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Abstract: Epithelial-mesenchymal transition (EMT) is a dynamic process of lineage plasticity in which epithelial 
cancer cells acquire mesenchymal traits, enabling them to metastasize to distant organs. This review explores the 
current understanding of how lineage plasticity and phenotypic reprogramming drive prostate cancer progression to 
lethal stages, contribute to therapeutic resistance, and highlight strategies to overcome the EMT phenotype within 
the prostate tumor microenvironment (TME). Emerging evidence reveals that prostate tumor cells can undergo 
lineage switching, adopting alternative growth pathways in response to anti-androgen therapies and taxane-based 
chemotherapy. These adaptive mechanisms support tumor survival and growth, underscoring the need for deeper 
insights into the processes driving prostate cancer differentiation, including neuroendocrine differentiation and lin-
eage plasticity. A comprehensive understanding of these mechanisms will pave the way for innovative therapeutic 
strategies. Effectively targeting prostate cancer cells with heightened plasticity and therapeutic vulnerability holds 
promise for overcoming treatment resistance and preventing tumor recurrence. Such advancements are critical for 
developing effective approaches to prostate cancer treatment and improving patient survival outcomes.
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Introduction

Prostate cancer represents a significant health 
challenge, being the most commonly diagnosed 
cancer and the second leading cause of can-
cer-related deaths among American men. App- 
roximately 1 in 7 men will be diagnosed with 
prostate cancer in their lifetime [1]. The primary 
challenge in treating lethal prostate cancer lies 
in tumor recurrence following androgen-depri-
vation therapy (ADT), antiandrogen treatments, 
and chemotherapy, which contribute to high 
mortality rates. Addressing this challenge re- 
quires an urgent understanding of the mecha-
nisms driving castration-resistant prostate can-
cer (CRPC), including those that operate inde-
pendently of androgen receptor (AR) signaling, 
to develop targeted therapies and improve 
patient outcomes.

The tumor microenvironment (TME) plays a  
critical role in supporting cancer cell survival 
and invasion by activating key signaling path-
ways that inhibit anoikis, a form of cell death 
triggered by insufficient cell-extracellular matrix 
(ECM) interactions. The suppression of anoikis 
facilitates tumor cell invasion and metastatic 
colonization, as cancer epithelial cells and adja-
cent stromal cells, including endothelial cells 
and fibroblasts, adapt to survive without firm 
ECM attachment [2, 3]. Epithelial-mesenchymal 
transition (EMT), a process by which epithelial 
cells acquire mesenchymal, migratory, and in- 
vasive properties, is closely tied to anoikis 
resistance [4, 5]. In prostate cancer, EMT 
enables tumor cells to de-differentiate and in- 
vade, while mesenchymal-epithelial transition 
(MET) facilitates metastatic colonization and 
tumor recurrence [6, 7]. Loss of E-cadherin and 
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disruption of adherens junctions during EMT 
further enhance metastatic progression and 
therapeutic resistance [6, 8]. Current treat-
ment strategies predominantly target the AR 
signaling pathway through ADT or second-gen-
eration antiandrogens, such as enzalutamide, 
which directly inhibit AR activity. While these 
approaches initially reduce tumor size and 
prostate-specific antigen (PSA) levels [9], resis-
tance inevitably develops, leading to the emer-
gence of CRPC [10]. Mechanisms of resistance 
include AR amplification, the generation of AR 
splice variants, androgen-independent AR ac- 
tivation, and alternative androgen production 
[11, 12]. Furthermore, anti-androgen treat-
ments can induce lineage plasticity in prosta- 
te cancer cells, reprogramming them toward 
stem-like or EMT-like states [13] and, in some 
cases, promoting neuroendocrine differentia-
tion [14, 15]. These changes allow tumor cells 
to grow independently of AR signaling, further 
compounding treatment resistance.

Hyperactivation of AR signaling remains the  
primary driver of prostate tumorigenesis [16]. 
Initial treatments typically involve surgery or 
radiation to ablate the primary tumor, followed 
by ADT, which causes tumor shrinkage and sup-
presses PSA levels [9]. However, CRPC eventu-
ally arises, fueled by mechanisms that bypass 
AR dependency (Figure 1). Next-generation an- 
tiandrogens have been developed to counter-
act these pathways [17-19], yet resistance to 
these therapies is inevitable. Studies reveal 
that treatment-induced lineage plasticity is 
driven by transcriptional and epigenetic repro-
gramming [20-22], though the precise mecha-
nisms underlying these changes remain incom-
pletely understood due to the complexity of 
prostate cancer biology.

Unraveling the molecular drivers of lineage 
plasticity and phenotypic reprogramming in 
prostate cancer is critical for addressing the- 
rapeutic resistance and disease progression. 

Figure 1. Natural history of prostate cancer progression. The progression of prostate adenocarcinoma can be clini-
cally assessed by monitoring the levels of prostate-specific antigen (PSA) in the bloodstream. PSA is produced by the 
prostate epithelium and serves as a biomarker for androgen receptor (AR) activity and coincides with tumor burden/
size as long as tumor express AR. As the disease advances and treatments are implemented, prostate tumors 
display reduced dependence on androgens due to abnormal reactivation of the AR or through lineage switch mecha-
nisms. Novel anti-AR agent such as enzalutamide, apalutamide, or darolutamide, are now being implemented dur-
ing hormone sensitive stages of prostate cancer. Loss of androgen dependency is associated with treatment failure 
and further disease progression.
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This knowledge will enable the development  
of novel strategies to overcome treatment 
resistance and improve survival outcomes for 
patients with advanced prostate cancer.

Signaling targets for EMT-directed therapy

Transcriptional activation pathways

Numerous epithelial-mesenchymal transition 
(EMT) transcription factors (EMT-TFs) have 
been identified as critical regulators of the EMT 
process. Key EMT-TFs include the zinc-finger 
homeobox (ZEB) family, SNAIL family, and 
TWIST family. These factors act in concert to 
decrease cell adhesion, disrupt cell polarity, 
and drive EMT and metastasis [23, 24]. The 
ZEB family, particularly ZEB1 and ZEB2, binds 
to E-box regions of the CDH1 promoter to sup-
press E-cadherin expression [25]. ZEB1 also 
represses Syndecan-1, a proteoglycan essen-
tial for maintaining epithelial integrity [26]. 
Elevated ZEB expression correlates with higher 
tumor grade and therapeutic resistance in 
prostate, bladder, breast, and other cancers 
[27]. Additionally, ZEB1 represses genes such 
as HUGL2 and Crumbs3, which are crucial for 
cell polarity [28]. The expression of ZEB is regu-
lated by several pathways, including receptor 
tyrosine kinases (RTKs), TGF-β via SMAD signal-
ing, Wnt, PI3K/Akt, and NF-κB pathways [29-
31]. The SNAIL family, including SNAI1, SNAI2, 
and SNAI3, also suppresses CDH1 transcrip-
tion upon nuclear accumulation, leading to 
reduced E-cadherin levels. Elevated SNAIL 
expression has been linked to high tumor grade 
and metastatic potential in prostate [32, 33], 
breast [34], ovarian [35], and hepatocellular 
cancers [36]. Notably, SNAIL promotes metas-
tasis through both enhanced local invasion and 
immunosuppressive mechanisms [37].

TWIST1 and TWIST2, members of the helix-
loop-helix family, drive EMT by directly sup-
pressing CDH1 expression and increasing 
N-cadherin expression [38]. In prostate can- 
cer, TGF-β1, BMP2, and BMP4 serve as key 
EMT drivers [39-41]. These ligands activate  
the TGF-β receptor complex, leading to SMAD-
dependent transcription of EMT-TFs such as 
SNAIL, TWIST, and ZEB [42]. Additionally, TGF-β 
signaling activates alternative pathways, in- 
cluding PI3K/Akt, Ras, FAK, and Src, further 
promoting EMT [43, 44]. Growth factors such 
as HGF and IGF-1 utilize ERK signaling to 

enhance ZEB1 expression in prostate cancer 
cells [45], while PDGF has been shown to aug-
ment N-cadherin expression by suppressing 
E-cadherin during gastrulation [46]. Increas- 
ed Src expression is associated with metasta-
sis and castration-resistant prostate cancer 
(CRPC) [47, 48]. FGF and FGFR are also mark-
edly overexpressed during the transition from 
androgen dependence to CRPC [49]. IL-6 
secreted by prostate cancer cells induces can-
cer-associated fibroblasts to disrupt cell polari-
ty in cancer cells, promoting EMT [50].

The Wnt pathway is another major EMT regula-
tor. Binding of the Wnt ligand to lipoprotein 
receptor-related protein (LRP) phosphorylates 
LRP, recruiting Dishevelled and Axin, which 
allows β-catenin to translocate to the nucleus. 
Nuclear β-catenin binds to LEF-1, suppressing 
CDH1 and reducing E-cadherin expression [51, 
52]. Wnt signaling also indirectly promotes 
SNAIL and TWIST expression via β-catenin 
nuclear activity [53, 54]. The Gli family of tran-
scription factors, particularly Gli1, enhances 
SNAIL transcription [55] and has been impli-
cated in EMT-mediated invasion of neuroendo-
crine tumors [56]. Hedgehog signaling acti-
vates Gli1 through the binding of the Hh ligand 
to PTCH receptors, leading to Smoothened-
mediated Gli1 expression [57]. Epigenetic re- 
programming further modulates EMT through 
repression of polycomb function, promoting 
tumor growth and tissue invasion [58]. Ex- 
tracellular heat-shock protein (Hsp) 90, secret-
ed by tumor cells, interacts with EZH2 to drive 
EMT and neuroendocrine differentiation via his-
tone methylation (H3K27) [58].

Mechanisms of EMT navigate prostate cancer 
progression

Epithelial-mesenchymal transition (EMT) is 
marked by the loss of epithelial markers such 
as E-cadherin and β-catenin, and the gain of 
mesenchymal markers like N-cadherin, vimen-
tin, and fibronectin [59]. These markers are not 
merely identifiers but play pivotal roles in main-
taining epithelial integrity and driving mesen-
chymal phenotypes. E-cadherin and β-catenin, 
essential for adherens junctions, ensure cell 
polarity and epithelial cohesion [60]. EMT  
transcription factors (EMT-TFs), including ZEB, 
SNAIL, and TWIST families, orchestrate EMT by 
suppressing epithelial markers and promoting 
mesenchymal ones [61]. For instance, ZEB and 
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SNAIL bind E-box sequences in the CDH1 pro-
moter to repress E-cadherin [62], while TWIST 
recruits nucleosome remodeling complexes to 
suppress epithelial markers [63], and upregu-
late mesenchymal markers like vimentin th- 
rough Cullin2 circular RNAs [64]. Hypoxia-
inducible factor 1α (HIF1α) and cytokines such 
as transforming growth factor β (TGF-β) are  
significant EMT initiators. HIF1α directly binds 
hypoxia response elements in the SNAIL1 pro-
moter, driving its transcription [65], while hy- 
poxia also upregulates ZEB1 in prostate cancer 
models [66].

Transforming growth factor β (TGF-β) signaling 
also regulates EMT. In healthy tissues, TGF-β 
can function as a tumor suppressor by phos-
phorylating SMAD proteins to regulate tissue 
differentiation and maintain tissue identity 
[67]. In its canonical pathway, TGF-β phosphor-
ylates Smad proteins, which form complexes 
that translocate to the nucleus to regulate tis-
sue differentiation genes, often acting as a 
tumor suppressor [68]. Loss of TGF-β receptor 
II (TGFBR2) is associated with higher Gleason 
scores, increased metastasis, and stemness-
related genes like Sox2 and Nanog, highlighting 
the connection between EMT and lineage plas-
ticity [69, 70]. Non-canonical TGF-β signaling 
activates PI3K/AKT and MAPK/ERK pathways, 
downregulating tight junction proteins and 
upregulating EMT TFs like SNAIL and SLUG, 
thereby promoting cell migration and invasion 
[71-74].

Receptor tyrosine kinases (RTKs) further propel 
EMT by activating key transcription factors  
and signaling pathways (Figure 2). Among 
RTKs, fibroblast growth factor receptor 1 
(FGFR1) is particularly implicated in prostate 
cancer progression, EMT, and treatment resis-
tance. FGFR1 is minimally expressed in normal 
prostate tissue but becomes prominent in  
adenocarcinoma [75]. Mouse models demon-
strate that FGFR1 overexpression induces 
EMT-like gene signatures and promotes tumor 
aggressiveness, while FGFR1 loss reduces 
tumor growth [76, 77]. FGFR1 isoforms also 
play a role; the epithelial FGFR1 IIIb and mesen-
chymal FGFR1 IIIc isoforms contribute to EMT 
through crosstalk with TGF-β and Wnt signal- 
ing pathways, activating SNAIL and TWIST [75, 
78]. FGFR1-mediated MAPK activation is par-
ticularly crucial in AR-null prostate tumors, driv-

ing anti-androgen therapy resistance [49] and 
promoting metastasis [79, 80]. Noncanonical 
FGFR ligands like Gremlin1 (GREM1), upregu-
lated by ADT, activate FGFR1/MAPK signaling 
to induce stemness and suppress AR activity, 
further contributing to lineage plasticity and 
therapy resistance [49, 50, 80]. In TP53 and 
RB1 knockout models of prostate cancer cell 
plasticity, pathways involving FGFR1 and EMT 
expression were concurrently activated, lead-
ing to enzalutamide resistance [81]. These find-
ings confirm that FGFR1 signaling also drives 
EMT and lineage plasticity in prostate cancer 
and serve as a potential pathway for treat- 
ment resistance. Other RTKs, such as EGFR 
and IGFR, also support EMT progression. EGFR 
enhances SNAIL stability by preventing its ubiq-
uitination and promotes TWIST expression via 
HIF1α/STAT3 signaling [82, 83]. RTKs syner- 
gize with TGF-β signaling, amplifying EMT and 
promoting autocrine production of ligands to 
sustain their activation [84].

At the end of many signal transduction cas-
cades lie the Signal Transducer and Activator of 
Transcription (STAT) family of proteins. Upon 
phosphorylation by tyrosine kinases, STATs are 
activated and enter the nucleus, where they 
bind DNA and promote transcription. In pros-
tate cancer, STAT3 is of particular importance, 
as higher phospho-STAT3 levels are correlated 
with higher Gleason scores and increased bone 
metastases [85, 86]. During prostate cancer 
progression, STAT3 activation has been shown 
to be driven as well by TGF-β1 signaling and is 
able to directly upregulate TWIST expression 
through binding to the TWIST1 promoter in a 
HSP27-dependent manner [87, 88]. STAT3 is 
also part of the non-canonical, or β-catenin-
independent Wnt signaling pathway. In this 
pathway, Wnt binds the Frizzled2 (Fzd2) recep-
tor, which then activates STAT3 to promote EMT 
through its phosphorylation by Fyn tyrosine 
kinase [89]. In prostate cancer, non-canonical 
Wnt signaling was found to be elevated in high 
Gleason grade patient samples and promot- 
ed expression of the mesenchymal markers 
N-cadherin, vimentin while downregulating 
E-cadherin [90]. This pathway also includes  
the actin-cytoskeleton regulator ABI1, which 
interacts with Fyn and acts upstream of STAT3 
(Figure 2). The loss of ABI1 was found to in- 
crease STAT3 phosphorylation, activation, and 
the expression of mesenchymal markers such 
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Figure 2. Pathways of EMT regulation in prostate cancer. EMT in prostate cancer has been shown to be regulated 
by various pathways, including non-canonical Wnt, receptor tyrosine kinase signaling pathways such as FGFR, and 
TGFβ signaling. Changes in alternative splicing factors, such as ESRP1 and SRRM4 also affect EMT. The loss of AR 
signaling due to Enza suppression has been shown to drive EMT progression through its interactions with many of 
these regulators.

as Slug and vimentin [91]. STAT3 has also been 
shown to be hyperactivated in TP53 and RB1 
knockout models of prostate cancer plasticity, 
and promotes enzalutamide resistance through 
the expression of stemness markers such as 
SOX2 downstream of Janus kinase (JAK) activa-
tion [22, 81, 92]. As a result, STAT3 inhibitors 
were able to effectively target cancer stem cells 
in both in vitro and in vivo models of prostate 
cancer [93]. In this sense, STAT3 has been 
shown to be another master regulator of EMT 
and cancer progression through its intercon-
nection between a wide network of pathways.

Alternative splicing in EMT

Alternative splicing also influences EMT by 
modulating epithelial and mesenchymal mark-
ers [94, 95]. Loss of epithelial splicing regulator 

proteins (ESRPs) and upregulation of RBFOX2 
drive mesenchymal phenotypes [64, 65, 95, 
96]. ESRPs maintain epithelial characteristics 
by regulating splicing events critical for cell 
adhesion and migration, such as FGFR2 iso-
forms. ESRP promotes the epithelial FGFR2 IIIb 
variant, while its loss enables the mesenchy-
mal FGFR2 IIIc variant, inducing EMT and 
enhancing invasiveness [95, 97]. ESRP1 is also 
able to suppress the expression of pluripotency 
transcription factors such as OCT4, SOX2, and 
Nanog [98]. Thus, the loss of ESRP in EMT 
changes protein-protein interaction networks, 
leads to the increased mesenchymal features 
of cell invasion and migration, and the develop-
ment of pluripotency needed to undergo trans-
differentiation. Another RNA splicing mediated 
driver of EMT is the loss of repressor element 1 
silencing transcription factor (REST). In heathy 
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tissues, REST serves to repress neuronal devel-
opment and differentiation [99]. In neuroen- 
docrine prostate cancer, the splicing factor 
SRRM4 can generate alternative splice iso-
forms of ABI1 [99] as well as nonfunctional iso-
form of REST, which then allows for the expres-
sion of various neuroendocrine markers [99, 
100]. However, REST has also been shown to 
repress the expression of TWIST1 (Figure 2), 
and thus the loss of REST by SRRM4-mediated 
alternative splicing can promote both neuroen-
docrine differentiation and EMT [101].

The EMT-MET dynamic dictates metastatic 
behavior of prostate tumors

The primary metastatic site for prostate cancer 
is the bone, and progression to metastatic 
prostate cancer reduced the five-year survival 
rate to 30% [1]. The functional contribution of 
cell plasticity/phenotypic conversions to fur-
ther advance prostatic tumor progression to 
metastasis, via facilitating migration, invasion, 
and colonization at distant sites continues to 
be a topic of focus for CRPC research [13]. EMT 
is a key determinant of cancer progression and 
for metastasis, associated with increased inva-
sive potential and therapeutic resistance of 
tumors. Phenotypic reprogramming via EMT, 
involves the adoption of mesenchymal charac-
teristics, loss of cell polarity and tight junctions 
[102]. The dynamic and reversible nature of 
EMT, and interconversion between epithelial 
and mesenchymal phenotypes contributes to 
both the dissemination of cancer cells from the 
primary tumor, and re-colonization at the meta-
static site. These function of EMT in these pro-
cesses are impacted by signaling in the tumor 
microenvironment and as a result of prostate 
cancer treatment (both ADT and taxane che- 
motherapy).

Within the primary tumor, prostate cancer cells 
remain unable to migrate with cell-cell adhe-
sions formed by adherens and tight junctions 
(E-cadherin, integrins). As the master regulator 
of EMT, TGF-β can modulate the tumor microen-
vironment to facilitate cell invasion and pro-
gression to metastasis [103, 104]. TGF-β pro-
duced by tumor cells, immune cells and 
fibroblasts in the TME, can induce phenotypic 
transition to mesenchymal through transcrip-
tional regulators of EMT including Snail, Zeb1, 
and Twist, leading to the degradation of adhe-

sion molecules such as E-cadherin and deta- 
chment from the basement membrane [105, 
106]. Simultaneously, this master regulator of 
EMT activates the cancer associated fibro-
blasts (CAFs) in the stroma to produce pro-
angiogenic factors hypoxia-inducible factor 
(HIF-1α), and β-catenin transcriptionally pro-
motes expression of vascular endothelial gr- 
owth factor (VEGF) [107]. Induction of factors 
driving vascularity and angiogenesis promote 
the intravasation of prostate cancer cells th- 
rough the basement membrane into the blood-
stream, where these mesenchymal circulating 
tumor cells (CTCs) can travel to other organs at 
adjacent or distant sites [108]. EMT regulators 
Snail1, Snail2, and SLUG promote the degrada-
tion of the ECM by induction of matrix metallo-
proteases (MMPs) MT4-MMP and MMP2, while 
Snail1 suppresses expression of MMP9 [109, 
110]. Recent studies suggest that some pros-
tate cancer cells do not adhere to the specific 
roles of mesenchymal or epithelial phenotypes 
through progression of metastasis, and there-
fore there may be cells that exist in a hybrid 
EMT-MET state expressing both epithelial and 
mesenchymal markers such as E-cadherin and 
vimentin concurrently [111, 112]. Metastatic 
spread can be facilitated through expression of 
chemoattractant proteins such as CCL2, which 
can be suppressed by AR-signaling and can 
promote EMT directly or under the regulation of 
TGF-β [113, 114]. When the cancer cells in cir-
culation reach the secondary organs, they must 
cross the endothelium to exit the bloodstream 
through extravasation. This process is stimu-
lated by blood platelets, and there is some evi-
dence for a feedback loop between TGF-β  
and transcription factor PRH/HHEX whereby a 
downregulation of PRH by TGF-β induced EMT 
and extravasation [115]. There is some evi-
dence that EMT transcriptional regulator Twist1 
promotes extravasation of cancer cells through 
integrin β1 [116]. Through reversal of EMT, 
prostate cancer cells re-differentiate towards 
the epithelial phenotype so generate second-
ary tumors. Tumor cells at secondary sites of 
solid tumors are often more poorly differentiat-
ed than the primary tumor of origin but share 
similar epithelial profiles [116, 117]. The inter-
play between cancer cells and the bone micro-
environment by TGF-β drives metastatic spread. 
TGF-β released from the bone as a result of 
bone remodeling promotes cancer cell prolifer-
ation and osteoclast-mediated bone resorption 
in the metastatic site [118].
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The role of androgen receptor signaling in 
prostate cancer EMT 

The role of androgens and androgen depriva-
tion therapies (ADT) in promoting EMT and 
stemness is complex and remains a topic of 
debate. Consistent with the understanding that 
prostate cancer development is androgen-driv-
en, early studies suggested that androgens 
could promote the expression of EMT markers. 
For instance, androgen stimulation in prostate 
cancer cell lines has been shown to upregulate 
EMT transcription factors such as ZEB1 and 
TWIST1 [119-121]. This regulation is partly 
attributed to androgen response elements 
(AREs) upstream of the ZEB1 gene, implying 
direct androgen receptor (AR) involvement in its 
transcription [119, 122]. Interestingly, TWIST1 
silencing also reduces AR expression, highlight-
ing a reciprocal regulatory relationship between 
the two genes [123]. Conversely, suppression 
of AR signaling, such as through ADT or anti-
androgen treatments, has been shown to in- 
duce EMT, increase stemness, promote metas-
tasis, and facilitate lineage switching in pros-
tate cancer. For example, N-cadherin is consis-
tently upregulated in castration-resistant pr- 
ostate cancer (CRPC) models but not in hor-
mone-sensitive cell lines or xenografts [124]. 
Furthermore, physical and chemical castration 
in mouse models and prostate cancer organ-
oids induces ZEB1 expression, accompanied by 
increased levels of mesenchymal markers such 
as N-cadherin and vimentin [125]. Notably, 
ZEB1 engages in a negative feedback loop with 
AR, suggesting that ZEB1 expression is not 
directly promoted by AR signaling but rather by 
its inhibition. Supporting this, ZEB1 ARE report-
er assays are active even in AR-null prostate 
cancer cell lines [122]. SNAIL is another tran-
scription factor regulated by AR signaling. In the 
C4-2 prostate cancer model, SNAIL expression 
is suppressed by dihydrotestosterone (DHT) 
treatment, with AR binding to the SNAI1 gene  
to repress its transcription [126]. Conversely, 
enzalutamide treatment induces SNAIL expres-
sion and upregulates mesenchymal markers 
such as N-cadherin, vimentin, and fibronectin 
in a reversible manner [126].

Enzalutamide has also been shown to en- 
hance cell invasion via activation of TGF-β1/
Smad3 signaling [127]. Inhibiting TGF-β recep-
tor 1 reverses EMT and synergizes with enzalu-

tamide treatment in preclinical transgenic mo- 
use models of prostate cancer [30]. Similarly, 
under androgen deprivation environment, such 
as culturing LNCaP cells in charcoal-stripped 
serum, can result in the upregulation of EMT 
markers (N-cadherin, vimentin, and SNAIL) in 
stem-like cell populations compared to non-
stem progenitors [128].

Anti-androgen treatment can activate STAT3 
and non-canonical Wnt signaling pathways, fur-
ther driving EMT progression. Loss of ABI1, an 
androgen-responsive gene downregulated by 
enzalutamide, has been linked to increased 
STAT3 activation [91, 129]. Furthermore, epi-
thelial splicing regulators (ESRPs), which are 
androgen-responsive genes, are lost following 
ADT or anti-AR therapy [130]. Hence loss of AR 
signaling by ADT and anti-AR therapy could con-
tribute to pluripotency and transdifferentiation, 
driving the epithelial-to-mesenchymal transi-
tion via alternative splicing in critical proteins 
like FGFR2 and others.

In summary, while AR signaling promotes EMT 
under certain conditions, AR inhibition via ADT 
or anti-androgen therapies often exacerbates 
EMT, stemness, and treatment resistance. 
These findings underscore the dual roles of AR 
signaling in prostate cancer progression and 
highlight the need for therapeutic strategies 
that address the complex interplay between 
EMT, stemness, and lineage plasticity.

The EMT-MET dynamics as a mechanism of 
therapeutic resistance

Prostate cancer, a hormonally responsive ma- 
lignancy, relies on androgen signaling for grow- 
th. Standard treatments such as androgen 
deprivation therapy (ADT) and AR-targeted ther-
apies (e.g., enzalutamide) aim to inhibit this 
pathway. However, resistance often develops, 
leading to castration-resistant prostate cancer 
(CRPC), where these therapies become ineffec-
tive (Figure 1). One mechanism underlying this 
progression is the induction of EMT during 
androgen deprivation.

A negative feedback loop between AR and 
ZEB1, a key transcriptional regulator of EMT, 
has been implicated in promoting EMT under 
androgen-deprived conditions [125]. In LNCaP 
cells cultured in androgen-depleted conditions, 
EMT is characterized by low E-cadherin, high 
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vimentin, elevated ZEB1 levels, and a reduction 
in miR-200b, a microRNA known to inhibit ZEB1 
[131-133]. Several microRNAs associated with 
an epithelial phenotype, including miR-143, 
miR-145, miR-29b, miR-34b, and the miR-200 
family, have been linked to resistance to ADT 
and docetaxel [134]. Similarly, in LNCaP tumor 
xenograft models, castration-resistant tumors 
exhibit upregulation of EMT regulator TWIST1 
and other mesenchymal markers [135]. Clini- 
cally, biopsies from prostate cancer patients 
show increased N-cadherin expression after 
three months of ADT, supporting the role of 
EMT in therapy resistance [136].

In response to enzalutamide, EMT can be 
induced via upregulation of SNAIL, a transcrip-
tion factor repressed by AR, and TGF-β expres-
sion, which facilitates survival in androgen-
deprived environments [126, 137]. As a 
“master regulator” of EMT, TGF-β is heavily 
implicated in CRPC progression. Dysregulated 
TGF-β signaling, such as through a dominant 
negative TGF-β type II receptor (DNTGF-βRII), 
promotes increased tumor growth and reduced 
apoptosis after ADT in animal models. This 
aberrant signaling also enhances nuclear local-
ization of AR and β-catenin, demonstrating 
crosstalk between TGF-β, AR, and EMT path-
ways in CRPC progression [31]. Interestingly, 
androgens can also induce EMT independently 
of TGF-β via SNAIL activation, with low AR con-
tent sensitizing cells to androgen-mediated 
EMT [120]. Furthermore, ADT leads to the accu-
mulation of CCL2, a chemokine repressed by 
AR signaling, which is associated with EMT 
induction and increased resistance [113, 114].

Taxane chemotherapy further contributes to 
the phenotypic dynamics of EMT-MET and  
therapeutic resistance. TGF-β signaling drives 
resistance to taxanes, reducing docetaxel sen-
sitivity in prostate cancer cells [138]. Me- 
chanistically, TGF-β induces KLF5 acetylation, 
which upregulates and stabilizes the pro-surviv-
al protein Bcl-2, enhancing cell survival during 
docetaxel treatment [139]. However, in pre- 
clinical models of androgen-sensitive prostate 
cancer, cabazitaxel combined with enzaluta- 
mide induces EMT reversion toward an epi- 
thelial phenotype [140]. Similarly, in patient-
derived xenograft models of therapeutically 
resistant CRPC, cabazitaxel treatment after 
ADT cessation restores an epithelial phenotype 

in circulating tumor cells [141]. The phenotypic 
interconversion between EMT and MET is not 
only central to taxane resistance and metasta-
sis but may also reveal windows of therapeutic 
vulnerability [32]. Targeting this dynamic EMT-
MET process offers a promising strategy to 
overcome resistance, which will be explored in 
the next section.

Neuroendocrine differentiation in prostate 
cancer: EMT-MET link in emergence of treat-
ment-induced NEPC

CRPC initially remains androgen-sensitive and 
is treated with androgen receptor pathway 
inhibitors (ARPIs) such as enzalutamide and 
abiraterone [10]. However, prolonged ARPI ther-
apy often leads to androgen resistance and 
neuroendocrine differentiation (NED) in CRPC 
cells [135]. These neuroendocrine-like cells 
lose AR expression and acquire neuroendo-
crine markers, such as chromogranin A, neu-
ron-specific enolase, and synaptophysin [15, 
142]. By escaping AR pathway inhibition, these 
cells continue to proliferate, resulting in treat-
ment-induced neuroendocrine prostate cancer 
(T-NEPC), a lethal form of prostate cancer that 
arises in advanced stages of CRPC treatment 
[10]. The increasing use of potent ARPIs has 
contributed to a rise in T-NEPC incidence [10]. 
Emerging evidence suggests that epithelial-
mesenchymal transition (EMT) and its reverse, 
mesenchymal-epithelial transition (MET), play 
critical roles in T-NEPC development [23, 143].

T-NEPC is characterized by overexpression of 
oncogenes such as AURKA and MYCN, which 
upregulate SOX and EZH2, promoting lineage 
plasticity and NED. These changes inhibit AR 
signaling and drive aggressive tumor behavior 
[144]. The loss of tumor suppressor genes 
TP53 and RB1 further exacerbates this pro- 
cess by enabling unchecked cell cycle progres-
sion and resistance to ADT [10]. Additionally, 
molecular pathways such as PI3K-AKT-mTOR 
and Wnt-ABI1-STAT3 are implicated in driving 
NED and tumor progression.

The EMT-MET interconversion dynamic is a  
fundamental molecular program involved in 
developmental processes, such as embryonic 
gastrulation and prostate gland formation [11]. 
In T-NEPC, tumors exhibit reprogramming to a 
pluripotent stem cell-like state, mediated by 
EMT-MET cycling [11]. Neuroendocrine cells 
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pass through hybrid transition states, co-ex- 
pressing epithelial markers (e.g., E-cadherin, 
EPCAM) and mesenchymal markers (e.g., 
N-cadherin, cadherin-11) [20]. This hybrid phe-
notype allows rapid adaptation to environmen-
tal cues and facilitates phenotypic plasticity,  
a hallmark of T-NEPC.

Mechanisms driving EMT-MET interconversion 
in T-NEPC

Several mechanisms have been proposed as 
driving induction of EMT-MET interconversion 
dynamic in the development of T-NEPC. One of 
the mechanisms involves ADT-mediated induc-
tion of AR splice variants, such as for example 
AR-V7, which are linked to EMT activation and 
stem-cell-like characteristics [145]. Another 
key regulator of EMT-MET is the Abelson 
Interactor 1 (ABI1) gene. The ABI1 gene stabi-
lizes the WAVE complex, which is critical for 
maintaining cell-cell adhesion. Loss of ABI1 
reduces adhesion and increases cell migratory 
potential [91]. In prostate cancer cell models, 
ABI1 depletion activates non-canonical Wnt 
signaling, leading to STAT3 activation and  
transcription of EMT-related genes [129]. Im- 
portantly, ABI1 expression is suppressed by 
anti-AR treatments and in NEPC tumors, sug-
gesting co-regulation between ABI1 and AR, 
and positioning ABI1 as a potential therapeutic 
target in NEPC [47].

TGF-β is a critical driver of EMT-MET intercon-
versions, functionally activates serine-threo-
nine membrane kinases, which phosphorylate 
Smad proteins. These Smad complexes trans-
locate to the nucleus and regulate EMT-MET-
related gene transcription. During ADT, AR 
downregulation enhances ZEB1 expression, 
inducing EMT and promoting mesenchymal 
characteristics. EMT transcription factors, such 
as SNAIL, SLUG, and TWIST, repress E-cadherin, 
disrupt epithelial integrity, and drive plasticity 
[23]. Additionally, TWIST suppresses apoptosis 
and promotes angiogenesis, further contribut-
ing to T-NEPC progression [23]. The interplay 
between EMT-MET dynamics, AR signaling, and 
lineage plasticity underscores the complex mo- 
lecular mechanisms driving T-NEPC develop-
ment. Understanding these processes pro- 
vides a foundation for developing targeted ther-
apies to combat this lethal form of prostate 
cancer.

Translational impact of lineage plasticity: in 
therapy and biomarker development

Targeting EMT-MET to overcome resistance: 
preclinical studies

Exploiting the dynamic interplay of EMT-MET in 
prostate cancer progression and therapeutic 
resistance offers a promising opportunity to 
enhance treatment responses and improve 
patient survival [9]. Understanding windows of 
susceptibility during these transitions may help 
optimize standard-of-care treatments without 
requiring significant regulatory changes.

Preclinical studies from our group have shown 
that cabazitaxel promotes MET, driving pros-
tate cancer cells toward epithelial phenotypes 
[13]. This phenotypic shift reduces tumor inva-
siveness and may sensitize epithelial popula-
tions to further therapeutic interventions [32, 
146, 147]. For example, androgen deprivation 
therapy (ADT), which targets the N-terminal 
transcriptional activity of AR, induces EMT- 
MET interconversions, leading to improved 
responses to docetaxel in preclinical models 
[148]. Sequencing ADT before taxane chemo-
therapy, such as cabazitaxel, has shown effica-
cy in androgen-sensitive prostate cancer [149]. 
However, this strategy is less effective in cas-
tration-resistant models. In recent studies, 
cabazitaxel administered after ADT cessation 
promoted an epithelial phenotype in patient-
derived xenograft (PDX) models of CRPC, pro-
viding additional rationale for its use in thera-
peutic sequencing [141].

Upfront treatment with taxane chemotherapy, 
as demonstrated in the STAMPEDE trials, sup-
ports this approach clinically. Administering 
docetaxel within nine weeks of initiating ADT 
resulted in a 10-month survival benefit, a 22% 
reduction in mortality risk, and delayed meta-
static progression [150, 151]. Targeting tran-
scriptional regulators of EMT, such as TWIST, 
has also shown promise in enhancing taxane 
sensitivity, creating therapeutically vulnerable 
phenotypes [152]. While directly targeting EMT 
transcription factors poses challenges due to 
potential off-target effects, research has shift-
ed toward inhibiting downstream effectors. For 
instance, monoclonal antibodies against the 
mesenchymal marker N-cadherin delayed tu- 
mor growth and progression in preclinical mo- 
dels by reducing activity in downstream path-
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ways, including IL-6, IL-8, and AKT signaling 
[124]. Early clinical trials using Exherin (ADH-1), 
an antagonistic N-cadherin peptide, have sh- 
own delayed progression to castration resis-
tance with modest improvements in CRPC out-
comes [136, 153].

Further research is needed to elucidate the 
precise role of EMT-MET dynamics in the devel-
opment of treatment-induced neuroendocrine 
prostate cancer (T-NEPC). Targeting programs 
related to neuroendocrine differentiation (NED) 
and EMT-MET cycling may offer novel therapeu-
tic avenues. Promising approaches include 
inhibitors of MYCN/AURKA, EZH2 [15, 20] and 
the Wnt-ABI1-STAT3 pathway, as well as block-
ers of IL-6-STAT3 and mTOR signaling [91]. 
These strategies hold potential to mitigate ther-
apeutic resistance and improve outcomes in 
aggressive, treatment-resistant prostate can- 
cer.

Clinical trials exploiting EMT-targeted therapy

Efforts to target epithelial-mesenchymal transi-
tion (EMT) pathways in metastatic castration-
resistant prostate cancer (mCRPC) have fo- 
cused on impairing EMT-MET signaling to im- 
prove progression-free survival (PFS). To date, 
22 clinical trials have investigated EMT-target- 
ed therapies in mCRPC (Table 1). While these 
studies demonstrate the potential for EMT-
targeted approaches, they also underscore the 
challenges associated with these therapies.

CCL2 and interleukin-6 (IL-6) inhibitors: The 
earliest trials, initiated in 2012, explored CCL2 
inhibition using Carlumab in patients with 
mCRPC who had failed docetaxel therapy 
(NCT00992186). Unfortunately, Carlumab mo- 
notherapy did not improve PFS [154]. Sub- 
sequent trials shifted focus to IL-6 inhibitors, 
such as Siltuximab. While Siltuximab showed 
modest anti-tumor activity in patients pre- 
treated with taxanes (NCT00433446) [155],  
a phase 2 non-randomized trial combining 
Siltuximab with mitoxantrone/prednisone de- 
monstrated no improvement in PFS compared 
to mitoxantrone/prednisone alone (NCT0038- 
5827). Consequently, this trial was discontin-
ued due to lack of efficacy. The results of a 
Siltuximab-docetaxel combination trial are still 
pending (NCT00401765).

Heat Shock Protein (Hsp) inhibitors: Hsp inhibi-
tors targeting Hsp27 and Hsp90 were explored 

for their potential to disrupt EMT. Apatorsen,  
an Hsp27 inhibitor, demonstrated good tolera-
bility with minimal adverse effects in a phase 1 
trial (NCT00487786) [156], leading to phase  
2 trials. However, in a non-randomized trial, 
Apatorsen combined with prednisone did not 
improve PFS compared to prednisone al- 
one (NCT01120470). Another trial combining 
Apatorsen with abiraterone and prednisone 
was terminated due to low patient accrual 
(NCT01681433). Hsp90 inhibitors Ganetespib 
and Onalespib were also evaluated, but nei- 
ther showed clinical efficacy as monotherapy  
or in combination therapy (NCT01270880, 
NCT01685268).

Receptor tyrosine kinase (RTK) and tyrosine 
kinase (TK) inhibitors: Given the central role of 
RTKs in EMT signaling, RTK and TK inhibitors 
have also been investigated. Dovitinib, an RTK 
inhibitor, showed modest anti-tumor activity in 
a trial where chemo-naïve patients benefitted 
the most (NCT01741116) [157]. However, 
another Dovitinib trial combining it with ADT 
was discontinued due to budgetary con- 
straints (NCT02065323). Similarly, direct TK 
inhibitors such as Dasatinib (NCT00744497, 
NCT01990196) and Masitinib (NCT03761225) 
did not yield favorable results [158].

Emerging therapies and future directions

Hsp inhibition has also been investigated in  
the context of EZH2, a downstream effector of 
Hsp that promotes EMT. Drugs such as CPI-
1205, Mevrometostat, and Tezmetostat are 
currently being studied in mCRPC. Preliminary 
results with Mevrometostat combined with 
enzalutamide are promising (NCT03480646, 
NCT03460977, NCT04179864). Similarly, tri-
als investigating TGF-β receptor inhibitors 
(Galunisertib, NCT02452008) and polycomb 
receptor complex 2 inhibitors (ORIC-944, 
NCT05413421) are ongoing (Table 1).

The limited success of EMT-targeted therapies 
can be attributed to several factors. Most clini-
cal trials targeted single EMT pathways, which 
may have allowed compensation by alterna- 
tive pathways, limiting efficacy. Additionally, 
economic constraints led to the termination of 
some trials, highlighting the financial challeng-
es of developing novel drugs. Despite these 
setbacks, these therapies were generally well-
tolerated, suggesting that EMT-targeted strate-
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Table 1. Summary of clinical trials exploring epithelial-mesenchymal transition targeted therapy
NCT Number Year Drug Target Phase Design Status Outcome of Interest Findings
NCT00992186 2012 Carlumab CCL2 Phase 

2
Single-arm Completed Progression-free survival of patients with CRPC 

who were previously treated with Docetaxel
Carlumab was well tolerated, but did not 
show antitumor activity as a monotherapy 
against CRPC

NCT00433446 2013 Siltuximab Interleukin 6 Phase 
2

Single-arm Completed Progression-free survival after receiving Siltux-
imab in patients with CRPC who received prior 
taxane therapy

Siltuximab resulted in 3.8% PSA response 
rate, and 23% of patients had stable 
disease as per the RECIST criteria. Baseline 
elevated IL6 was associated with poorer 
prognosis

NCT00385827 2014 Siltuximab Interleukin 6 Phase 
2

Two-arm  
nonrandomized

Terminated Progression-free survival after receiving  
Siltuximab + mitoxantrone/prednisone versus 
mitoxantrone/prednisone alone

Though Siltuximab was well tolerated, there 
was no improvement in progression-free 
survival and so the study was terminated

NCT00401765 2014 Siltuximab Interleukin 6 Phase 
1

Single-arm Completed Safety and efficacy of using Siltuximab in  
combination with Docetaxel in patients with CRPC

No results posted

NCT00487786 2016 Apatorsen Heat Shock Pro-
tein 27 inhibitor

Phase 
1

Single-arm Completed Safety and Efficacy of Apatorsen monotherapy in 
patients with CRPC, breast, ovary, lung, or bladder 
cancer

Apatorsen was well tolerated and can be 
safely administered

NCT01120470 2019 Apatorsen Heat Shock Pro-
tein 27 inhibitor

Phase 
2

Two-arm Completed Progression-free survival of apatorsen with 
prednisone compared to prednisone alone in 
chemo-naïve patients

The addition of apatorsen did not increase 
progression-free survival when compared to 
prednisone alone

NCT01681433 2022 Apatorsen Heat Shock Pro-
tein 27 inhibitor

Phase 
2

Two-arm Terminated Progression-free survival of patients receiving 
Abiraterone and prednisone with apatorsen  
compared to abiraterone and prednisone alone

Study terminated due to lack of accrual

NCT01270880 2018 Ganetespib Heat Shock Pro-
tein 90 inhibitor

Phase 
1

Single-arm Completed Six-month progression-free survival after 
Ganetespib in men with CRPC who received prior 
docetaxel therapy

As a single therapy, Ganetespib did not pro-
long progression free survival. All patients 
had disease progression by 6 months

NCT01685268 2019 Onalespib Heat Shock Pro-
tein 90 inhibitor

Phase 
1 and 
2

Two-arm 
stratified by 
regimens

Completed Tolerability and antitumor activity of onalespib in 
combination with abiraterone/prednisone

Onalespib with abiraterone/prednisone 
showed mild evidence of biological effect, 
but no clinical effect

NCT02065323 2015 Dovitinib Receptor 
Tyrosine Kinase 
inhibition

Phase 
2

Two-arm Withdrawn Progression-free survival in patients with mCRPC 
after Dovitinib therapy with ADT in comparison to 
ADT alone

Terminated due to budgetary  
considerations and length of development

NCT01741116 2018 Dovitinib Receptor 
Tyrosine Kinase 
inhibition

Phase 
2

Single-arm Completed Progression-free survival in patients with mCRPC 
after 16 weeks of Dovitinib therapy

Dovitinib showed modest anti-tumor activity 
with manageable toxicity. Patients who were 
chemo-naïve benefitted more

NCT01994590 2019 Dovitinib Receptor 
Tyrosine Kinase 
inhibition

Phase 
2

Single-arm Terminated Progression-free survival in patients with mCRPC  
after Dovitinib therapy in combination with  
Abiraterone

Study terminated as sponsor stopped  
supplying the drug

NCT00744497 2016 Dasatinib Tyrosine kinase 
inhibitor

Phase 
3

RCT Completed Overall survival after Docetaxel + Dasatinib in  
comparison to Placebo

The addition of dasatinib did not increase 
overall survival

NCT03761225 2021 Masitinib Tyrosine kinase 
inhibitor

Phase 
3

RCT Completed Progression-free survival after Docetaxel +  
Masitinib in comparison to Docetaxel + Placebo

No results posted

NCT01990196 2023 Degarelix,  
Enzalutamide,  
Trametinib, Dasatinib 

Src and/or MEK 
inhibition of 
tyrosine kinase

Phase 
2

Two-arm  
nonrandomized

Active, not 
recruiting

Change in molecular signature after AR inhibition 
with and without SRC and/or MEK inhibition

No results posted
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NCT00887640 2014 Temsirolimus mTOR, VEGF Phase 
2

Single-arm Terminated Impact of Temsirolimus on CTC count at 8 weeks Study terminated

NCT03480646 2021 CPI-1205 EZH2 inhibitor Phase 
1 and 
2

Two-arm Unknown To assess safety and efficacy of CPI-1205, and to 
assess its antitumor activity in combination with 
enzalutamide or abiraterone/prednisone

Unknown

NCT03460977 2024 Mevrometostat EZH2 inhibitor Phase 
1 and 
2

Single-arm Recruiting, 
preliminary 
findings posted

Safety and efficacy of Mevrometostat in combina-
tion with enzalutamide + ADT

Mevremostat + enzalutamide shows prom-
ising activity in combination with ADT with 
manageable adverse effect profile

NCT04179864 2024 Tazemetostat EZH2 inhibitor Phase 
1 and 
2

Single-arm Active, not 
recruiting

Safety and efficacy of Tazemetostat in  
combination with Enzalutamide or Abiraterone/
Prednisone

No results posted

NCT05413421 2023 ORIC-944 Polycomb recep-
tor complex 2 
inhibitor

Phase 
1

Single-arm Recruiting Safety and preliminary antitumor activity of  
ORIC-944 in patients with mCRPC

No results posted

NCT02204943 2018 Radium-223 Osteoblastic 
plasticity of 
CRPC

Phase 
2

Single-arm Completed Impact of Radium-223 on CTC B-ALP levels CTC B-ALP expression was decreased in 
31% of men

NCT02452008 2024 Galunisertib TGF-β Receptor 
Inhibitor

Phase 
2

RCT Active, not 
recruiting

Progression-free survival after enzalutamide +  
Galunisertib compared to enzalutamide alone

No results posted
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gies could be safely integrated into mCRPC 
treatment regimens. Future clinical trials should 
focus on combining drugs that target conver-
gent EMT pathways to enhance efficacy while 
maintaining cost-effectiveness. Moreover, gi- 
ven the role of TGF-β receptor activity and long 
non-coding RNAs in regulating cancer cell apop-
tosis, future studies could prioritize apoptosis 
as a primary endpoint to better evaluate thera-
peutic effectiveness [104, 159-162]. Future 
clinical trials exploring the combination of drugs 
blocking convergent EMT pathways, which are 
cost-effective, and can demonstrate the effica-
cy of mono- or combination therapies may pro-
vide mCRPC patients with an alternate and 
safe form of therapy, thereby blocking pro- 
gression to advanced disease and improving 
survival.
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