to bind to FGFR1, with FGF5S function-
ing as an FGF5 competitive antagonist for 
FGFR1 at increased concentrations [29]. Stu- 
dies have shown that both isoforms can be 
heavily glycosylated prior to secretion; this gen-
erates proteins with molecular masses ranging 
from ~18.5-40 kDa [30, 31]. For the FGFS vari-
ant, it has been demonstrated that glycosyl-
ation allows for functional retention while in- 
creasing resistance to degradation when com-
pared to non-glycosylated forms [31]. 

FGFRs are composed of an extracellular ligand 
binding region consisting of three immunoglob-
ulin-like domains, a transmembrane helix, and 
a cytoplasmic tyrosine kinase domain (Figure 
1) [16]. Classically, an FGF ligand binds to a 
compatible inactive FGFR monomer and induc-
es a conformational change leading to recep- 
tor dimerization mediated by a heparin sulfate 
proteoglycan (HSPG) or Klotho co-factor [32]. 
However, FGFR homodimerization prior to 
ligand binding is also observed and has been 
proposed to prime receptors for activation by 

FGF ligands [33]. Ligand binding leads to tr- 
ans-autophosphorylation of the tyrosine kinase 
domain to complete receptor activation [32, 
34]. Homodimerization of FGFR monomers has 
been thoroughly characterized, and Förster res-
onance energy transfer (FRET)-based method-
ologies for studying heterodimers has led to 
evidence suggesting that heterodimerization 
diversifies downstream responses [35]. The 
four major signaling pathways associated with 
cancer and found downstream of FGFs/FGFRs 
are: Ras/Raf-MEK-MAPK (mitogen activated 
protein kinases), PI3K-AKT (phosphatidylinosi-
tol-3 kinase/protein kinase B), PLCγ (Phos- 
pholipase Cγ), and STAT (signal transducer and 
activator of transcription) (Figure 1) [36-48]. 
FGFR signaling can also be modulated by cell 
and ligand context, adaptor protein functional-
ity, post translational modifications, receptor 
isoform expression due to alternative splicing, 
receptor internalization, and epigenetic mecha-
nisms [48-52]. 

Alternative splicing of mRNA encoding the Ig- 
like domains of FGFR generates tissue speci- 
fic expression of FGFR isoforms with different 
ligand binding capabilities [16, 53, 54]. For 
example, for FGFR1, 2, and 3, alternative splic-
ing involving sequences encoding the extracel-
lular Ig-like domain III leads to the production of 
one of two isoforms - IIIb or IIIc. These receptor 
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isoforms are typically differentially expressed 
by epithelial and mesenchymal lineages res- 
pectively, and can bind different ligands with 
high specificity [53-57]. FGF5 was found to 
preferentially activate the IIIc splice variant of 
FGFRs with relative activity at each receptor 
isoform as follows: FGFR1IIIc > FGFR2IIIc > 
FGFR3IIIc and little activity at FGFR4 [58]. In 
normal tissue, FGFR2IIIb variants are generally 
expressed in epithelial cells where IIIc variants 
are expressed in mesenchymal cells [59]. In- 
terestingly, in pancreatic and prostate cancer, 
receptor isoforms have been shown to switch 
expression patterns where FGFR2IIIc is expre- 
ssed in epithelium and FGFR2IIIb is expressed 
in the stroma [59-64]. Later in this review, we 
will further discuss how tissue specific FGFR 
splicing may contribute to prostate tumorige- 
nesis.

Proposed roles of FGF5 in the healthy and 
diseased prostate 

In adult prostate tissue, a study comparing 
prostate stromal cells from the prostatic peri- 
pheral zone (PZ) of young donors (averaging 27 
years of age; n=5) to PZ samples from older 
donors (averaging 65 years of age; n=5) found 
significantly increased FGF5 expression in  
stromal cells from older donors [65]. Analysis  
of a cDNA microarray and verification by qPCR 
both showed a significant increase in FGF5 
expression in the old donor samples compared 
to young ones [65]. These findings demonstrate 
that increased FGF5 expression coincides with 
the normal aging process and could subse-
quently enhance associated prostatic disease 
including PCa and BPH. 

In support of a role for FGF5 in prostate cancer, 
studies of human donor-derived Cancer Asso- 
ciated Fibroblasts (CAFs) and matched Normal 
Prostate Fibroblasts (NPFs), found that FGF5 
expression was higher in CAFs than NPFs [65]. 
Additionally, the human prostatic PZ is the pre-
dominant site of origin for PCa [66]. Studies 
demonstrating age-related increase in FGF5 
transcript in the PZ of older donors during nor-
mal aging indicate the spatiotemporal rele-
vance of FGF5 and a potential connection 
between aging and carcinogenesis [65]. Addi- 
tionally, FGF5 and other age-related mitogenic 
factors may prime the prostate microenviron-
ment for PCa tumor initiation and progression 
[65]. 

Furthermore, increased FGF5 in the PZ during 
carcinogenesis could be involved in a growth 
process analogous to the “embryonic reawak-
ening” proposed as a potential driver of BPH in 
the prostatic transition-periurethral zone (TPZ). 
During the embryonic reawakening, prostate 
epithelial cells are thought to proliferate in 
response to a transient induction of stromal 
signaling factors, resulting in benign enlarge-
ment of the prostate gland due to hyperplastic 
growth of epithelial cells within glandular nod-
ules [67, 68]. Candidate factors for inducing 
episodic reawakening of the TPZ stroma are 
likely to be growth factors, with studies citing 
FGF2 and FGF7 as key drivers of pathogenesis 
in BPH [69-71]. Given recent work describing 
increased expression of FGF5 in the healthy  
PZ of aging donors [65], we hypothesize that 
identification of a transient increase in FGF5 in 
the TPZ during normal aging or during episodic  
stromal reawakening could describe a new can-
didate driver and therapeutic target for BPH. 
However, gene expression studies profiling 
FGF5 expression in the TPZ throughout aging, 
and functional studies defining a link between 
FGF5 and BPH are necessary to investigate this 
hypothesis.

Dysregulation of tissue specific FGFR splice 
variants in prostate cancer

Crosstalk between cell compartments in the 
prostate is an important modulator of develop-
ment, homeostasis, and disease (Figure 2). 
Directional paracrine signaling from stromal to 
epithelial cells is androgen sensitive and is  
necessary for the growth and differentiation of 
prostate epithelial cells [72]. A 1993 study in 
the Dunning Tumor (DT) rat model investigat- 
ed epithelial and stromal cells from an andro-
gen-responsive, differentiated, slowly growing 
transplantable rat prostate tumor. This work 
was the first to demonstrate how switching of 
receptor isoform expression between stromal 
and epithelial cells creates an entirely new 
dynamic within the prostate tumor microenvi-
ronment (TME) [62]. Here, data suggested that 
autocrine signaling of FGFs through aberrant 
FGFR2IIIc in epithelial cells promotes indepen-
dence of epithelial cell growth from stromal cell 
support to drive malignancy [62]. Concurrent 
activation of FGF2, FGF3, and FGF5 in the pros-
tate TME was also observed, and it was pre- 
dicted that differential isoform expression by 
prostate epithelial cells is necessary but not 
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sufficient to drive disease progression [62]. 
This study highlights how dysregulation of tis-
sue specific FGFR splice variants in combina-
tion with FGF5 activation may contribute to 
malignant transformation of prostate epithelial 
cells and could have much broader implica-
tions across a variety of disease states [62]. 

FGF5 as a potential target gene of paracrine 
Hh pathway signaling in the prostate

During the development of many organs, in- 
cluding the prostate, the Hh pathway has been 
proposed to play a modulatory role [73]. Sonic 
hedgehog (Shh), a Hh pathway ligand, can act 
through its receptor Patched (Ptc) and down-
stream G-protein receptor smoothened (Smo) 
to stimulate developmental processes [74-76]. 
A series of studies investigating Hh signaling in 
the developing prostate proposed that the Hh 
pathway guides tissue polarity and morphology 
through paracrine interactions and identified 
Shh target genes in the stroma that may be 

involved in this process [77-81]. Specifically, 
Fgf5 was identified as a Shh target gene in  
the embryonic immortalized stromal cell line 
Urogenital Sinus Mesenchymal-2 (UGSM-2) 
[80]. However, studies using primary mesen-
chymal cells or cultures did not see a change in 
Fgf5 levels when Hh signaling was manipulated 
[80]. In adult prostate tissue, Hh signaling is 
active at low levels compared to developmental 
time points and Smo localizes to the primary 
cilia in prostatic fibroblasts. In prostate cancer, 
however, the Hh pathway can become dysregu-
lated through increased growth factor driven 
Hh signaling in the tumor stroma or through 
autocrine pathways impacting the epithelium 
[23, 82, 83]. A line of evidence connecting 
FGF5 to PCa reported that increased FGF5  
levels were observed when NPFs were trans-
duced with a constitutively active Smo:RFP 
construct to mimic aberrant Hh signaling 
(SmoM2-NPF). When SmoM2-NPFs were re- 
combined with non-tumorigenic human pros-
tate epithelial cells (BPH-1), and grafted in vivo 

Figure 2. Representation of cell compartments in the human prostate and proposed mechanism for crosstalk be-
tween prostate epithelial and stromal cells. Data suggests that epithelial cells stimulate increased FGF5 production 
in stromal cells through paracrine interactions. Secreted FGF5 produced by stromal cells may result in increased 
proliferation and differentiation in the prostate epithelium.
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(SmoM2-NPF + BPH-1 graft) they generated 
enlarged grafts approximately twice the size of 
controls (NPF + BPH-1 grafts and BPH-1 grafts 
alone). Further analysis demonstrated aggres-
sive and dedifferentiated phenotypes of epi- 
thelial cells in the SmoM2-NPF + BPH-1 graft 
[23]. In a more recent study of Hh signaling in 
the stroma of control and Shh stimulated 
biclonal xenograft tumors, FGF5 was shown to 
be one of 9 genes whose expression is regulat-
ed by Shh [24]. These data suggest that Shh 
secretion from epithelial cells into the tumor 
microenvironment leads to upregulation of Hh 
signaling in UGSM-2 stromal cells and subse-
quent overexpression of FGF5 [24]. Addition- 
ally, studies involving blocking of Hh signaling in 
CAFs or activation of Hh signaling in NPFs did 
not find consistent impacts of Hh signaling on 
FGF5 levels [65]. Therefore, additional studies 
are necessary to understand FGF5 as a target 
gene of the Hh pathway in PCa.

Potential links between FGF5 and hormone 
signaling that may translate to prostate dis-
ease

A promising route of exploration in prostate 
cancer was first established in skin-based mod-
els where a potential link between FGF5 and 
androgen receptor signaling was identified. In a 
variety of mammalian models, FGF5 has been 
most thoroughly studied in the context of cycli-
cal hair growth [17, 84-86]. Reports indicate 
that FGF5 is important for determining both  
the duration of the anagen (active hair growth 
phase) and the induction of catagen (hair folli-
cle regression) [85]. In mice, as well as other 
animals, FGF5 genetic ablation results in the 
development of abnormally long hair [18, 
84-86]. This phenotype is also observed in 
humans with FGF5 mutations, resulting in lon-
ger body hair, eyebrows, and eyelashes [28]. 
Androgens are known to have effects on hair 
growth which vary across body location. For 
example, androgenetic alopecia (AGA) is a  
common form of hair loss which is mediated  
by excessive androgen activity in the scalp [87, 
88]. Androgen signaling in the skin is modulat-
ed by the 5α-reductase (SRD5A1) enzyme iso-
type which is responsible for converting tes- 
tosterone to DHT, and subsequently effects 
hair growth. However, in dermal papilla cells 
(DPCs), where hair follicle induction and hair 
growth occur, crosstalk between androgens 

and the Wnt/β-catenin pathway contribute to 
hair follicle miniaturization [89-91]. A study in 
the skin of CRISPR/Cas9 FGF5-Knock Out (KO) 
Dorper sheep has begun to elucidate cross-talk 
between FGF5 and androgen signaling in regu-
lating hair growth [25]. While most use of FGF5-
KO models involves potential application in the 
agricultural industry [25, 92, 93], data linking 
FGF5 to androgen provide insight for future 
directions of research on FGF5 in prostate can-
cer and castration resistance.

Results from investigation into FGF5-KO in 
Dorper sheep identified affected downstream 
signaling cascades in the skin including: FGF- 
R1, androgen/AR, Shh/Gli2, and Wnt/β-catenin 
among others. Downstream of Wnt/β-catenin, 
the Shh signaling pathway has been implicated 
in hair-follicle induction and it was hypothesiz- 
ed that each of these signaling components 
would be disrupted in response to FGF5-KO 
[25, 94]. Consistent with the hypothesis, simi-
lar levels of testosterone were detected in the 
FGF5-KO Dorper sheep compared to controls. 
However, the level of DHT was significantly 
diminished in the FGF5-KO group, indicating 
disruption to the enzymatic function of 5α- 
reductase. At the mRNA and protein level, both 
SRD5A1 and AR were significantly reduced in 
the FGF5-KO group compared to control group 
whereas the protein level of β-catenin was sig-
nificantly increased [25]. Functional work in 
DPCs treated with DHT, finasteride, and DMSO 
verified observations of crosstalk between 
androgen and the Wnt/β-catenin pathway. 
However, further work needs to be completed 
to define the mechanism by which FGF5-KO 
reduces AR [25]. Further investigation of FGF5-
KO in other androgen target tissues including 
the prostate is merited as dysregulation of AR 
is a driver of prostatic disease and a contribu-
tor to castration resistance.

FGF5 as a potential player in castration resis-
tance

In prostate cancer cells, work examining the 
relationship between FGF5 and SOX2 has indi-
rectly linked FGF5 to castration resistance. 
Specifically, SOX2 has been implicated as a 
regulator of FGF5 expression. In castration  
sensitive LAPC-4 prostate cancer cells, ecto- 
pic expression of SOX2 caused an 18.81-fold 
increase in FGF5 levels. Moreover, expression 
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of FGF5 was also increased significantly in 
xenografts of both LAPC-4 and castration resis-
tant CWR-R1 cells grown in castrated vs. intact 
hosts [26]. This same study also found that 
SOX2 promoted castration resistance in pros-
tate cancer cell lines, and SOX2 was found to 
be expressed in the majority of human castra-
tion resistant PCa metastasis [26, 95]. How- 
ever, it has not yet been determined if the abil-
ity of SOX2 to promote castration resistance 
involves FGF5, or if FGF5 expression is corre-
lated with SOX2 expression in human tumors. 
Nonetheless, these data support further re- 
search into a potential role of FGF5 in castra-
tion resistance. 

FGF5 as an alternative to current PCa thera-
peutics

Currently, the majority of clinical PCa therapeu-
tics focus on modulation of androgen produc-
tion through ADT or AR signaling inhibition via 
first- and/or second-generation androgen re- 
ceptor antagonists [96]. However, a variety of 
AR dependent and AR independent mecha-
nisms can develop to bypass existing thera- 
peutic options and allow for PCa progression  
to CRPC [96]. One mechanism by which AR- 
dependent CRPC develops that may be related 
to FGF5 signaling is through co-factor based 
transcriptional regulation of AR. In this circum-
stance, transcriptional co-factors facilitate nu- 
clear localization of AR to stimulate the AR  
signaling pathway in the absence of androgen 
[96, 97]. Although the mechanism of action of 
FGF5 in PCa is unknown, the FGF/FGFR signal-
ing axis becomes increasingly diverse in the 
context of disease, and aberrant modulation of 
one or multiple AR transcriptional cofactors by 
the FGF5/FGFR signaling axis could contribute 
to disease progression. Here, it can be predict-
ed that supplementation of existing therapeu- 
tic methods with AR co-factor targeting drugs 
may reduce the progression of PCa into CRPC 
in some subtypes of PCa. 

FGF5 in other cancers

FGF5 has been gaining traction as a possible 
target for cancer therapeutics as evidence is 
accumulating that it has oncogenic roles in a 
broad range of human cancer types (Table 1). 
In malignancies where FGF5 transcript and pro-
tein are reported to be overexpressed, func-
tional studies are beginning to define the mech-

anism of action by which FGF5 may contribute 
to tumorigenesis and disease progression. 
Given the established roles of FGF5 in guiding 
development and wound healing; some studies 
hypothesize dysregulation of related process- 
es as drivers of pathologies [16, 98-101]. 
Consistent with expectations, studies complet-
ed primarily in cell lines demonstrate that FG- 
F5 overexpression influences stemness, meta-
static potential, and proliferative capacity [98, 
99, 101-105]. In human tumor samples, FGF5 
levels correlate with tumor size, and tumor 
grade [99-101, 105]. FGF5 is often implicated 
in activating the MAPK signaling pathway  
to drive tumorigenesis [98, 99, 101, 104]. 
Findings from these studies may offer a basis 
for future directions where FGF5 can be investi-
gated in relevant prostate cancer models. 
Given the relative newness in the identification 
of FGF5 overexpression in cancers, it is likely 
that targeted investigation of FGF5 will reveal 
diverse complexity in crosstalk and down-
stream signaling. Although our summary of 
functional studies in cancer models may not 
fully encompass what is known about FGF5, 
our goal is to draw attention to the broader 
therapeutic potential of targeting this ligand in 
cancer treatments. 

Current FGF5/FGFR targeting strategies

Some studies have worked to disrupt the FGF5/
FGFR signaling axis through targeting of the 
FGF5 ligand rather than its receptor(s). Though 
FGF5 is implicated as a potential drug target  
in multiple pathologies, there are currently no 
FDA approved therapeutics available that tar-
get this ligand. To date, the only treatments 
designed to reduce FGF5 activity remain in pre-
clinical development and consist of RNA aptam-
ers, modified siRNAs, miRNA delivery, and a 
synthetic decapeptide [22]. None of the thera-
peutic options for FGF5 targeting have pro-
gressed into clinical trials as of this review, and 
most existing work in preclinical animal models 
has been done in the context of male pattern 
baldness [106]. Additionally, the drugs previ-
ously developed for hair loss treatment were 
designed to be delivered topically or subcuta-
neously [22, 107]. This presents a fundamental 
restriction on the translatability of existing 
FGF5 inhibitors to cancer therapeutics in their 
current formulation. Here, we will briefly intro-
duce some recent work identifying new thera-
peutic candidates for targeting FGF5.
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RNA aptamers targeting FGF5

RNA aptamers are small structured single-
stranded RNAs that function to bind specific 
targets with high affinity and specificity. Apta- 
mers are emerging as promising therapeutics 
due to their selectivity, stability, low toxicity,  
low immunogenicity, and improved safety pro-
files [108]. A 2021 study described the devel-
opment of a panel of RNA aptamers targeting 
FGF5 using Systematic Evolution of Ligands by 
Exponential enrichment (SELEX) and demon-
strated functionality of the RNA aptamers with 
high affinity and specificity for FGF5 [109]. A 
pool of seven unique aptamers were assessed 
for specificity of binding to exogenous FGF5 
and their ability to inhibit FGF5 induced cellu- 
lar proliferation in NIH3T3 cells expressing 
FGFR1. Western blotting of pFGFR1 demon-
strated dose-dependent inhibition of receptor 
phosphorylation that was not observed in ran-
dom RNA controls. Binding affinity was evalu-
ated by surface plasmon resonance (SPR) and 
the F5f1 aptamer variant was confirmed not to 
bind to FGF1, FGF2, FGF4, FGF6, or the extra-
cellular domain of FGFR1; and was able to out-
compete FGF5 for FGFR1. It was predicted that 
specificity of anti-FGF5 aptamers will reduce 
side effects compared to FGFR targeting drugs 
when used as therapeutic agents and will have 
broad applications in FGF5-associated cancers 
and hair loss [109].

MicroRNAs targeting FGF5

MicroRNAs (miRNAs) are also emerging target-
ed therapeutic in cancer as they are suspect- 
ed to impact the initiation and progression of 
many cancer subtypes [110]. MiRNAs are non-
coding single-stranded RNA molecules that  
are approximately 22 nucleotides long and reg-
ulate genes through sequence matching with 
target mRNA to inhibit protein expression [111, 
112]. Identification of miRNAs and their tar- 
gets offers new therapeutic candidates that 
can be modulated by exogenous delivery of 
miRNAs or anti-miRNA oligonucleotides (AMOs) 
[110]. Studies identifying direct modulation of 
FGF5 through miRNAs in multiple cancer sub-
types provide potential for effective delivery of 
miRNAs to decrease FGF5 activity.

Dysregulation of miR-188-5p/FGF5 regulatory 
networks in Papillary Thyroid Carcinoma (PTC) 
was investigated to determine underlying me- 
chanisms driving tumor progression. Low ex- 

pression of miR-188-5p correlates with high 
expression of FGF5 mRNA and protein in PTC 
cell lines and tumor compared to the normal 
thyroid samples. These cell lines were subse-
quently transfected to overexpress miR-188- 
5p and significant growth suppression was 
observed in response. 3’-UTR luciferase assays 
were used to confirm direct binding of miR-188-
5p to FGF5 mRNA in PTC cell lines, and silenc-
ing of FGF5 by shRNA also yielded tumor-sup-
pressive function in cell lines [113]. This in- 
dicates that delivery of exogenous miR-188-5p 
could be used to therapeutically target FGF5. 

A separate study determined that miR-567 reg-
ulates FGF5 expression in osteosarcoma (OS). 
FGF5 was predicted and validated as a direct 
target gene of miR-567 by luciferase reporter 
assay. miR-567 was found to be downregulat- 
ed in OS tissues and in OS cell lines MG63, 
U2OS, and Saos-2 compared to controls. In 
vitro, transfection of OS cell lines with miR-567 
reduced cell viability and restricted migratory 
capacity and invasion of OS cells in a transwell 
assay. The inhibitory effects of miR-567 in OS 
cell lines were partially rescued by overexpres-
sion of FGF5. Together, this data implicates 
miR-567 as a negative regulator of FGF5 and a 
potential therapeutic aimed at impacting FGF5 
in treatment of OS [114].

Conclusion

There is extensive literature suggesting that 
FGFs and FGFRs play important roles in pros-
tatic development and disease [14, 16, 104, 
115, 116]. Specifically, the FGF5/FGFR signal-
ing axis offers a new route for therapeutic 
investigation but remains understudied. In a 
range of other cancers, FGF5 overexpression 
has been reported, and studies indicate an 
oncogenic role for FGF5. Current literature in- 
troduces gene expression data suggesting a 
possible role for FGF5 in prostate development 
and PCa progression. Studies have found that 
FGF5 may be a downstream Hh target in the 
stroma and a SOX2 target in tumor cells. 
However, functional studies are absent from 
this body of work and more research is requir- 
ed to determine if FGF5 is a candidate for PCa 
therapeutics. The field would benefit greatly 
from focused studies on FGF5 including meta-
analysis of existing human datasets and mech-
anistic studies in relevant models of PCa to 
supplement published work on FGF5.
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Given the pivotal roles that AR signaling plays in 
prostate development and disease, and the 
link between FGF5 and AR signaling first identi-
fied in skin based FGF5-KO models, it will be 
important to determine if a similar interaction 
occurs in the prostate. Moving forward, consid-
eration of reputable and relevant model sys-
tems of PCa will be critical to properly evaluate 
the relationship between FGF5 and AR in PCa 
disease progression. Importantly, studies sh- 
ould not be limited to models of AR dependent 
PCa progression and should attempt to pro- 
file AR low/negative PCa models as well. More 
broadly, advancement of research into the dis-
covery and development of FGF5 inhibitors is 
critical to move drug development past preclini-
cal stages and provide strategies to alleviate 
the health burden of FGF5 related disease on 
affected populations. 
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