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Abstract: Lower urinary tract dysfunction (LUTD) encompasses a range of debilitating conditions that affect both 
sexes and different age groups. Understanding the underlying neurobiological mechanisms contributing to LUTD 
has emerged as a critical avenue for the development of targeted therapeutic strategies. Brain-derived neurotrophic 
factor (BDNF), a prominent member of the neurotrophin family, has attracted attention due to its multiple roles in 
neural development, plasticity, and maintenance. This review examines the intricate interplay between neurobio-
logical factors and LUTD, focusing on the central involvement of BDNF. The review emphasizes the bidirectional 
relationship between LUTD and BDNF and explores how LUTD-induced neural changes may affect BDNF dynamics 
and vice versa. Growth factor therapy and the combined administration of controlled release growth factors and 
stem cells are minimally invasive treatment strategies for neuromuscular injury. Among the many growth factors and 
cytokines, brain-derived neurotrophic factor (BDNF) plays a prominent role in neuromuscular repair. As an essential 
neurotrophin, BDNF is involved in the modulation of neuromuscular regeneration through tropomyosin receptor ki-
nase B (TrkB). Increasing BDNF levels facilitates the regeneration of the external urethral sphincter and contributes 
to the regulation of bladder contraction. Treatments targeting the BDNF pathway and sustained release of BDNF 
may become novel treatment options for urinary incontinence and other forms of lower urinary tract dysfunction. 
This review discusses the applications of BDNF and the theoretical basis for its use in the treatment of lower urinary 
tract dysfunction, including urinary incontinence (UI), overactive bladder (OAB), and benign prostatic hyperplasia 
(BPH), and in the clinical diagnosis of bladder dysfunction.
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Introduction

Neural regeneration poses a challenge to 
researchers and surgeons. The regeneration of 
peripheral nerves requires an ideal environ-
ment, including one that inhibits inflammation, 
stressors, apoptosis, and fibrosis, as well as 
the promotion of immune-regulation, vascular-
ization, cell proliferation and neuro-angiogene-
sis (Table 1). Stem cells [1, 2], biomaterials [3] 
and growth factors are suitable candidates for 
promoting peripheral nerve repair since they 
have some of the effects required to achieve 
nerve regeneration. Growth factors can exert 

effects that are beneficial for nerve regenera-
tion, but the best candidate for promoting 
peripheral nerve regeneration among them has 
not yet been identified.

Brain-derived neurotrophic factor (BDNF) is an 
important neurotrophin involved in neural 
development, neuromuscular function, neural 
regulation of the lower urinary tract, such as  
the bladder, urethral sphincter, prostate gland 
[4]. It is found that BDNF can regulate skele- 
tal muscle including pelvic muscle [5], cardiac 
muscle [6], airway and vascular smooth muscle 
[7, 8]. The effects of BDNF include but not lim-
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transcripts have been detected in the urotheli-
um and detrusor smooth muscle of NGF-
overexpressing mice [19].

Brain-derived neurotrophic factor is crucial for 
the development of cranial sensory neurons 
and several mechanoreceptors innervating the 
Meissner corpuscles and Pacinian corpuscles 
[20]. BDNF also affects the development of 
chemoreceptors innervating taste buds [21]. 
The majority of BDNF transcripts can be found 
in the brain and blood cells [22]. BDNF is pres-
ent in nearly all brain regions and its function is 
related to the neuronal, glial, and vascular con-
stituents of brain tissue [23, 24].

The role of BDNF in bladder function under nor-
mal and pathological conditions has not been 
well demonstrated yet, and most available 
studies have used experimental models of 
bladder dysfunction. It has been suggested 
that following chronic bladder inflammation or 
spinal cord injury, the synthesis of BDNF in  
the urinary bladder is markedly increased  
[25]. Frias’s study further indicated that BDNF 
seems to protect the central nervous system 
against detrimental peripheral changes [26].

BDNF signaling pathway and regulation

Neurotrophins are soluble polypeptides that 
play important roles in neural growth, survival 
and differentiation in the central nervous sys-
tem [27]. In addition to BDNF, neurotrophins 
include nerve growth factor (NGF), neurotroph-
in-3 (NT-3), and neurotrophin-4/5 (NT-4/5) [28]. 
BDNF was first isolated from the pig brain in 
1982 [29] and it is the second most prevalent 
neurotrophin in the body. BDNF is involved in 
several neural regulatory processes, such as 
the neural regulation of bladder storage and 
emptying, depression, and pregnancy. BDNF 
activates several important pathways via tropo-
myosin receptor kinase B (TrkB) to mediate 
neurite outgrowth, an essential process in neu-
rogenic regeneration. Evidence for the impor-
tance of this signaling pathway is based on  
a study with heterozygous TrkB null mice, in 
which only 50% of motor-neurons regenerated 
after nerve transection [30].

Whether neurotrophins are activated depends 
on their interactions with the tropomyosin 
receptor kinases (Trks) and the transmem-
brane receptor p75 neurotrophin receptor 
(p75NTR). NGF preferentially activates neuro-

Table 1. The principles of peripheral nerve 
regeneration
Targets of inhibition Targets of promotion
Nerve injury Neurogenesis
Ischemia Vascularization
Inflammation Immunomodulation
Oxidative stress Redox effects
Apoptosis Cell proliferation, cell survival
Fibrosis Anti-fibrosis

ited to mediating depression [9], activating 
platelets [10], and reducing atrial fibrillation 
[11]. As a neurotrophin, it has been reported to 
promote the regeneration of both sensory and 
motor neurons [12, 13]. Dysregulation of BDNF 
can contribute to lower urinary tract dysfunc-
tion, including urinary incontinence (UI), over- 
active bladder (OAB) and benign prostatic 
hyperplasia (BPH). Growth factor therapy is a 
minimally invasive treatment strategy for neu-
romuscular injury.

BDNF’s role as a targeted neuronal survival  
factor and its associated effects on neuro- 
plasticity has been well established [14, 15]. 
Recently, BDNF has been used as a candidate 
for the treatment of urinary tract dysfunction 
with encouraging results in neuromuscular tis-
sue regeneration and significant improvement 
in urethral sphincter function in animal studies 
[16, 17]. This review briefly discusses the BDNF 
pathway and its functions in the lower urinary 
tract system and reviews the application of 
BDNF and the theoretical basis of its use in the 
management of UI, OAB and BPH.

BDNF pathway and its functions in the lower 
urinary tract system

Distribution of BDNF and its receptors

Brain-derived neurotrophic factor (BDNF) is 
synthesized by motoneurons and Schwann 
cells in peripheral nerves. Signaling molecules 
downstream of BDNF are found in the spinal 
cord, dorsal root ganglion, pudendal nerve, 
lower urinary tract, and pelvic muscles. BDNF is 
synthesized by motoneurons, a subset of the 
dorsal root ganglion neurons, and Schwann 
cells. BDNF mRNA is found at low levels in the 
sciatic nerve, and its expression increased in 
all neural cell types after nerve transection or 
injury [18]. BDNF, NGF and associated receptor 



BDNF in lower urinary tract dysfunction

561 Am J Clin Exp Urol 2023;11(6):559-577

Figure 1. Pathway and regulation of BDNF. A. Schematic diagram of the effects of BDNF. BDNF binds to the ex-
tracellular domain of the Trk-B receptor, activating an intracellular signaling cascade that includes the phosphati-
dylinositol 3-kinase (PI3K)-Akt pathway, Ras-mitogen-activated protein kinase (MAPK) pathway, Janus kinase/signal 
transducer (JAK/STAT) signaling pathway and the phospholipase Cγ (PLCγ)-Ca2+ pathway. The effects of BDNF in-
cluded neruo-genesis, vascularization, immune-regulation, redox effects, anti-apoptosis, and anti-fibrosis. B. Central 
mechanisms involved in neurotrophin and urinary tract regulation. Upon retrograde transport of neurotrophin along 
afferent fibers from the urinary tract, dorsal root ganglion neurons increase synthesis of excitatory neuromediators, 
such as BDNF and voltage-gated ion channels, and these neuromodulators transported anterogradely to primary 
afferent terminals in the spinal cord.

trophic tyrosine receptor kinase-1 (NTRK1), 
while BDNF and NT4/5 activate NTRK2, pre- 
viously known as TrkB. NT3 signals through 
NTRK3 via NTRK3. Binding of neurotrophins 
and the phosphorylation of receptors activate 
three main intracellular signaling pathways: the 
Ras-mitogen-activated protein kinase (MAPK) 

pathway, phosphatidylinositol 3-kinase (PI3K)-
Akt pathway, and phospholipase Cγ (PLCγ)-Ca2+ 
pathway [31, 32]. Activation of the Ras-MAPK 
pathway promotes cell survival, differentiation 
and synaptic plasticity through extracellular 
signal-regulated kinase and MAPK/ERK kinase 
[31] (Figure 1A).



BDNF in lower urinary tract dysfunction

562 Am J Clin Exp Urol 2023;11(6):559-577

Lin et al. reported that STAT3/STAT1 is exten-
sively phosphorylated by BDNF in Schwann 
cells. JAK/STAT pathway activation was found 
to show an initial peak immediately after BDNF 
treatment and then a second higher peak at 
24-48 hours. This indirect mechanism of BDNF-
mediated enhancement of nerve regeneration 
involving activation of the JAK/STAT pathway in 
Schwann cells, rather than directly in neurons, 
represents a novel BDNF signaling pathway 
[33].

The role of neurotrophins in the central nervous 
system was established by many researches, 
and their importance as key regulatory proteins 
in peripheral tissues had become a recent 
hotspot. From a clinical standpoint, BDNF was 
involved in the pathophysiology of various brain 
diseases through diverse intracellular path-
ways. Numakawa et al. implied that BDNF was 
relates to neuronal protection, synaptic func-
tion, and morphological changes [34]. As one  
of the key factors in the brain, BDNF may con-
tribute to different neuronal responses and 
affect synaptic plasticity [23].

The mechanism by which BDNF expression is 
regulated in the nervous system is complicat-
ed, and both physiological and pathological 
processes are involved. BDNF expression is 
regulated by glucocorticoids, which implies that 
there is a potential connection between the 
hypothalamic-pituitary-adrenal and hypotha-
lamic-pituitary-gonadal axes. Chow et al. indi-
cated that estradiol is a central regulator of 
BDNF expression in reproductive tract. Neural 
excitation, substance abuse and environmen-
tal contaminants also act as potential modula-
tors of BDNF gene expression through receptor 
response elements in different BDNF promoter 
regions [27].

Although no data have been reported on the 
effects of exogenous neurotrophin administra-
tion on human lower urinary tract function, 
experimental evidence has shown that neuro-
trophins such as NGF modulate micturition 
pathways when applied to the bladder or spinal 
cord [35]. Infusion of neurotrophin into the 
bladder wall increases the expression of excit-
atory neurotransmitters in the lumbosacral spi-
nal cord (Figure 1B). This process involves the 
uptake of peripheral neurotrophins and the ret-
rograde transport to dorsal root ganglion and 

their spinal projections, which leads to synaptic 
plasticity in the spinal cord [35].

Frias found that in a model of neurogenic de- 
trusor overactivity (NDO) followed by spinal 
shock, spinal BDNF expression increased in a 
time-dependent manner together with NDO 
emergence. It has also been suggested that 
BDNF may regulate bladder function after spi-
nal cord injury via inhibition of neuronal sprout-
ing [36].

A relationship between neurotrophic factors 
and preeclampsia has been suggested by sev-
eral studies showing that neurotrophic factors 
are involved in the angiogenesis in the placen- 
ta [37, 38]. Vandita examined BDNF levels in 
both maternal and fetal cord blood in women 
with preeclampsia, and implied a connection 
between BDNF and preeclampsia [39].

Effect of BDNF on peripheral nerve regenera-
tion

Brain-derived neurotrophic factor has been sh- 
own to exert a protective effect on peripheral 
nerves and neuromuscular junctions. Usually 
BDNF mRNA is expressed at low levels in 
peripheral nerves, while BDNF is upregulated in 
neurons, Schwann cells, and muscles to aid in 
the survival and repair of injured neurons. 
Nerve injury upregulates BDNF expression, this 
effect persists for weeks, and can be attribut- 
ed to both neuronal and nonneuronal sources. 
Brain-derived neurotrophic factor is necessary 
for pudendal nerve regeneration and functional 
recovery. In facial nerve injury, upregulation of 
BDNF is correlated with improved functional 
outcomes [40, 41]. In a pudendal nerve crush 
model, peripherally administered TrkB was fo- 
und to bind free BDNF and inhibit the regenera-
tive response [26, 42].

Brain-derived neurotrophic factor also exerts 
neuroprotective affects by acting on the corti-
cospinal motor system. BDNF has a protective 
effect and can promote the growth of axons in 
the corticospinal tract and neurons. It was 
found that transplanting BDNF-secreting fibro-
blasts into aspiration lesions increases the sur-
vival of motor neurons in the cortical area but 
does not promote the growth and regeneration 
of axons [43].

Brain-derived neurotrophic factor can exert pro-
tective effects over a long distance, as demon-
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strated by studies involving the delivery of 
BDNF-secreting cells to injury site. One study 
found that in macaques, following implantation 
of BDNF- and NT-3-secreting cells into the 
lesion in the C7 level spinal cord, BDNF had 
neuroprotective effects on pyramidal neurons 
approximately 10 cm from the bodies of the 
BDNF-secreting cells [44]. Recent studies in 
rodent models determined that BDNF influenc-
es the survival of these neurons [44]. In addi-
tion to protecting neurons, BDNF promotes the 
sprouting [45] and increases the remyelination 
[46] of injured axons in the spinal cord. Several 
groups have found that BDNF upregulates 
growth related genes such as T-alpha-1-tubulin 
and GAP-43 in neurons, while upregulation of 
these related genes was suggested to promote 
regeneration [47, 48]. It is also thought that 
TrkB receptor-mediated activation of TrkB 
increases the level of cyclic AMP downstream 
of ERK pathway activation, which may partially 
contribute to the growth-promoting effects of 
conditioning lesions in the periphery [49]. 
Therefore, BDNF may act as a general inducer 
of sprouting and regeneration [50].

Overview of urinary incontinence

Incidence

A population-based survey of lower urinary 
tract symptoms (LUTS), including UI and OAB, in 
five countries showed that 64.3% of 19,165 
individuals reported experiencing LUTS. The 
overall prevalence of OAB was 11.8% and 
increased with age. OAB was more prevalent 
than UI combined with LUTS (9.4%) [51].

Urinary incontinence is a common symptom 
among different populations, and approxima- 
tely 50% of adult women may have UI [52]. The 
reported incidence varies among studies and 
with patient age. UI may affect about 20% of all 
women and up to 77% of elderly women [53, 
54]. Recent epidemiologic studies suggest an 
overall prevalence of 17% in women older than 
20 years and 38% in women older than 60 
years [55].

The different types of urinary incontinence 
include stress incontinence, urge incontinen- 
ce, overflow incontinence, functional inconti-
nence and mixed incontinence. The most com-
mon type of urinary incontinence is stress uri-
nary incontinence (SUI) [54]. SUI is defined as 

involuntary urinary leakage on effort or exer-
tion. Sneezing or coughing can also cause SUI. 
Recent reports indicate that 37.5% of young 
women between 30 to 50 years in primary care 
settings report SUI [56]. UI has a reported prev-
alence of 11% in men aged around 60 and 31% 
in men over 85 years old. UI affects up to 32% 
of men with LUTS [57]. The treatment of pros-
tate disease has been associated with an 
increased risk of UI in men. Long term UI rates 
following operation are estimated to be bet- 
ween 8-16% [58].

Data from a previous study indicated that  
the range of UI prevalence in adult women is 
quite broad. The prevalence rates vary between 
countries, and cultural differences in the per-
ception of urinary incontinence and willingness 
to report UI would also affect the acute preva-
lence. Moreover, methodological differences, 
including the wording of questionnaire items 
and the method of administration would affect 
the outcomes [51, 59, 60]. Several review stud-
ies have also emphasized that differences in 
case definitions may also largely affect the 
reported incidence of UI [61].

Overactive bladder, which is defined as urinary 
urgency usually accompanied by frequency and 
nocturia, may coexist with SUI [62]. The preva-
lence of OAB is 16.5% in the U.S., but the real 
number of patients with OAB is probably much 
larger [63].

Urethral sphincter insufficiency is the main 
cause of UI following surgery for BPH [64]. BPH 
is arguably the most common benign disease 
in humans, and the prevalence of this condi- 
tion is increasing as the population ages. In the 
U.S., there are 38.1 million men over 30 years 
old with BPH pathology, with 12.9 million need-
ing medical services [65]. An epidemiologic 
study revealed that the prevalence rate of BPH/
LUTS ranges from 50% to 75% among men over 
50 years old and is 80% among men over 70 
years old. The overall incidence rates of BPH 
ranges from 8.5 to 41 cases/1000 persons 
[66].

Etiology and mechanism

The mechanism of UI involves structural and 
functional components [4]. The pelvic floor 
muscles and connective tissues are the main 
structural support for maintaining the physio-
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logical position of pelvic organs including the 
urethra. The pelvic floor is a complex anatomi-
cal structure with muscles and fascial compo-
nents regulated by neural signals that consist 
of the endopelvic fascia, ligaments, perineal 
membrane, the urogenital diaphragm, levator 
ani muscles, and superficial perineal muscles 
[67].

Structural changes due to pregnancy and deliv-
ery result in UI. During vaginal childbirth, the 
pelvic floor, ligaments and pudendal nerve, 
which passes between the sacrospinous and 
sacrotuberous ligaments, can be directly com-
pressed [68]. Vaginal childbirth or any other 
injury to the structural and neuromuscular com-
ponents of the pelvic floor, such as the and 
pudendal nerve (PN), can directly result in UI. 
Childbirth was recognized as a risk factor for 
the SUI development. It was reported that vagi-
nal delivery is associated with a threefold 
greater risk of developing SUI than cesarean 
section [69, 70].

Incontinence after prostate treatment is a  
common symptom for men. It can result from 
radical prostatectomy, prostate radiation, and 
surgery for benign prostatic hyperplasia. All of 
these factors may increase the risk for UI [71].

The pathogenesis of OAB involves the urotheli-
um, suburothelium, urethra, and central ner-
vous system [72]. All these structures contrib-
ute to bladder afferent signaling and affect 
different functions of the bladder [72]. En- 
docrine influences have been suggested to play 
an important role in BPH. Prostatic inflamma-
tion is common in adults and is associated with 
the progression of BPH [73]. Several phenom-
ena involving androgens, estrogens, insulin, 
inflammation, proliferative reawakening, stem 
cells and telomerase have been hypothesized 
to be involved in the pathogenesis of BPH [74]. 
Although there are many potential mecha-
nisms, the pathogenesis of OAB and BPH is not 
yet fully understood.

The relationship between neurotrophins and 
the mechanism of various forms of urinary tract 
dysfunction including UI, OAB and BPH has not 
yet been clarified. The neural and pelvic floor 
muscle would have a recovery in most postpar-
tum women [75]. After pudendal nerve injury 
caused by delivery, persistently prolonged pu- 
dendal motor nerve terminal repair was ob- 

served after several years, and partial reinner-
vation was more obvious in women with SUI.

Modulation and coordination of the functional 
components of the urinary tract by the central 
and peripheral nervous systems are directly 
affected in UI. Dysfunction of neural control 
may underpin a wide range of clinical urinary 
tract problems [76]. Neural dysfunction alters 
reflex activity and influences sensation on the 
afferent side, while the motor activity of lower 
urinary tract components can be increased or 
reduced or become uncoordinated on the effer-
ent side [77]. Although no consensus has been 
reached about the fundamental causes of UI, 
existing data suggest that the pathophysiologi-
cal mechanisms include peripheral nerve dys-
function and weakness of the urethral sphinc-
ter and pelvic floor muscles.

Bladder outlet obstruction due to BPH leads to 
increased urethral resistance, and then induc-
es mechanical stretching of smooth muscle, 
subsequently increasing neurotrophic factor 
levels [78]. The increase in neurotrophic factor 
levels affects bladder afferent neurons, in- 
creases excitability and the spinal reflex, and 
reflexively reduces the threshold for a sensa-
tion of urgency to mediate detrusor hyperactiv-
ity [79].

Neurotrophins maintain innervation and neural 
function as well as stimulate axonal regenera-
tion and neuronal growth [80]. Although the 
mechanism of LUTS is complex, studies on the 
changes in neurotrophin levels have provided 
some clues. Several studies have revealed th- 
at the expression of neurotrophins such as 
BDNF and NGF changes after external urethral 
sphincter (EUS) injury. The levels of BDNF, NT-4, 
and NGF expression precisely increase in the 
EUS after pudendal nerve injury to promote 
neural regeneration [17, 81].

Treatment strategies and limitations

Since the pathogenesis of LUTS, such as UI and 
OAB, is not fully understood, specific medicines 
are lacking, and many nonsurgical and surgical 
treatments have been developed to treat LUTS 
of different severities.

Pelvic floor muscle exercises and behavioral 
modifications are neuromuscular rehabilitative 
therapies, and they remain first-line treatments 
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for SUI. Pharmaceuticals have also been used 
to treat SUI for many years, but classic alpha-
agonists have not been highly successful [82]. 
However, several studies have shown that phar-
maceutical neuromodulation can improve ure-
thral function and alleviate incontinence in SUI 
patients. The serotonergic (5HT) and noradren-
ergic (NE) reuptake inhibitor duloxetine was 
found to increase bladder capacity and EMG 
activity in an animal model, and a phase 3 
study provided further evidence for the efficacy 
and safety for the SUI treatment [83, 84].

As a minimally invasive therapy, bulking agent 
injection has been tested for its efficacy in UI 
treatment. Various agents, such as bovine col-
lagen [85] and carbon-coated zirconium beads 
[86], have achieved short-term success. Au- 
tologous ear chondrocytes were used as bulk-
ing agent to treat UI, and the effect was main-
tained for 3 to 12 months [87]. However, the 
long-term complications of these treatments 
include chronic inflammatory and foreign body 
responses. Erosion of the urethra and bladder, 
particle migration or even obstruction of the 
urinary tract were also reported [88]. These 
complications of injectable agents are not com-
mon, but the beneficial effects are not long 
lasting.

Surgical is currently regarded as the gold stan-
dard therapy for SUI and BPH currently. Classic 
surgical techniques such as Burch colposus-
pension have evolved into synthetic midurethal 
sling procedures, which are less invasive [89]. 
Midurethral slings may be placed in a retropu-
bic fashion or in a transobturator fashion [90]. 
Novel minimally invasive procedures involving a 
single vaginal incision, such as tissue fixation 
and TVT Secure have become common, but 
their long-term effects remain to be deter-
mined. Transurethral resection of the prostate 
has been the mainstay of surgical treatment for 
BPH since the early 1900s. Recent modified 
operations include photovaporization of the 
prostate and holmium laser enucleation of the 
prostate [91].

Regenerative strategy

Regenerative repair via stem cell therapy has 
become a novel treatment strategy for LUTS 
including UI [92]. In a childbirth injury model, 
mesenchymal stem cells can improve neurore-
generation via their secretions and accelerate 

the recovery from muscle injury [16]. Stem cell 
treatments can functionally regenerate the  
urethral sphincter in patients with suspected 
intrinsic sphincter deficiency [93]. However, as 
a result of heterogeneity of preclinical and clini-
cal trials, the best approach to cell-based ther-
apy in SUI is still under investigation [94].

Lee et al. tested the effects of periurethral 
muscle-derived stem cell treatment on leak 
point pressure in a rat model of SUI and fo- 
und that leak point pressure was significantly 
improved [95]. Several clinical studies have 
indicated that bone marrow-derived stem cells 
and adipose-derived stem cells hold promise 
for improving cure rates with minimal risk. 
Although different cellular therapies have dif-
ferences in safety and efficacy, autologous 
adult stem cells have the potential to treat UI 
[96]. Kubota et al. reported that stem cell fac-
tors in the urinary bladder may act as possible 
mediators for controlling bladder function by 
binding to c-kit in an animal model [97]. Many 
questions regarding the mechanism of secre-
tome from stem cells in regenerative urology 
require further investigation [2].

Current applications of BDNF

Controlled release of growth factors may be a 
promising approach for the treatment of low- 
er urinary tract dysfunction, including urinary 
incontinence. Our previous studies have shown 
that the controlled release of various growth 
factors can stimulate neurovascular and mus-
cle tissue regeneration and repair without ca- 
using excessive inflammation or tissue damage 
[98-104]. This approach may potentially lead to 
better outcomes for patients with urinary incon-
tinence and reduce the need for repeated treat-
ments. Controlled release of BDNF specifically 
promotes innervation and skeletal muscle re- 
pair in the treatment of lower urinary tract 
dysfunction.

Controlled or sustained release of BDNF

Persistent release of BDNF is important for it to 
exert a long-lasting protective effect, so many 
studies have used microbeads or nanoparti- 
cles to deliver BDNF. Shi et al. packaged BDNF 
in poly(D,L-lactide-co-glycolide) (PLGA) micro-
spheres to treat peripheral nerve defects. It 
was found that BDNF/PLGA sustained-release 
microspheres decreased the nerve conduction 
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Figure 2. Sustained release of BDNF in vivo. A. BDNF can be carried by microbeads. PLGA has been widely used in 
crosslinking with BDNF to produce microbeads. B. Electrospun nanofibrous containing BDNF can be packaged in 
nanoparticles. Nanoparticles containing BDNF can achieve sustained release in target regions. C. BDNF gene can 
be transfected and injected into the target tissues to induce BDNF expression.

speed and postponed neuralgic amyotrophy 
[105] (Figure 2).

In a study by Razavi et al., the inner surface of 
an electrospun PLGA nanofibrous conduit was 
functionalized with laminin containing BDNF 
and gold nanoparticles in chitosan nanoparti-
cles. These nanoparticles showed promising 
effects on peripheral nerve regeneration [106].

Kashyap et al. researched on the impact of 
BDNF in the rat bladder following bladder wall 
transfection. Genomic changes in neurons of 
the bladder were induced by overexpression of 
BDNF, and a mechanistic link between incre- 
ased BDNF levels in urine and dysfunctional 
voiding was observed in an OAB model and  
OAB patients [107]. In Albukhaty et al. harvest-
ed poly-l-lysine-coated superparamagnetic iron 
oxide nanoparticles (SPIONs-PLL) and used 
them to deliver BDNF to neural stem cells 
(NSCs). It was suggested this strategy was an 
alternative way to obtain BDNF-NSCs by trans-
fection, and could be widely used in regenera-
tive therapy [108].

BDNF in the treatment of urinary incontinence

Several drugs and electrical stimulation have 
been proven to affect the expression of BDNF. 
Jun et al. implied that caffeine can improve 
bladder function in diabetic rats, and it was 
found that the expression levels of BDNF and 
other factors in the bladder tissues of caffeine-
treated rats with diabetes mellitus were incre- 
ased [109]. In a clinical study, trigonal injection 
of botulinum toxin A seemed to be an effective 
treatment for refractory interstitial cystitis/
bladder pain syndrome (IC/BPS). A transient 
but obvious reduction in urinary NGF and BDNF 
levels was observed in the patients [110].

Electrical stimulation (ES) has been used to 
restore function and modulate nervous system 
responses to stimuli. Furthermore, regenera-
tion of injured peripheral or central nerves can 
be accelerated by regenerative electrical sti- 
mulation. ES was implied to increase BDNF 
expression in injured neurons, activate Sch- 
wann cells and promote neural regeneration 
after nerve injury. In a study by Deng et al., daily 
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Table 2. Main outcomes of recent research on the effect of BDNF on nerve regeneration
Authors Model (s) Usage of BDNF Main outcomes
JG Boyd, 2002 Rats [134] Different doses of BDNF Low doses of BDNF promoted axonal regeneration of motoneurons; high 

doses inhibited motor axon regeneration

E Vögelin, 2006 Rats [133] Calcium alginate  
prolonged-release capsules

BDNF stimulated faster peripheral nerve regeneration and reduced 
neuropathic pain

J Brock, 2010 Rhesus monkeys 
and rats [44]

Lentiviral BDNF injections BDNF mediated the remote protection of corticospinal neurons in the brain

GT Lin, 2010 Rats [76] Delivery of BDNF to the 
major pelvic ganglia

BDNF promoted major pelvic ganglia neurite growth

BC Gill, 2013 Rats [126] Continuous infusion of 
BDNF

BDNF accelerated continence recovery after childbirth injury by promoting 
EUS recovery

J Zheng, 2016 Mice [131] BDNF injection BDNF increased neuronal intrinsic growth capacity and promoted  
behavioral recovery

MP Kashyap, 2018 Rats [107] Bladder wall transfection BDNF overexpression induced bladder overactivity

S Razavi, 2021 Rats [106] BDNF nanoparticles BDNF led to axonal regeneration and functional recovery after 12 weeks

bilateral ES of the pudendal nerve was per-
formed, and it was found to accelerate recovery 
from SUI. This implies that daily ES improves 
urethral function better than less frequent ES 
[111].

Balog et al. showed that BDNF expression was 
significantly increased after electrical stimula-
tion compared with after injury alone [112]. 
Transgenic mouse experiments have shown 
that BDNF, NT4 and TrkB expression is impor-
tant for ES-induced regeneration [113, 114]. 
BDNF binds to TrkB receptors on the growth 
cones of neurons or adjacent neurons in a 
paracrine or autocrine fashion to promote 
regeneration [115]. Cultured Schwann cells 
under ES lead to a significant increase in NGF, 
BDNF, and GDNF levels [114]. Recent studies 
on the effect of BDNF on nerve regeneration 
are summarized in Table 2.

Role of BDNF in UI diagnosis and follow-up

The relationships of UI with clinical and urinary 
markers such as BDNF have not yet been clari-
fied. Several studies have revealed that symp-
toms of bladder dysfunction may be associated 
with changes in urinary marker levels. Soriano 
et al. studied women with urgency and without 
incontinence, and univariate analysis revealed 
that urgency was correlated with elevated lev-
els of NGF and BDNF; however, these relation-
ships did not persist after controlling for con-
founding factors [116]. Antunes-Lopes et al. 
tested the urinary levels of these growth fac-
tors in women with SUI after a midurethral sling 
procedure and found that the mean levels of 
BDNF and NGF had a significant increase in 

OAB-wet patients. This suggests that increased 
bladder outlet resistance may play a crucial 
role in the rise of urinary neurotrophin levels 
[117].

The urinary BDNF/Cr ratio seems to be a more 
useful diagnostic marker for bladder dysfunc-
tion, such as OAB, than the BDNF level. Kadriye 
suggested that the urine NGF/Cr and BDNF/Cr 
ratios would be markers for OAB diagnosis in 
children. The BDNF/Cr ratio could also be used 
in monitoring the treatment response [118]. 
However, Colic’s study did not demonstrate that 
urinary BDNF can be used as a biomarker for 
monitoring OAB in children [119]. Tsiapakidou 
et al. reviewed studies on adult women with 
OAB and found that the BDNF/Cr ratio could be 
used in the assessment of female OAB patients 
[120]. Further study showed that urinary BDNF/
Cr levels are increased in OAB patients and are 
significantly correlated with symptom severity. 
BDNF levels have better sensitivity than NGF 
levels in detecting OAB in subjects without 
other LUTS. The results of a recent study sug-
gested a potential role for BDNF as an objective 
biomarker for OAB diagnosis, and further study 
is required to identify the relationships of UI 
with clinical and urinary markers such as BDNF 
[121].

Wang’s study revealed that BPH is associated 
with increased BDNF levels in urine, and uri-
nary BDNF levels are further elevated by detru-
sor overactivity. It was suggested that the uri-
nary BDNF level can be used to evaluate the 
severity of BPH. BDNF was also implied to be a 
biomarker for the diagnosis of detrusor overac-
tivity with BPH [79]. Bronzetti et al. observed 
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high expression of BDNF and TrkB in prostate 
cancer and BPH. This suggests a possible pre-
dictive role for BDNF and TrkB in the diagnosis 
of prostate cancer [122].

BDNF in urinary function regulation

The regulatory function of BDNF in UI is com-
plex since it is associated with both the cen- 
tral and peripheral nervous systems. BDNF 
released into the spinal cord was suggested to 
control central synaptic plasticity. Potentiation 
of postsynaptic N-methyl-D-asparate (NMDA) 
receptors in the CNS might be the possible 
mechanism [123]. Intravenous injection of re- 
combinant TrkB-Ig2 domain, which was de- 
signed to neutralize BDNF but not NGF, reduces 
the frequency of reflex contractions following 
treatment with cyclophosphamide [124]. Since 
TrkB-Ig2 is unlikely to pass through the blood-
brain barrier, peripheral uptake of BDNF is sug-

gested to be involved in the regulation of mictu-
rition pathway plasticity following cyclophos- 
phamide-induced inflammation [35].

Huang et al. used the translocator protein ago-
nist Ro5-4864 to alleviate mechanical allodyn-
ia and bladder dysfunction in a cyclophospha-
mide model. The results suggested that ne- 
uroinflammation could be reduced by inhibiting 
the elevation of BDNF levels and consequent 
activation of astrocytes and microglia [125].

Childbirth injury and other structural changes 
affect BDNF expression. Gill et al. showed that 
BDNF can accelerate continence recovery after 
childbirth injury by promoting EUS recovery 
[126] (Figure 3). Singh et al. revealed the 
effects of BDNF on the internal anal sphincter 
(IAS) in addition to the urethral sphincter. Aging 
can result in rectoanal incontinence caused by 
IAS dysfunction, which is characterized by an 

Figure 3. Role of BDNF in urinary function regulation. BDNF has promising effects on all types of neural structures 
such as peripheral nerves and neuromuscular junctions. The regeneration of these neural structures helps to pro-
mote functional regeneration of the bladder, sphincter and pelvic muscles.
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increase in nonadrenergic noncholinergic relax-
ation and a decrease in IAS tone and contractil-
ity [127]. As a growth factor with widespread 
signaling effects, BDNF may not selectively 
affect the urinary system, so further research 
on its safety is needed to support its clinical 
use.

Role of BDNF in peripheral nerve regeneration

Neurotrophins have promising effects on pe- 
ripheral nerve regeneration, and several re- 
searchers have tested the regenerative capac-
ity of BDNF and other factors in different nerve 
injury models. Compared to other growth fac-
tors, such as NGF, IGF1, FGF2, and VEGF, BDNF 
seems to have greater potential in nerve regen-
eration. Su tested the biological effects of 
BDNF in a rat model of sciatic nerve transec-
tion with a 10-mm gap and demonstrated that 
BDNF composite conduits remain bioactive for 
three months and can promote the neural 
regeneration [128]. Lin’s research indicated 
that BDNF can promote neurite growth in the 
major pelvic ganglia (MPG) in a rat model. The 
ideal dose of BDNF for promoting MPG neurite 
growth was between 25 and 50 ng/mL [129]. 
The combination or codelivery of neurotrophins 
such as BDNF with other particles represents a 
novel strategy for repairing peripheral nerves 
after injury. Maliheh prepared gold nanoparti-
cle (AuNP)- and BDNF-encapsulated chitosan in 
the laminin-coated nanofiber of a poly-lactide-
glycolide conduit and contained adipose-de- 
rived stem cells suspended in alginate. This 
method synergistically facilitated nerve regen-
eration [130].

Zheng et al. tested the expression of several 
genes related to axonal regeneration and func-
tion in a sciatic nerve injury model to deter- 
mine the potential mechanisms of nerve repair. 
BDNF was found to promote axonal regrowth by 
increasing neural intrinsic growth capacity and 
protection against atrophy of the neural distal 
portion. BDNF was suggested to promote be- 
havioral recovery after sciatic nerve crush inju-
ry [131]. BDNF has been proven to have an 
influence on cavernous nerve recovery after 
injury and is regarded as a novel target for  
modulating cavernous nerve function [132]. 
Vögelin et al. suggested that BDNF was able to 
promote the speed of peripheral nerve regen-
eration while reducing neuropathic pain [133]. 

The effect of BDNF has been proven to be dose 
dependent. Low doses of BDNF promote axo-
nal regeneration of motoneurons, while high 
doses of BDNF significantly inhibit motor axonal 
regeneration in a rat model [134]. Yuan’s study 
focused on concentrated conditioned media 
with MSC secretome and found BDNF is one of 
the key factors for the acceleration of recovery 
from nerve and muscle injury [16].

Diffusible molecules, such as IGF, VEGF and 
FGF, are involved in regulating the development 
and regeneration of the peripheral nervous sys-
tem. IGF-1 has potent trophic effects on motor 
and sensory neurons and can promote neuro-
nal development and regeneration. On the 
other hand, reduced IGF-1 signaling causes 
microcephaly and mental impairment [135]. 
Furthermore, IGF-1 plays a role in Schwann cell 
survival, maturation, and myelination in vitro, 
and it also exerts beneficial effects in patients 
with traumatic brain injury by promoting the 
recovery of neurons. However, the clinical ef- 
fects of IGF-1 in amyotrophic lateral sclerosis 
patients are contradictory [136]. Several stuies 
revealed that IGF-1 has a therapeutic effect on 
SUI in rats [137, 138]. However, high doses of 
IGF-1 increase the risk of benign adrenal and 
epithelial neoplasms, as well as breast neo-
plasms in rodents [139].

Nishida et al. examined the relationship bet- 
ween peripheral nerve regeneration and angio-
genesis in the early stage after nerve transec-
tion. Research on a mouse model found that 
immediate VEGF signaling responses to nerve 
injury plays an important role in regional angio-
genesis, which might trigger the regeneration 
of nerve fibers [140]. In a rat model, it was 
found that BDNF combined with VEGF could 
activate neural regeneration through promoting 
neurite sprouting from the MPG [141].

Both in vitro and in vivo studies have shown 
that FGF-2 can promote neuronal survival and 
neurite outgrowth [142]. FGF-2 mediates the 
recovery of sensory functions at an early stage 
and stimulates the long-distance myelination of 
axons, whereas motor recovery seems to be 
inhibited. These results may contribute to the 
development of novel strategies for peripheral 
nerve regeneration [143].

Exogenous grafts that express and secrete 
NGF show increased nociceptive axon sprout-
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Table 3. Comparison of the effect of BDNF with that of other growth factors in the treatment of pe-
ripheral nerve regeneration
GF Receptor Biological effect Applications Limitations
BDNF Trk-B Exerts protective effects on almost all 

types of neurons and axons; regulates 
inflammation and pain

Nerve regeneration and UI recovery More clinical data are 
required

NGF Trk-A Regulates the survival and function of 
postganglionic sympathetic neurons and 
small-diameter primary afferents [50]

Induction of axonal sprouting onto 
sensory neurons

Dose limitation in clinical 
study

IGF IGF-R Has a potent trophic effect on motor and 
sensory neurons and in neuronal devel-
opment and regeneration [137]

Beneficial effects in patients with 
traumatic brain injury

Increased risk of benign 
and malignant neoplasms

VEGF VEGF-R Induces angiogenesis to promote nerve 
regeneration at early stages [140]

Induction of angiogenesis, which 
may promote the regeneration of 
nerve fibers in mice

Indirect nerve regeneration

FGF FGF-R Promotes neuronal survival and neurite 
outgrowth in vitro and in vivo [148]

Promotion of sensory recovery and 
elevation of the myelinated axon 
grade in animals

Motor recovery seems to be 
inhibited

Notes: GF-growth factor.

ing [50]. It was also found that exogenous NGF 
can increase BDNF levels in sensory neurons 
[144]. Kemp et al. showed that NGF promotes 
peripheral nerve repair, showing a bell-shaped 
dose-response curve, and that high-dose NGF 
inhibits nerve regeneration [145]. Clinical trials 
testing recombinant human NGF (rhNGF) have 
shown that sensory function improvements 
according to physical examinations and aver-
age daily pain levels. However, the painful side 
effects experienced by patients in these stud-
ies revealed the dose limit of rhNGF [146].

Compared with other neurotrophins, such as 
NGF and NT-4/5, BDNF is more abundant and 
more widely distributed in the central nervous 
system. BDNF has shown neuroprotective and 
regenerative effects on a variety of neuronal 
types after injury. It is found mainly in small to 
medium sized neurons and has been shown to 
promote the regeneration of both sensory and 
motor neurons. There is emerging evidence 
that BDNF plays crucial roles in the inflamma-
tory process and pain regulation [147]. BDNF is 
compared with other growth factors in Table 3.

Conclusion

In addition to playing central roles in neural 
development and cell survival, BDNF appears 
essential for the function of the lower urinary 
tract. Recent studies have suggested that 
BDNF can facilitate external urethral sphincter 
reinnervation and participate in bladder con-
traction regulation. It was also revealed that 
BDNF can be used as a clinical diagnostic tool 

for bladder dysfunction, and BDNF has more 
promising effects on peripheral nerve regener-
ation than other factors. Modulating BDNF 
could be a new strategy for the treatment of  
UI and other forms of lower urinary tract 
dysfunction.

Future directions

Urinary incontinence is a very common condi-
tion, and currently available treatment options 
mainly involve surgery. Several animal studies 
have shown that BDNF has promising effects 
on the urinary and nervous systems, and there 
is evidence of a positive correlation between 
BDNF expression and improvements in urinary 
functional outcomes. Treatments targeting the 
BDNF pathway and sustained release of BDNF 
may represent novel treatment options for UI. 
Further research on animals larger than rodents 
would help to optimize protocols for the clinical 
study of BDNF. More data on the optimal dos-
age and treatment frequency of BDNF-based 
treatments are needed. Furthermore, growth 
factor therapy may have inadvertent effects  
on other organs or systems, and great care 
needs to be taken when applying BDNF for clini-
cal treatment based on preclinical data. In the 
future, BDNF may play more important roles in 
the diagnosis and treatment of UI and other 
forms of lower urinary tract dysfunction.
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