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Abstract: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPSS) is a debilitating condition characterized by 
prostate inflammation, pain and urinary symptoms. The immune system’s response to self-antigens is a contributing 
factor to CP/CPSS. In this review, we examine the use of experimental autoimmune prostatitis (EAP) in rodents to 
model salient features of autoimmune mediated CP/CPSS. By exploring etiological factors, immunological mecha-
nisms, and emerging therapeutic strategies, our aim is to enhance our understanding of CP/CPSS pathogenesis 
and promote the development of strategies to test innovative interventions using the EAP pre-clinical model.
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Introduction

Prostatitis, or inflammation of the prostate gl- 
and, is a common urological condition in men. 
Prostatitis is responsible for nearly 2 million 
physician visits per year and $84 million in 
associated health care expenses [1]. Prostatitis 
is classified as type I (acute bacterial prostati-
tis); type II (chronic bacterial prostatitis), type  
III (chronic prostatitis/chronic pelvic pain syn-
drome, CP/CPPS), or type IV (asymptomatic 
inflammatory prostatitis) [2]. 

CP/CPPS, the most common prostatitis form,  
is characterized by persistent pelvic and peri-
neal discomfort, and may include difficult and/
or painful urination and ejaculatory pain [3-5]. 
The medical expenses for CP/CPPS are compa-
rable to that of peripheral neuropathy, back 
pain, fibromyalgia, and rheumatoid arthritis [5]. 
Medical expenses associated with CP/CPSS in- 
creases with symptom severity [1]. Many men 
experiencing CP/CPPS also incur additional 
costs through work absenteeism and reduced 
productivity. Although antibiotics, alpha adre-

noreceptor antagonists, biofeedback and die- 
tary modifications are sometimes prescribed 
for CP/CPPS, no therapies are particularly 
effective. 

The onset, progression, severity and duration of 
CP/CPPS are influenced by an array of factors 
[1-3, 5, 6], and new research is needed to 
understand disease etiology and identify effec-
tive therapies. CP/CPPS is more common in 
middle-aged and older men than in younger 
men, and men over age 50 are at the highest 
risk [7]. A variety of potential CP/CPSS mecha-
nisms have been examined, including infection, 
autoimmunity, compromised urothelial integrity 
and function, as well as psychosocial factors 
[3]. 

Autoimmune diseases are characterized by 
immune system activation against self-anti-
gens, resulting in tissue damage and dysfunc-
tion [8]. While CP/CPPS was previously thought 
to be a non-inflammatory disorder, recent stud-
ies have revealed evidence of autoimmune dys-
regulation in this condition [3, 4, 9]. Abundance 

http://www.ajceu.us
https://doi.org/10.62347/OUJJ3710


Trends in EAP and CP/CPPS

53 Am J Clin Exp Urol 2024;12(2):52-63

of autoantibodies against prostatic proteins is 
elevated in sera from many CP/CPSS patients 
[10]. T cells from patients with CP/CPPS exhib-
ited increased reactivity to prostatic antigens 
[4, 11]. Like most autoimmune diseases, more 
than one autoantigen is implicated [8].

One method for studying mechanisms and  
efficacy of pre-clinical treatment strategies for 
autoimmune mediated CP/CPSS is the rodent 
model of experimental autoimmune prostatitis 
(EAP). EAP has been induced in rodents to  
test efficacy of potential therapeutics including 
anti-inflammatory agents, such as non-steroi-
dal anti-inflammatory drugs (NSAIDs) and cor- 
ticosteroids, immunomodulatory agents (such 
as cyclosporine A and mycophenolate mofetil) 
[12, 13], and herbal remedies and natural  
compounds [14].

EAP is initiated by immunizing rodents with 
prostate antigens and adjuvants [3, 10, 15]. 
The EAP phenotype in rodents resembles that 
of human CP/CPPS, and can include pro-inflam-
matory cytokine production, leukocyte infiltra-
tion, T-cell activation, chronic inflammation, 
fibrosis, and glandular atrophy [4, 9]. Factors 
that contribute to inflammation in rodents with 
EAP are summarized in Table 1. EAP in rodents 
is a progressive and chronic condition. His- 
tological inflammation appears 5-10 days  
post-immunization and the timing depends on 
the species/strain of the host animal and the 
immunization strategy [4, 9, 15, 16]. Phy- 
siological phenotypes manifested in EAP 
rodents include pelvic pain, voiding dysfunc-
tion, and sexual dysfunction [3, 12, 15]. Pelvic 
pain appears 5 days post immunization and 
persists for more than 30 days as a chronic 
condition [15]. Histological inflammation is cor-

related with pain in rodents with EAP and both 
intensify over time [4, 15, 17, 18]. 

Experimental models of EAP

Two general approaches are used to induce 
chronic prostatitis in rodents: 1. Immunize 
rodents with extracts from all male rodent 
accessory sex glands, extracts specifically from 
rodent prostate gland, or natural or synthetic 
proteins selectively expressed by the rodent 
prostate to drive autoimmunity against the 
prostate gland. 2. Adoptively transfer activated 
immune cells such as T cells, trained against 
antigens in the prostate, into mice expressing 
those antigens in the prostate [9, 19, 20]. 

Immunization protocols for inducing EAP differ 
among research groups and these differences 
can influence the penetrance, onset, and se 
verity of prostate inflammation. The most nota-
ble difference in EAP protocols is the rodent 
strain and species from which prostate anti-
gens are collected and the strain and species 
into which antigens are introduced, and these 
include rats (Sprague Dawley (SD), Wistar, Co- 
penhagen, Lewis) and mice (C57BL/6, and non-
obese diabetic (NOD)) (summarized in Table 2) 
[20-22].

Some researchers drive EAP using pooled  
male accessory gland extracts (MAG) including 
seminal vesicles, prostate (anterior, dorsolat-
eral, and ventral lobes), bulbourethral glands, 
ampullary glands, urethral glands, and prepu-
tial glands [19, 23-25]. 

The most widely used method to drive EAP in 
rodents is to immunize with prostate extracts 
(PAgs) pooled from the dorsolateral, anterior, 
and ventral prostate lobes of non-syngeneic 

Table 1. Summary of immunological mechanisms in EAP
Contributing factor to EAP Description Reference 
Autoantigens and T Cell Response Self-antigens from the prostate gland are perceived as foreign, triggering an immune 

response. Autoantigens, including prostate-specific antigens such as prostate-specific an-
tigen (PSA) and prostatic acid phosphatase (PAP), are presented to T cells by antigen-pre-
senting cells (APCs) and activate and expand CD4+ T cells, to drive an immune response.

[10, 15, 
74-76]

Inflammatory Mediators and Cytokines Activation of autoantigen-specific T cells leads to production of pro-inflammatory cyto-
kines, such as interleukin-17 (IL-17), interferon (IFN)-gamma (-γ), and tumor necrosis 
factor (TNF)-alpha (-α). These cytokines facilitate recruitment of neutrophils, macro-
phages, and dendritic cells into the prostate gland. Additionally, cytokines promote tissue 
inflammation, amplify immune responses, and contribute to the development of chronic 
inflammation.

[10, 18, 27, 
71, 74]

Autoantibody Production B cell activation in response to autoantigens stimulates autoantibody production, includ-
ing anti-prostate antibodies. Autoantibodies may contribute to tissue damage and inflam-
mation by forming immune complexes, activating complement cascades, and engaging 
Fc receptors on immune cells.

[20, 23, 30, 
77-79]
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rodents [4, 9, 16, 26]. PAg-specific lymphocytes 
have been identified in CP/CPPS patients [18, 
27]. Intravenous PAg immunization induces 
CTL response and subsequent autoimmune 
prostatitis which is confined to the prostate [9]. 
Immunogenic peptides derived from PAP sti- 
mulate CD4+ T lymphocytes [3, 9, 17, 27]. The 
use of PAgs to induce EAP is specifically suited 
to study the adverse impact of prostatitis on 
fertility and mental health [12, 28] (Figure 1). 

Other researchers drive EAP using isolated 
prostatic proteins from non-syngeneic hosts. 
Many autoantigens induce histological inflam-
mation of the rodent prostate; however, only 
p25- and T2 also drive pelvic pain and urinary 
voiding dysfunction [9, 17, 20]. p25, a protein 
selectively expressed in prostate and which 
functions as a major mouse prostatic secretory 
glycoprotein, has been used to induce EAP with 
a phenotype that mimics the clinical presenta-
tion in humans and includes histological pros-
tatitis, pelvic pain, and changes in voiding 
behavior associated with CP/CPPS [9, 17].  
Rats immunized with p25 peptide exhibit uri-
nary dysfunction, increased relative prostate 
weights, and heightened proinflammatory  
cytokines, all subsequently ameliorated by 
p25-specific CD4+ T cells provoking a Th1 
response [17]. Remarkably, the bladder re- 
mains unaffected upon histological examina-
tion, suggesting prostate-specific pathology.

Synthetic prostatic steroid-binding proteins 
(PSBP) have been used to induce EAP and pro-
mote cellular- and humoral-specific autoim-
mune responses [29, 30]. PSBP, a tetrameric 

protein composed of two distinct subunits, 
showcases a unique arrangement - the first 
subunit harbors Cl and C3 polypeptides, while 
the second subunit harbors C2 and C3 poly-
peptides [29]. The transcript encoding the 
PSBP-C1 peptide is selectively expressed in 
ventral prostate and not dorsal prostate, blad-
der or kidney [31]. Leveraging this insight, pep-
tides corresponding to the PSBP C1 subunit 
were synthesized and used to immunize mice. 
PSBP C1 peptides initiate cellular and humoral 
autoimmune responses. PSBP C1 peptide initi-
ates substantial T and B cell responses in NOD 
mice, coinciding with significant lymphomono-
nuclear cell infiltration of the prostate [9, 29, 
30]. Notably, histopathological changes are 
observed by day 8 post-immunization, includ- 
ing the appearance of CD4+ T cells, and abla-
tion of CD4+ T-cells confers resistance of  
PSBP C1 induced prostatitis [30, 32]. The focal 
point of inflammation from PSBP C1 induced 
prostate inflammation is in the ventral lobe, 
aligning with ventral prostate selective expres-
sion of PSBP. Noteworthy is the dominance of 
mast cells among inflammatory cells, acco- 
mpanied by lymphocytes, monocytes/macro-
phages, histiocytes, and neutrophils contribut-
ing to epithelial atrophy [32]. Abundance of 
systemic inflammatory mediators IFN-γ and 
IL-12 is elevated in mice with PSBP induced 
EAP while abundance of IL-10 is reduced. 
PSBP’s tetrameric nature and histopatholo- 
gical differences from human CP/CPPS have 
led to the adoption of immunogenic PSBP pep-
tides. Limitations of PSBP as a driver of EAP 
include peptide cost and inconsistency of anti-
gen presentation [4].

Table 2. Immunogens used to induce EAP in mice

Antigen Mouse Strain Age (wks) Immunization Schedule Antigen Dose per 
Immunization

Success 
Rate* (%) Reference

PE AJ 6-8 30 days: 1 × D0 375 mg 100 [26]
PE C57BL/6J 6-8 30 days: 1 × D0 250 mg 100 [26]
SVS2 C57BL/6J 25 42 days: 3 × D0, D14, D28 200 mg 71.4 [20]
T2 C57BL/6J 6-8 35 days: 3 × D0, D14, D28 9 mg 100 [80]
PE NOD 6 21 days: 2 × D0, D15 1 mg 100 [30]
PSBP NOD 6 21 days: 2 × D0, D15 30 mg 80 [30]
MAG\ NOD(H2g7) 6 10 days: 1 × D0 1 mg 100 [24]
PE SJL/J 6-8 30 days: 1 × D0 1 mg 100 [26]
p25 SWXJ(H-2q.s) 8 63 days: 1 × D0 200 mg 100 [17]
MAG\ NOD(H2g7) 6 21 days: 2 × D0, D15 1 mg 37.5 [24]
\MAG antigen derived from rat. *Percentage of animals that develop histological inflammation.
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SVS2 and semenogelin are CP/CPPS autoanti-
gens in mice and humans, respectively [20]. 
SVS2 and semenogelin derive from the seminal 
vesicle and not the prostate [9], and their func-
tion is to regulate seminal fluid viscosity [20]. 
SVS2 is implicated in spontaneous prostatitis. 
SVS2 expression is dependent on the autoim-
mune regulator (Aire) gene [20]. Genetic dele-
tion of Aire results in multi-organ autoimmune 
reactivity in the eye, salivary glands, ovaries, 
stomach, and prostate [20, 33-35]. SVS2 reac-
tive antibodies were detected in sera of Aire 
null mice. Wild-type mice immunized with SVS2 
and Aire-deficient mice develop EAP [9, 20]. 

Despite the usefulness of the EAP model, there 
are some limitations that should be consid-

ered. One limitation is that the induction of EAP 
is highly dependent on the antigen used for 
immunization, and each antigen may lead to 
unique pathological and physiological EAP  
phenotypes (Table 2) [3, 9, 12]. Another limita-
tion of the EAP model is that it does not fully 
reflect the complexity of human CP/CPPS, 
which involves multiple factors, such as infec-
tion, stress, and neuropathic pain [4, 9]. 

Haverkamp and colleagues used a unique, 
immunization-free approach to drive prostate 
inflammation in the POET-3 mouse. They col-
lected splenocytes from Thy1.1+OT-I mice, 
which harbor a transgenic T cell receptor that 
recognizes ovalbumin. They applied ovalbumin 
to the splenocytes in vitro, and the resulting 

Figure 1. Differential EAP induction and disease-specific symptom mimicry: antigenic variability and targeted thera-
pies (Adopted and revised from references [4, 9, 21]).
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MHC class I-restricted, ovalbumin-specific, 
CD8+ T cells were transferred into mice ex- 
pressing the ovalbumin transgene in prostate 
luminal epithelial cells (POET-3 and POET-3/
Luc/Pten-/+ mice) to induce prostatitis in the 
anterior, dorsolateral, and anterior prostate 
regions [36]. POET-3 mice demonstrate ro- 
bust recruitment of CD4+, CD8+ T-cells, and 
CD4+FOXP3+ T-regulatory cells, elevated cyto-
kine/chemokine expression, and sustained 
prostate epithelial proliferation [22, 36]. 

Fundamental challenges for translational uro-
logical research are the identification and 
appropriate use of animals to model salient 
features of human disease. There is significant 
debate over whether animal can accurately  
replicate human disease [37]. Some argue, and 
with support from the literature, that animal 
models are not always predictive of human  
outcomes and may lead to false conclusions 
[38]. A major problem with animal models in 
benign urologic research is that the models  
and endpoints are not standardized (for exam-
ple, see the variable methods for immunization 
of EAP mice in Table 1). There is a great need 
for strategy homogeny within the field to 
improve reproducibility and comparability be- 
tween studies [9, 12, 17, 39]. Also, addressing 
the differences between animal and human 
physiology regarding disease presentation is 
needed to develop and achieve clinically rele-
vant endpoints.

While whole animal models of prostatitis cap-
ture the complex interplay between prostate 
tissues and the immune system, alternative 

methods can be used to study select aspects 
of prostatitis:

1. In vitro cell culture: Primary prostate epithe-
lial cells are stimulated with human recombi-
nant tryptase-P/TPSB2 and co-cultured with 
leukocytes to examine paracrine signaling 
mechanisms involved in prostate inflammation. 
Cell based models provide a controlled environ-
ment for studying cell-cell interactions and 
molecular mechanisms [40].

2. Ex vivo tissue explants: Human or rodent 
prostates are harvested and maintained in cul-
ture to study the effects of immunological stim-
uli or therapeutic agents [41].

3. Human tissues: Prostatic tissues from 
patients with CP/CPPS are analyzed to identify 
histological features of the disease and bio-
markers of disease severity [18].

4. Computational modeling: Baker’s research 
uses computational models to predict regula-
tory mechanisms of CD4+ T cell functions and 
examine intersections between immunity and 
metabolism [42]. Lorenzo and colleagues mod-
eled prostate cancer growth, an approach that 
could be applied to prostate hyperplastic res- 
ponses to inflammation [43].

Current therapies for CP/CPSS

In urological research, managing CP/CPPS pre- 
sents a substantial challenge. The UPOINTS 
system (Table 3) provides a nuanced approach, 
considering urinary, psychosocial, organ-specif-
ic, infection, neurologic, tenderness, and sexu-

Table 3. UPOINT CP/CPPS diagnosis and treatment therapies with UPOINT system description
UPOINT Domain Clinical Presentation Treatment 
Urinary LUT Syndrome Alpha Blockers 

5-Alpha-reductase inhibitors (5-ARIs)
Psychological Depression 

Stress 
5-serotonin and norepinephrine reuptake inhibitor

Organ-Specific Targeted palpations exacerbate symptoms Pollen Extract
Eviprostat

Infection Recurrent UTIs
Bacterial localization

Antibiotics 
Acupuncture
Pregabalin
Botulinum Toxin-A

Sexual Dysfunction Erectile Dysfunction Phosphodiesterase inhibitors
Tenderness Fibromyalgia

Tenderness
Spasm of perineum

Prostatic massage
Transrectal radiofrequency Hyperthermia
Low-intensity shockwave therapy (LiST)

*Adopted and revised from references [6, 7].
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al dysfunction factors [6, 7]. A major obstacle 
arises from the absence of detectable bacteria 
in urine, discouraging inappropriate antimicro-
bial therapy in favor of judicious antibiotic use 
[6].

Addressing urinary symptoms, conventional 
alpha-blocker treatments have shown limited 
improvement in prostatitis symptoms, with 
notable risks of adverse events like dizziness 
and hypotension [44]. Similarly, 5-alpha-reduc-
tase inhibitors exhibit a modest trend toward 
symptom relief, especially in cases concurrent 
with benign prostatic hyperplasia [5-7].

Psychosocial factors significantly contribute  
to CP/CPPS, correlating with psychiatric symp-
toms like depression, affecting symptom sever-
ity and quality of life [39, 45]. Selective sero-
tonin and norepinephrine reuptake inhibitors, 
such as duloxetine, effectively alleviate CP/
CPPS-associated pain with favorable side 
effects [46].

Organ-specific symptom treatments like pollen 
extract (cernilton) and eviprostat offer relief 
without adverse effects [47]. In cases without 
bacterial prostatitis, the efficacy of antimicro-
bial therapy, especially combined with alpha-
blockers, remains uncertain due to inconsis-
tent outcomes [47].

Neurologic manifestations involve abdominal 
or pelvic pain, alleviated by treatments like  
acupuncture and low-intensity shockwave ther-
apy, though long-term efficacy of low-intensity 
shockwave therapy remains inconclusive [14].

Painfulness in the perineum or pelvic floor 
requires specialized approaches such as pros-
tatic massage (contraindicated in acute bacte-
rial prostatitis) and transrectal radiofrequency 
hyperthermia showing promise in improving 
pain and quality of life [14].

Addressing sexual dysfunction, phosphodies-
terase inhibitors like tadalafil effectively im- 
prove CP/CPPS symptoms, especially pain and 
polyuria [39, 48]. Traditional Chinese medi- 
cine combined with Western interventions, like 
alpha-blockers and phosphodiesterase inhibi-
tors, offers a holistic approach [14, 49].

However, limitations exist in current studies 
due to variability in patient populations, study 
designs, and cultural contexts, necessitating 

further research to refine CP/CPPS therapeutic 
strategies. Recent trials challenge the efficacy 
of alfuzosin, an alpha-adrenergic blocker, high-
lighting the need for rigorous exploration of 
novel treatments to enhance the quality of life 
for CP/CPPS patients [50, 51].

Effective CP/CPPS therapies remain elusive, 
given the array of symptoms and multifaceted 
disease causes. The UPOINTS system guides 
treatment strategies based on symptoms and 
causes, employing medications like antibacte-
rial agents, anti-inflammatory drugs, analge-
sics, and those for benign prostatic hyper- 
plasia (Table 3). Tailored adjustments are nec-
essary based on individual responses, often 
requiring a multimodal approach [4, 5, 7, 14, 
46, 50]. Alpha adrenoreceptor antagonists, 
including tamsulosin and alfuzosin, show prom-
ise in alleviating CP/CPPS symptoms, although 
ongoing debate surrounds the efficacy of  
antibiotics and anti-inflammatory agents.

Emerging therapeutic targets for CP/CPSS 

Researchers are increasingly channeling eff- 
orts into the exploration of targeted therapies, 
including immunomodulatory agents and inno-
vative drug delivery systems, to identify more 
efficacious remedies for CP/CPPS [2, 52]. 
These endeavors harbor the potential to ele-
vate the quality of life for individuals grappling 
with this enigmatic condition, offering promise 
for future CP/CPSS therapy.

Recognizing autoimmunity as a mechanism for 
CP/CPPS has implications for treatment and 
management approaches. While conventional 
anti-inflammatory drugs are typically employed 
for inflammatory disorders, autoimmune dis-
eases necessitate immunomodulatory thera-
pies that specifically target the underlying  
autoimmune dysregulation. Adopting this new 
perspective could potentially pave the way for 
the development of more targeted and effica-
cious treatments for CP/CPPS. One strategy for 
CP/CPSS researchers is to co-opt therapeu- 
tic targets already identified in extra-prostatic 
autoimmune diseases [6]. One example is the 
aryl hydrocarbon receptor (AHR), a transcrip-
tion factor activated by a variety of endo- 
genous and exogenous chemical and which 
functions as a potent immunosuppressor [53-
57]. AHR regulated genes vary by cell type  
and context, but many participate in immune 
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function, inflammation, and xenobiotic meta- 
bolism [54, 55]. In the context of autoimmune 
disease, AHR activation has been shown to 
have anti-inflammatory effects by promoting 
the differentiation of regulatory T cells and 
inhibiting the differentiation of pro-inflamma- 
tory Th17 cells [58]. Genetic loss of AHR sig- 
naling exacerbates inflammation in a mouse 
model of colitis [53, 59, 60]. The AHR signaling 
pathway has been experimentally manipulated 
with a variety of agonists, antagonists, and 
dietary constituents and below we focus on 
AHR ligands used in a preclinical setting to 
treat autoimmune disorders, acknowledging 
their broader relevance beyond the confines of 
prostatic pathophysiology.

The AHR agonist 2-(1’H-indole-3’-carbonyl)-
thiazole-4-carboxylic acid methyl ester (ITE) 
reduces colitis [53]. ITE also impedes differen-
tiation of Th17 T cells [54, 61] and suppresses 
production of pro-inflammatory cytokines such 
as IL-17 and IFN-gamma [53, 55]. 

The AHR agonist 6-formylindolo(3,2-b) carba-
zole (FICZ) has been assessed for its potential 
in treating irritable bowel disease [56, 57]. FICZ 
activates the AHR pathway and the tristetra- 
prolin pathway to reduce cytokine abundance 
and inflammation in mice treated with dextran 
sulfate sodium to drive colitis [55, 57, 59, 61, 
62]. 

The naturally occurring AHR agonist 3,3’-diin-
dolylmethane (DIM) has demonstrated thera-
peutic promise within the experimental autoim-
mune encephalomyelitis (EAE) model, a rele-
vant representation of multiple sclerosis [63, 
64]. Administration of DIM post-EAE induction 
reduces inflammation and curtails cellular infil-
tration in the central nervous system [63]. DIM 
functions by remodeling the miRNA profile (miR-
200c, miR-146a, miR-16, miR-93, and miR-22) 
in brain CD4+ T cells, influencing cell cycle regu-
lation and promoting apoptosis-related path-
ways [63].

Indole-3-carbinol (I3C), a compound derived 
from plants, is an AHR agonist that has been 
shown to curtail colonic inflammation and rec-
tify microbial dysbiosis in intestinal inflamma-
tory disease [54, 57]. I3C induces proliferation 
of beneficial gram-positive bacteria that pro-
duce butyrate, a potent anti-inflammatory 
agent. I3C has been shown to increase abun-

dance of IL-22 and modulate gut microbiota to 
mitigate colitis [54].

Despite promising potential for treating au- 
toimmune disease, the use of AHR modulation 
as a therapeutic strategy for lower urinary tract 
diseases is not without challenges. One major 
limitation is the potential for off-target effects, 
as AHR is known to regulate a broad range of 
physiological processes beyond the immune 
system and tissue repair. Additionally, the lack 
of specific AHR agonists or antagonists with 
high affinity and selectivity presents a major 
hurdle in developing effective AHR-targeted 
therapies. Nonetheless, the potential benefits 
of AHR modulation for the effective treatment 
of lower urinary tract diseases warrant further 
investigation. 

Toll-like receptor 4 (TLR4) signaling, which plays 
a major role in the immune response to gram-
negative bacteria [65-68], is also a potential 
target in CP/CPSS. TLR4 signaling is activated 
by pathogen-associated molecular patterns 
(PAMPs) such as bacterial lipopolysaccharide 
(LPS) [66, 67] and has been linked to hype- 
ractive immune responses, sepsis, acute lung 
injury, and chronic inflammation [66-68]. 
Genetic ablation of microRNA-155 (miR-155) 
was recently shown to reduce TLR4 signaling 
[65]. MiR-155 deficient mice are resistant to 
EAP-mediated pelvic tactile hypersensitivity 
and exhibit diminished TLR4/nuclear factor-
kappa B (NF-κB) responses to EAP [65]. In con-
trast, mice that overexpress miR-155 are hy- 
persensitive to EAP-induced prostatic inflam-
mation and oxidative stress [65, 69]. 

Cyclooxygenase-(COX)-1 and -2 have been 
implicated in autoimmune disease and COX-2-
selective inhibitors such as celecoxib are  
effective anti-inflammatory agents [70]. A 
recent study showed that celecoxib reduces 
depressive behaviors and increases sexual 
drive and improves erectile function in mice 
with EAP [12]. Celecoxib also reduced prostate 
inflammation and serum IL-1β/TNF-α concen-
trations and increased serum serotonin in  
mice with EAP [12]. 

Tumor necrosis factor alpha (TNFα) plays a cri- 
tical role in autoimmunity [44, 71-73]. Insight 
into the signaling cascades initiated by TNFα 
has paved the way for therapeutic break-
throughs, notably the advent of TNFα inhibitors 
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such as Etanercept and Infliximab, both of 
which have demonstrated efficacy across vari-
ous autoimmune diseases [71]. A recent study 
revealed an elevated prevalence of BPH in 
patients with autoimmune disease [71]. The 
use of TNFα antagonists for autoimmune dis-
ease appeared to reduce the risk of BPH and 
was associated with many outcomes that  
would be considered positive in CP/CPSS 
patients, a reduction of prostate epithelial  
proliferation, prostatic macrophages, and sup-
pression of NF-κB activation [71]. 

Conclusion

This review offers new insights into the mecha-
nisms of CP/CPSS. We defined autoimmune 
prostatitis as a form of CP/CPPS characterized 
by an immune-mediated response against  
self-antigens within the prostate gland. This 
condition arises when the immune system, in  
a dysregulated state, recognizes proteins and 
antigens specific to the prostate as foreign, 
leading to an inflammatory response that 
includes T-cell activation, cytokine production, 
and the formation of autoantibodies. The con-
sideration of autoimmunity as a mechanism  
of CP/CPSS shifts from traditional views that 
bacterial infections or non-specific inflamma-
tory processes are the sole mediators of this 
disease and acknowledges the complexity of 
CP/CPPS, integrating the role of autoimmunity 
as a key driver of the disease process. We  
have described EAP models and research 
involving these models which has been instru-
mental in redefining some forms of CP/CPSS  
as having an autoimmune component, raising 
the possibility of targeted immunomodulatory 
therapies for treating CP/CPSS. We also des- 
cribed potential new therapeutic strategies, 
such as the use of ITE or other short-acting  
AHR agonists to drive immunosuppression. 
This is a significant step in considering and 
testing new therapies that can more precisely 
target the underlying causes of autoimmune 
prostatitis, ultimately improving outcomes for 
patients afflicted with autoimmune mediated 
CP/CPPS.
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5-ARI, 5-Alpha-reductase inhibitor; A/J, Inbred 
Albino Mouse strain; ADME, Absorption, Dis- 
tribution, Metabolism & Excretion; AHR, Aryl 
hydrocarbon receptor; AHRE, Aryl hydrocarbon 
response element; Aire, Autoimmune regulator 
(gene); ARNT, AHR nuclear translocator; bHLH, 
basic helix-loop-helix; BPH, Benign Prosta- 
tic Hyperplasia; CD, Cluster of differentiation; 
cLPL, Colon lamina propria lymphocytes; COX-, 
Cyclooxygenase; CP/CPPS, Chronic Prostatitis/
Chronic Pain Syndrome; CTL, Cytotoxic T lym-
phocyte; DC, Dendritic Cell; DIM, 3,3’-diindo- 
lylmethane; DNA, Deoxyribonucleic acid; DSS, 
Dextran sulphate sodium; EAE, Experimental 
autoimmune encephalomyelitis; EAP, Experi- 
mental Autoimmune Prostatitis; EAU, Experi- 
mental autoimmune uveitis; FICZ, 6-Formylin- 
dolo-(3,2-b)carbazole; HAH, Halogenated aro-
matic hydrocarbon; Hsp-, Heat Shock Protein; 
I3C, Indole-3-Carbinol; IAA, Indole acetic acid; 
IBD, Irritable bowel disease; IBS, Irritable bowel 
syndrome; IDO, 2,3-dioxygenase; IL-, Interleukin; 
ITE, 2-(1’H-indole-3’-carbonyl)-thiazole-4-carbo- 
xylic acid methyl ester; Kyn, Kynurenine; LiST, 
Low-intensity shockwave therapy; LUT, Lower 
Urinary Tract; LUTD, Lower Urinary Tract 
Disease; MAG, Male Accessory Gland; MLN, 
Mesenteric lymph nodes; MoA, Mechanism of 
action; NOD, Non-obsese diabetic (Mouse 
strain); NSAID, Non-steroidal anti-inflammatory 
drugs; p25, Prostatic spermine-binding protein; 
PAH, Polycyclic aromatic hydrocarbon; PAP, 
Prostatic Acid Phosphate; PCa, Prostate 
Cancer; PE, Prostate Extract; PEC, Predicted 
environmental concentration; PG-, Prostaglan- 
din; PSA, Prostate-specific antigen; PSBP, 
Prostatein or steroid binding protein; SD, 
Sprague Dawley (rat strain); SJL, Swiss Jim 
Lambert (mouse strain); SVS2, Seminal vesicle 
secretory protein 2; T2, Peptide; TCDD, 
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2,3,7,8-Tetrachlorodibenzodioxin; Th-, T-helper 
cell; Tr1, Type-1 regulatory T cells; Treg, 
T-regulatory cell; TTP, Tristetraprolin.
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