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Abstract: Objectives: This study aims to evaluate the overall impact of incorporating deep learning (DL) with mag-
netic resonance imaging (MRI) for improving diagnostic performance in the detection and stratification of prostate 
cancer (PC). Methods: A systematic search was conducted in the PubMed database to identify relevant studies. The 
QUADAS-2 tool was employed to assess the scientific quality, risk of bias, and applicability of primary diagnostic ac-
curacy studies. Additionally, adherence to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guide-
lines was evaluated to determine the extent of heterogeneity among the included studies. The systematic review 
followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Results: 
A total of 29 articles involving 17,954 participants were included in the study. The median agreement to the 42 
CLAIM checklist items across studies was 61.90% (IQR: 57.14-66.67, range: 40.48-80.95). Most studies utilized 
T2-weighted imaging (T2WI) and/or apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging 
(DWI) as input for evaluating the performance of DL-based architectures. Notably, the detection and stratification of 
PC in the transition zone was the least explored area. Conclusions: DL demonstrates significant advancements in 
the rapid, sensitive, specific, and robust detection and stratification of PC. Promising applications include enhanc-
ing the quality of DWI, developing advanced DL models, and designing innovative nomograms or diagnostic tools to 
improve clinical decision-making.
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Introduction

Despite the advancements in various approa- 
ches for prostate cancer (PC) assessment and 
therapeutic interventions, PC remains a signifi-
cant health concern among men. As of 2020, 
PC was the second most frequently diagnosed 
cancer in men and the fifth leading cause of 
cancer-related mortality worldwide [1]. The in- 
cidence rates vary substantially between tran-
sitioned and transitioning countries, with rates 
of 37.5 and 11.3 per 1,00,000, respectively. 
However, mortality rates exhibit less variation, 
recorded at 8.1 and 5.9 per 1,00,000 respec-
tively [1]. Notably, PC is the most frequently 
diagnosed cancer in more than half of the 

countries worldwide [1]. In the United States 
alone, projections for 2023 estimated inciden- 
ce of 2,88,300 new PC cases and 34,700 
PC-related deaths [2].

One of the primary challenges in PC manage-
ment is the absence of an early and definitive 
detection modality. Early detection of PC, par-
ticularly at the localized stage, enables effec-
tive management and substantially improves 
survival rates. The current detection protocol 
for PC follows a multimodal approach, incorpo-
rating digital rectal examinations (DRE) [3], 
serum prostate-specific antigen (PSA) level [4], 
Trans-Rectal Ultrasound (TRUS) [5], multi-para-
metric-magnetic resonance imaging (mpMRI) 
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Table 1. Limitations of current prostate cancer detection modalities
Sr. No. Detection modality Limitations
1 DRE Crude approach, Not specific for prostate cancer, Subjective test [9], Inter-exam-

iner variability [10], False positivity [17]
2 Serum PSA False positivity [11], false negativity [11], Higher probability of false positivity 

associated with factors; Alcohol intake, Age, urinary tract infection [11]. Lower 
probability of false positivity associated with Diabetes mellitus type II [11]

3 TRUS prostate Poor accuracy in local staging [5], Fails to stratify the gradings of the PC
4 Mp-MRI prostate Inter-observer variability [15, 16], Intra-observer variability [16], False negativity 

[13, 14] and False positivity [13], Very subtle visual differences among benign 
tissue, indolent cancer and aggressive cancer leads to challenging interpretation 
[12]. Difficult to evaluate cancer in central gland, Not suitable for patients hav-
ing low eGFR (<30) for contrast-based studies, claustrophobic nature, metallic 
implant in the imaging field. Time consuming tactic 

5 Prostate TRUS-biopsy Blind to the location of the prostate [13], over-diagnosis of clinically insignificant 
prostate cancer [13], under-diagnosis of clinically significant prostate cancer 
[13], including the condition if tumor is small, present at restricted zone to 
approach by biopsy needle. Post-TRUS biopsy complications [5] e.g. Haemato-
spermia, bleeding from urethra, urinary bladder, fever, urosepsis, rectal bleeding, 
prostatitis, epididymitis, urine retention, etc.

[6], TRUS biopsy [7] and TRUS/MRI-guided 
fusion biopsy [8], However, each of these 
modalities presents inherent limitations [5, 
9-17] (Table 1). 

A meta-analysis of pooled data sets has re- 
ported sensitivity and specificity values for dif-
ferent modalities: DRE (51% and 59%) [17] PSA 
(93%, and 20%) [18] TRUS-biopsy (48% and  
96%) [13] and mpMRI (93% and 41%) [13]. 
Additionally, for detecting extracapsular exten-
sion (T3 disease), TRUS sensitivity and specific-
ity range from 50% to 92% and 46% to 91%, 
respectively [5].

MRI has emerged as a promising non-invasive 
and non-ionizing imaging technique for PC diag-
nostics. mpMRI integrates anatomical imaging, 
such as T2 weighted imaging (T2WI), with func-
tional MRI techniques, including diffusion-
weighted imaging (DWI), DWI derived apparent 
diffusion coefficient (ADC) mapping, and dyna- 
mic contrast enhanced (DCE) imaging. MpMRI 
plays a crucial role in PC risk stratification by 
reducing, unnecessary biopsies and minimizing 
overtreatment [19, 20]. 

This imaging techniques has demonstrated 
sensitivity and specificity rates exceeding 80%, 
particularly when utilizing a combination of 
anatomical and functional imaging sequences. 
Notably, DWI outperforms T2WI alone in sensi-

tivity, area under the receiver operating charac-
teristics (AUROC), and specificity [21].

The Prostate Imaging Reporting and Data 
System (PI-RADS) serves as a standardized 
framework for lesion evaluation based on struc-
tured scoring criteria [19, 22-24]. PI-RADS out-
lines the minimal technical requirements for 
prostate mpMRI acquisition and the Prostate 
imaging quality (PI-QUAL) scoring system has 
been introduced to enhance diagnostic accu-
racy [25]. PI-RADS version 2.1 includes refine-
ments for scoring ambiguous lesions, particu-
larly in the transition zone (TZ) on T2WI and 
update lesion assessment using DWI [26]. 
However, despite these improvements, PIRADS 
exhibits inter- and intra-observer variability, 
necessitating a high level of expertise for accu-
rate assessment [15, 16] (Table 2). The pooled 
diagnostic performance of PI-RADS v2.1, for 
clinically significant(cs) PC shows sensitivity 
and specificity of 90% and 62%, respectively, 
for the whole gland (WG) assessment, and 
0.90% and 0.67%, for the TZ. While PI-RADS 
v2.1 shows marginal improvement in sensitivity 
over PI-RADS v2, its specificity is reduced, 
increasing the likelihood of unnecessary tar-
geted biopsies for PI-RADS 3 lesions [29].

Several advanced MRI pulse sequences, such 
as diffusion tensor imaging (DTI) [30], Blood 
oxygenation level dependent (BOLD) [31] and 
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Table 2. Limitations of PIRADS 2.1
Sr. No. Limitations of PIRADS 2.1 Suggestive remarks
1 Lack of MRI based detection protocol for post-treatment 

monitoring of suspected PC recurrence, PC progression 
during surveillance

Should be included in revised version

2 Lack of detection protocol to investigate the other parts 
of the body having possibility to be involved with PC

Should be included in revised version

3 Lack of consensus-based surveillance strategies for PC 
detection at early stage

Should be included in revised version

4 Lack of elucidated or prescribed optimal technical 
parameters

Should be included in revised version

5 May miss the clinically significant PC, could possibly 
affect patient outcome [27]

PIRADS 2.1 guidelines with higher precision 
could curtail the unnecessary biopsy [27]

6 Lack of assessment of the background [28] Inclusion of description of factors affecting 
mpMRI based PC detection [28]

7 Lack of guidelines for incidental outcomes. e.g. lesions 
involving central zone (CZ) [28]

A rational approach would be applied the crite-
ria for the zone of origin of the lesion [28]

arterial spin labelling (ASL) [32] have demon-
strated potential in PC detection and stra- 
tification. Ongoing research are needed to opti-
mize the combination of pulse sequences, with 
some advocating for the exclusion of DCE imag-
ing to enhance patient safety, reduce imaging 
time, and minimize costs. Additionally, the in- 
tegration of advanced image processing tech-
niques, including computer-aided diagnosis 
(CAD), is pivotal in refining diagnostic pro- 
tocols.

The PI-RADS steering committee actively en- 
courages the continued development of inno-
vative MRI methodologies for PC assessment 
and local staging. Future strategies extend 
beyond the current PI-RADS v2.1 framework, 
aiming to incorporate novel and advanced 
research tools [24] (Table 3).

Artificial intelligence (AI) has revolutionized dis-
ease detection by improving accuracy, effi- 
ciency, and diagnostic throughput. Machine 
Learning (ML), a subfield of AI, employs proba-
bilistic and statistical tools to recognize pat-
terns in large datasets, thereby facilitating 
informed decision-making [40-42]. CAD, which 
fuses imaging feature analysis with ML classifi-
cation, has shown considerable promise in 
assisting radiologists by enhancing diagnostic 
accuracy while being cost-effective [43]. Fur- 
thermore, Deep learning (DL), a specialized 
subfield of ML, utilizes artificial neural network 
(ANN) to extract meaningful patterns from data. 
DL has demonstrated promising results across 

various computer vision tasks, including seg-
mentation, classification and, object detection 
[44-46] (Figure 1).

Despite the growing body of literature on MRI 
and AI-based approaches for PC detection, 
existing studies lack a comprehensive and up-
to-date review of the combined impact of DL 
and MRI methodologies on diagnostic perfor-
mance. A thorough evaluation of recent ad- 
vancements and findings in this field is essen-
tial to further refine PC detection and stratifica-
tion strategies, ultimately improving clinical 
outcomes.

Methods and analysis

Search strategy and sources

The PubMed database query was conducted 
using the search terms; “prostate cancer” AND 
“magnetic resonance imaging” AND “deep 
learning”, focusing on articles indexed in Me- 
dline. To ensure relevance, only full text articles 
published between January 2019 to March 
2023, were included. The systematic review  
followed the Preferred Reporting Items for 
Systematic Reviews and Meta-analysis (PR- 
ISMA) guidelines [47] with a PRISMA checklist 
provided in Appendix 1.

Inclusion criteria

Studies were included if they met the following 
criteria: 1. Original articles indexed in PubMed 
and Medline. 2. Published between January 
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Table 3. Potential tactics under consideration for MRI-based prostate cancer diagnosis
Sr. 
No.

Further promising prostate MRI 
methodologies [24] Interpretations Parameters References

1 Diffusion Tensor Imaging (DTI) Microstructural properties of prostatic tissue [30] Fractional Anisotropy (FA), Mean Diffusivity (MD) [30]
2 Blood Oxygenation Level  

Dependent (BOLD)
Identification and quantification of regional distribu-
tion of hypoxia [31]

Rate of relaxation (R2*) [31]

3 Arterial Spin Labelling (ASL) Tissue perfusion measurement by using magnetically 
labelled arterial blood protons

Signal intensity, Contrast ratio (CR), Perfusion rate (f) [32]

4 Magnetic Resonance  
Spectroscopic Imaging (MRSI)

Evaluation of extent and aggressiveness of primary 
and recurrent PC [33]

Chemical shift [33]

5 Diffusion Kurtosis Imaging (DKI) Investigation of diffusion of water molecule and de-
tection of the lesion microstructure [34]
Relies on non-gaussian diffusion of water in biological 
system [35]

Mean Kurtosis (MK), Mean diffusivity (MD),  
Fractional Anisotropy (FA), Axial Kurtosis (AK), Radial 
Kurtosis (RK)

[34, 35]

6 MR-PET Modality with combination of anatomic, functional 
and metabolic information [36]

ADC, Standardized Uptake Value (SUV) [36]

7 Ultra-small superparamagnetic 
iron oxide (USPIO) agents

USPIO agents imaged with MRI,
Method for visualizing lymph node metastasis [37]

T2* relaxation [37]

8 Multiple b values assessment of 
fractional ADC

Quantitative evaluation of prostate cancer risk strati-
fication

ADC calculation on different b values [38]

9 Intravoxel-incoherent motion 
(IVIM) DWI

Separation of perfusion and diffusion Pure tissue diffusion coefficient (Ds), Pseudo 
diffusion coefficient (Df), Volume fraction of pseudo 
diffusion (fp)

[39]
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Figure 1. Schematic presentation of DL-based framework for detection and classification of prostate cancer.

2019 to March 2023. 3. Utilized DL with MRI 
for the PC detection and/or stratification. 4. 
MRI data acquired at a field strength of 3.0 
Tesla. 5. Articles written in English. 6. Full text 
access availability.

Exclusion criteria

Studies were excluded if they met any of  
the following criteria: 1. Duplicate records. 2. 
Review articles, systematic reviews, meta-anal-
ysis, editorials, books, or other non-original 
research documents. 3. Use of non-relevant 
imaging techniques (e.g., CT, PET). 4. Focused 
on unrelated topics (e.g., segmentation, ra- 
diotherapy).

Study selection and data extraction

Records were retrieved from the database 
search, and duplicates were manually identi-
fied and removed by a single reviewer. Titles 
and abstracts of individual records were sc- 
reened to ensure they met the inclusion crite-
ria. The selected articles were then thoroughly 
reviewed and parameters relevant to the study 
design including patient cohort, DL methodolo-
gy and performance matric were extracted and 
summarized (Table 4). Articles that were not 
written in English were excluded.

Quality of included articles

The assessment of the scientific quality of the 
included original articles was evaluated using 
the checklist for Artificial Intelligence in Medi- 
cal Imaging [CLAIM] [48] (Figure 2; Appendix 
2). The median agreement across 42 CLAIM 
items was 61.90% (IQR: 57.14-66.67, range 
40.48-80.95%).

Additionally, the risk of bias was evaluated 
using the QUADAS-2 tool, which identified five 
studies [51, 62-64, 71] as being at high risk of 
bias (Figures 3, 4). 

Result

A total of 168 records were retrieved, of which 
139 were excluded based on predefined exclu-
sion criteria, leaving 29 articles for further anal-
ysis (Figure 5). The included studies were sum-
marized with year-wise distribution (Figure 6A), 
patient distribution (Figure 6B), the proportion 
of prospective versus retrospective studies 
(Figure 6C), distribution of prospective and ret-
rospective studies based on number of sites 
involved (Figure 6D).

A final set of 29 eligible articles included a total 
of 17,954 participants. Most of the studies 
were mono-centric (62.06%) and retrospective 
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Table 4. A detailed summary of included studies

Sr. 
No. Objective Retrospective/

Prospective

Multicentic
study

Yes/No

No of  
participants

Sequences
used in DL 
workflow

DL  
network Result Year References

1 PC detection, localization and 
segmentation

Retrospective No 19 T2WI Deep encoder-decoder
3D CNN

AUC: 0.995
Accuracy: 0.894
Recall: 0.928

2019 Akadi R et al. 
[49]

2 Comparative evaluation of 
DL based model to PI-RADS 
outcomes

Retrospective No 312 T2, DWI, 
ADC

UNet For PIRADS ≥4 vs. DL system 
(Probability threshold (≥0.33)
Sensitivity=88% vs. 92% (P>0.99)
Specificity=50% vs. 47% (P>0.99)

2019 Schelb P. et 
al. [50]

3 PC stratification Retrospective Yes 244 T2WI
ADC

AlexNet Accuracy: 86.92%
Precison: 86.57%

2019 Yuan Y. et al 
[51]

4 PC detection, classification Retrospective No 204 T2WI, ADC, 
DCE

Model 1. VGG
Model 2. Inception-Net

AUC model 1: 0.81
AUC model 2: 0.83

2019 Chen Q et al. 
[52]

5 Development of DL based 
model to detect csPC in low-risk 
PC cases

Prospective No 292 T2WI, DWI 
and ADC

3D CNN Average Sensitivity=82-92%
Average Specificity=43-76%
Average AUC=0.65 to 0.89

2020 Arif M. et al. 
[53]

6 PC detection and classification, 
Pulse sequence combination 
optimization for DL model

Retrospective No 346 T2WI, DWI, 
ADC

MISN
PZN
TZN

ROC: 0.95 2020 Wang Y. et al. 
[54]

7 PC Detection Retrospective Yes 592 T2WI, DWI, 
ADC

CLaD AUC: 0.81
Sensitivity: 83.23%
Specificity: 59.18%
Accuracy: 77.92%

2021 Hiremath A., 
et al. [55]

8 PC Detection Retrospective No 553 T2WI and 
DWI

Focal-Net Differential sensitivity of Focal Net: 
5.1%, 4.7% below the radiologist 
performance for CSPC and index 
lesions PC, respectively

2021 Cao R. et al. 
[56]

9 PC detection Retrospective No 424 T2WI, ADC SPCNet For csPC detection
ROCRP: 0.75
ROCBX: 0.80

2021 Seetharaman 
A, et al. [57]

10 PC detection Retrospective No 100 T2WI, DWI, 
ADC

CNN For csPC with PIRADS ≥4
AUCradiologist: 0.84
AUCDL-CAD: 0.88
P=0.010

2021 Winkel DJ et 
al. [58]

11 PC detection Retrospective No 259 T2WI, ADC UNet For PI-RADS ≥3 vs.
Probability threshold d3:
Sensitivity: 98% vs. 99% (P>0.99)
Specificity: 17% vs. 24% (P>0.99)
For PI-RADS ≥4 vs. Probability 
threshold d4, 
Sensitivity: 84% vs. 83% (P>0.99)
Specificity: 58% vs. 55% (P>0.99)

2021 Schelb P et 
al. [59]
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12 PC detection Retrospective No 414 DWI CNN Shallow CNN with random rotation
AUCvalidation: 88.93%
AUCtest: 85.04%

2021 Hao R. et al. 
[60]

13 Transition zone PC detection Retrospective Yes 364 T2WI, ADC UNet Test set: using only ADC map as 
input,
Sensitivity: 0.829
Precision: 0.617

2021 Wong T. et al. 
[61]

14 Assessment of image quality 
and diagnostic performance us-
ing DLR for suspected PC 

Retrospective No 60 DWI, ADC Deep learning recon-
struction (DLR)

For differentiation of malignant 
from benign:
DWI3000 with DLR vs. without DLR:
AUC: 0.89, 0.86
Sensitivity: 79%, 72%
Specificity: 84%, 86%
Accuracy: 82%, 79%

2022 Ueda T., et al. 
[62]

15 Establishment of DL based fully 
automated detection system 
for PC 

Retrospective Yes 525 T2WI, DWI, 
ADC

UNet and AH-Net For test set sensitivity for UNet 
and AH-Net: 72.8% and 63.0%, 
respectively

2022 Mehralivand 
et al. [63]

16 DL based setup for PC detection 
and classification

Retrospective Yes 1390 T2WI, DWI, 
ADC

3D U-Net Sensitivity: 56.1%,
PPV: 62.7%,
PI-RADS classification accuracy: 
30.8%

2022 Mehralivand 
et al. [64]

17 Localization, segmentation, 
GGG estimation of PC lesion

Prospective Yes  565 T2WI, DWI, 
ADC and 
Ktrans

Retina-UNet For test set, lesion level, GGG ≥2;
ProstateX data:
AUC: 0.96
Sensitivity:1.0
Specificity: 0.79
IVO:
AUC: 0.95
Sensitivity: 1.0
Specificity: 0.8

2022 Pellicer-
Valero OJ et 
al. [65]

18 Accelerated PC MRI and detec-
tion

Retrospective No 113 T2WI, DWI Variational Network
(VN) for image recon-
struction

For PIRADS ≥3,
Standard vs. VN-bpMRI perfor-
mance: statistically non-signifi-
cant.
Runtimestd: 11.8 minutes
RuntimeVN: 3.2 minutes

2022 Johnson PM. 
et al. [66]

19 PC detection and localization Retrospective Yes 2734 T2WI, ADC, 
DWI

DL-CAD AUC: 0.85 2022 Hosseinza-
deh M. et al. 
[67]

20 PC detection and localization Retrospective Yes 241 T2WI, ADC Auto DL for CG
AUC: 0.94 
With input T2 and ADC

2022 Zong W. et al. 
[68]
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21 Identification and localization of 
indolent and aggressive PC

Retrospective No 443 T2WI, ADC CorrSigNIA Segregated with and without PC 
with accuracy: 80%

2022 Bhattacharya 
I. et al. [12]

22 Detection and localization Retrospective No 390 T2WI, DWI, 
ADC

SPCNet Model trained with digital patholo-
gist labels: detection rate in Radi-
cal prostatectomy cohort: Aggres-
sive lesion ROC-AUC: 0.91-0.94 

2022 Bhattacharya 
I, et al. [69]

23 PC detection
rate

Retrospective No 170 T2WI, DWI 
and ADC

Quantib Prostate For inexperienced reader
Detection rate for csPC using 
bpMRI, Quantib and qADC: 0.16, 
0.17 and 0.14 respectively
For experienced reader 
Detection rate for csPC using bpM-
RI, Quantib, qADC and mpMRI:
0.18, 0.19, 0.16 and 0.20 respec-
tively

2022 Cippolari S 
et al. 2022 
[70]

24 PC detection Retrospective Yes 1861 T2, DWI, 
ADC

ResNet The specificity of PIDL-CS for the 
detection of csPC was much high-
er than that of PI-RADS (P<0.05)

2023 Zhao L et al 
[15]

25 PC detection Retrospective No 354 T2WI, fDWI, 
zDWI

DL-CAD Performance of DL-CAD model 
based on zDWI vs. fDWI b:
AUC patient level:
0.89 versus 0.86;
AUC lesion level:
0.86 versus 0.76

2023 Hu L. et al. 
[71]

26 PC detection and stratification Retrospective No 344 T2WI, 
DWI, ADC, 
Ktrans

CNN AUC for T2-ADC-DWI: 0.90
AUC for T2-ADC-Ktrans: 0.89

2023 Kim H et al. 
[72]

27 Development and evaluation of 
prostate cancer risk stratifica-
tion tool; PRISK

Retrospective Yes 1442 T2WI, DWI, 
ADC

Stacked ensemble 
learning algorithms

Overall accuracy
PRISK vs. Biopsy
Train: 85.1% vs. 88.7%,
Internal test: 85.1% vs. 90.4%
External test 90.4% vs. 94.2% 

2023 Bao J et al. 
[73]

28 PC detection Retrospective Yes 1800 T2WI, DWI 
and ADC

UCNet Improvement in generalization 
performance: Lesion classification: 
between 9.5-14.8%,
Lesion segmentation: nearly 100%

2023 Rajagopal A 
et al. [74]

29 PC detection Retrospective Yes 1399 T2WI, DWI, 
ADC

UNet and 
TrumpeNet

AUC for external test:
-for AI: 0.86
-for subspecialist: 0.86 (AI vs. 
subspecialist, P=0.88)
-for Junior: 0.80 (P<0.05)
-for general reader: 0.83 (P<0.05)

2023 Jiang KW et 
al. [75]
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Figure 2. An outline of quality evaluation of included studies using the CLAIM checklist items, (A) Study-wise analy-
sis, (B) Item-wise analysis across the studies.

(93.10%). Among the retrospective studies, 
55.17% were monocentric, 37.93% multicen-
tric, and 6.89% were prospective with mono-
centric involvement (Figure 6). The largest 
study included 1,861 participants, while the 
smallest had 19. Most of the studies utilized 
T2WI and/or ADC derived from DWI as inputs 
for the DL architecture. Four studies develop- 
ed integrated models or monograms PC detec-
tion and stratification. Ten studies compared 
DL-based outcomes to those of experienced 
human radiologists, and ten studies utilized the 
ProstateX data set. Additionally, two studies 
applied DL to improve image quality in MRI pro-
tocols. A brief outline of the included studies is 
provided in Table 4, with key findings summa-
rized below.

Tumor detection, localization and stratification

Different strategic approaches were applied, 
including the use of different CNN architec-
tures, labeling techniques such as histopa- 
thology images labeling, radiological labeling, 

DL based improved image quality, to achieve 
the objectives. 

Schelb P. et al. [50], performed a comparative 
study, examining lesion detection and segmen-
tation for csPC, using DL-based setup trained 
with T2-weighted and diffusion MRI, compared 
to PI-RADS-based outcomes. For PI-RADS cut-
off ≥4 on a per-patient basis, the sensitivity and 
specificity were 88% and 50% respectively. The 
study revealed a sensitivity of 96% and a speci-
ficity of 31% at a U-Net probability cut-off ≥0.22 
whereas sensitivity was 92% and specificity 
47% at a cut-off of ≥0.33 in the test set. The 
study concluded that the DL-based automated 
model performed similarly to PI-RADS when 
using T2WI and DWI for detection and segmen-
tation of csPC [50].

Hiremath A. et al. [55], developed and assessed 
the potential of an integrated nomograms com-
bining DL, PIRADS and clinical variables (PSA, 
prostate volume, lesion volume). The diagnos-
tic performance of the model (ClaD) for detect-
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Figure 3. Traffic light plot for assessment of Risk of bias in included studies using QUADAS-2 tool. Plot was created 
using web based robvis tool.

Figure 4. Summary plot for Risk of bias assessment in included studies using QUADAS-2 tool. Plot was created using 
web based robvis tool.

Figure 5. PRISMA flow diagram.

ing csPC revealed an accuracy of 77.92%, sen-
sitivity of 83.23%, and specificity of 59.18% 
[55].

Cao R. et al. [56] compared the detection sen-
sitivity of the DL algorithm Focal Net with hu- 
man radiologists using whole mount histopa-
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Figure 6. An overview of the included studies. A. Year wise distribution of number of included studies. B. Year wise 
patient distribution. C. The proportion of prospective versus retrospective studies. D. Distribution of prospective and 
retrospective studies based on number of sites involved.

thology (WMHP) as a reference. The T2WI and 
ADC were used as input images for Focal Net. 
The study included 553 patients, incorporating 
427 in the developmental cohort and 126 in 
the evaluation cohorts. Bootstrap hypothesis 
test was performed to compare the perfor-
mance of radiologists and Focal Net. The 
results showed a non-significant reduction in 
the differential detection sensitivity of Focal 
Net, which was 5.1% and 4.7% lower than that 
of the radiologists for clinically significant  
and index lesions, respectively (P=0.413 and 
P=0.282) [56].

Schelb P. et al. 2021 [59] assessed the perfor-
mance of DL based model and compared it 
with clinical assessment in a single center- 
ed study involving 259 patients. The results 
revealed comparable for diagnostic perfor-
mance; for PI-RADS ≥4 vs. UPT ≥d4, sensitivity 
was 84% vs. 83% (P>0.99) and specificity was 
58% vs. 55% (P>0.99). The study also explored 
the model for simulated clinical deployment, 
focusing on automated evaluation of prostate 
MRI images. Significant improvement in posi-
tive predictive value were observed on both a 
per-patient and per-lesion basis, with concur-
rent detection and radiological assessment 
showing enhanced results [59]. 

Ueda T. et al. [62] applied deep learning recon-
struction (DLR) to evaluate image quality and 
diagnostic performance in the differentiation of 
PC from benign areas of the prostate. In DWI 
with DLR, signal-to-noise ratios (SNRs) and  
contrast-to-noise ratios (CNRs) were observed 
significantly higher compared to imaging with-
out DLR (P<0.001). However, ADC differences 
at each b value (i.e. b=1000, 3000, 5000), 
between malignant and benign areas did not 
show significant variation regardless of DLR. 
These findings suggest that DLR enhances the 
image quality of prostate DWI without affect- 
ing ADC quantification, presenting a promising 
method for improved lesion detection in PC 
[62].

Mehralivand S. et al. [63] utilized a dataset of  
bi parametric prostate MRI scans (n=525)  
were from two institutions to develop a fully 
automated DL-based PC detection system. 
MRI-visible lesions were contoured by experi-
enced radiologists. Detection sensitivity for the 
UNet and AHNet models was reported as 72.8% 
and 63.0% respectively. A mean number of 
false positive lesions/patient using UNet and 
AH-Net was reported 1.90 and 1.40, respec-
tively [63].
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Mehralivand S. et al. [64] in a separate study, 
developed and evaluated a cascaded DL-based 
framework for detecting and classifying pros-
tate lesions. The dataset included bi-paramet-
ric MRI scans (T2WI and DWI: ADC maps and 
high b-value DWI) from two institutions. A resid-
ual network architecture, U-Net, was trained on 
bi-parametric prostate images using PI-RADS. 
In the independent test set evaluation, the 
DL-based framework achieved a sensitivity of 
56.1%, PPV of 62.7%, and FDR of 37.3% [64].

Bhattacharya I. et al. [12] developed a DL- 
based model, Correlated Signature Network for 
Indolent and Aggressive (CorrSigNIA), utilizing 
dual sources of characteristic features from 
registered MRI and whole mount histopatho-
logical imaging for PC detection and localiza-
tion. The CorrSigNIA model achieved an accu-
racy of 80% in distinguishing men with and 
without PC. For lesion-level detection, the 
model demonstrated an ROC-AUC of 0.81±31 
in a patient cohort that underwent both radical 
prostatectomy and biopsy [12].

Zhao L. et al. [15]. This multi-centric study 
investigated an integrated model (PIDL-CS), 
that constitutes a DL classification model 
between csPC vs. non-csPC (DL-CS) and PI- 
RADS outcomes. The model’s outcomes were 
compared to PIRADS assessment alone. The 
findings revealed a higher AUC for csPC detec-
tion using the PIDSL-CS model compared to 
PIRADS assessment (P<0.05), except for one 
external validation set (P>0.05) [15]. PIDSL-CS 
model also exhibited significantly higher speci-
ficity for csPC detection than PI-RADS (P<0.05). 
This study highlights the potential of the PIDL-
CS model as a specific tool for csPC detection, 
potentially reducing unnecessary biopsies [15]. 

Hu L. et al. [71] presented a DL-CAD model 
comparing the diagnostic performance of f-DWI 
and z-DWI, in differentiation of benign versus 
PC lesion group as well risk factors assess- 
ment affecting the diagnostic performance of 
PC assessment. DL-CAD model utilizing z-DWI 
showed significantly better overall accuracy 
compared that with f-DWI (z-DWI vs. f-DWI AUC 
patient level 0.89 vs. 0.86, AUC lesion level 
0.86 vs. 0.76, P<0.001). The study identified 
contrast to noise ratio (CNR) of lesions as in- 
dependent risk factor for false positives (OR= 
1.12; P<0.001), whereas ADC, lesion diameter 
and rectal susceptibility artifacts identified as 

independent risk factors for both false nega-
tives and false positives. These findings sug-
gest improved diagnostic framework using MRI 
based DL-CAD models for PC assessment [71].

Bao J et al. [73] developed and evaluated the 
Prostate Imaging Stratification Risk (PRISK) 
model, which integrates a hybrid stacked-
ensemble learning algorithm with high-through-
put PC-MRI features and clinical indicators for 
PC risk stratification. The PRISK model was 
designed to classify benign cases (ISUP-GG 0) 
and ISUP-GG from grades 1 through 4/5. The 
findings demonstrated comparable performan- 
ce between PRISK and invasive biopsy: training 
set (85.1% vs. 88.7%), internal test set (85.1% 
vs. 90.4%), and external validation set (90.4% 
vs. 94.2%), allowing for a grading error margin 
of ±1 ISUP-GG. The study highlighted PRISK as 
a promising non-invasive surrogate tool for 
assessing ISUP-GGs in PC [73].

Jiang K.W. et al. [75] developed and tested AI 
based model for PC diagnosis, utilizing a combi-
nation of an UNet and a TrumpetNet architec-
tures for automatic prostate segmentation and 
lesion detection. The study compared the diag-
nostic performance of AI model with that of 
radiologist. In an external inpatient test, The  
AI model achieved a sensitivity of 86.9% and 
specificity of 65.9% at a probability score 
threshold of ≥45%. By comparison, junior read-
ers demonstrated a sensitivity of 95.2% and 
specificity of 41.2%, subspecialist radiologist 
achieved 77.4% sensitivity and 87.1% specifici-
ty, and general radiologist showed 70.2% sensi-
tivity and 84.7% specificity, all based on PIRADS 
score ≥3 [75].

Comparison of model performance to radiolo-
gists

In addition to evaluating the performance out-
comes of DL based CNN architectures, a com-
parative assessment was conducted to deter-
mine their added value. This analysis included 
ten studies that compared DL-based models 
with human radiologists in detecting, localizing 
and stratifying lesions according to PI-RADS. 
Because of the inter-study variability and differ-
ing methodologies, the results could not be 
synthesized into a single conclusive finding. A 
summary of the comparative information from 
these studies is provided in Table 5.
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Table 5. A summary of the comparative information of DL-based model versus radiologists
Sr. No. Authors Cut off Sensitivity CI range Specificity CI range AUC CI range
1 Schelb P et al. 

2019 [50]
Radiologist PIRADS ≥3 96 (25/26) 80-100 22 (8/36) 10-39

PIRADS ≥4 88 (23/26) 70-98 50 (18/36) 33-67
U-Net-Ensemble UPT ≥0.22 96 (25/26) 80-100 31 (11/36) 16-48

UPT ≥0.33 92 (24/26) 75-99 47 (17/36) 30-65
2 Cao R et al. 2021 

[56]
Radiologist Suspicion score ≥1 (CsPC lesion) 84.85
Focal Net Suspicion score ≥1 (CsPC lesion) 83.9

3 Schelb P et al. 
2021 [59]

Radiologist PIRADS ≥3 98 (106/108) 94-100 17 (25/151) 11-24
PIRADS ≥4 84 (91/108) 76-91 58 (88/151) 50-66

U-Net-Ensemble UPT ≥d3 99 (107/108) 95-100 24 (36/151) 17-31
UPT ≥d4 83 (90/108) 75-90 55 (83/151) 47-63

4 Hiremath et al. 
2021 [55]

Radiologist PIRADS (1-5) AUC: 0.72 0.61-0.82
Alex Net DL-based imaging predictor AUC: 0.76 0.71-0.81

ClaD AUC: 0.81 0.76-0.85
5 Seetharaman et 

al. 2021 [57]
Radiologist Aggressive threshold 1% 0.72 (13/18) 1 (6/6)

Aggressive threshold 5% 0.71 (10/14) 1 (6/6)
DL Aggressive threshold 1% 0.56 (10/18) 0.83 (5/6)

Aggressive threshold 5% 0.57 (8/14) 0.83 (5/6)
6 Winkel DJ et al. 

2021 [58]
Radiologist PIRADS ≥3 AUC: 0.83 0.77-0.89

PIRADS ≥4 AUC: 0.84 0.79-0.89
DL PIRADS ≥3 AUC: 0.86 0.79-0.92

PIRADS ≥4 AUC: 0.88 0.83-0.94
7 Johnson PM et al. 

2022 [66]
Radiologist PIRADS ≥3 Reader 1: 0.40 0.55

Reader 2: 0.60 0.60
Reader 3: 0.60 0.58

DL PIRADS ≥3 Reader 1: 0.60 0.64
Reader 2: 1.00 0.64
Reader 3: 0.60 0.55

8 Hosseinzadeh M 
et al. 2022 [67]

Radiologist PIRADS ≥4 91 77
DL PIRADS ≥4 AUC: 0.85 0.79-0.91

9 Zhao L et al. 2023 
[15]

Radiologist PIRADS AUC: 0.850 0.820-0.877
DL DL-CS-Res AUC: 0.851 0.821-0.877

PIDL-CS AUC: 0.881 0.853-0.905
10 Jiang KW et al. 

2023 [75]
Radiologist csPC AUC

subspecialist: 0.86
0.80-0.90

DL TrumpetNet
Thresold 0.45

86.9 65.9 AUC (AI): 0.86 0.81-0.91

CsPC: Clinically significant prostate cancer.
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Table 7. Brief outline of improvement in prostate MRI image quality and reduction in acquisition time 
using DL based tactics

Sr. 
No. DL tactic Value  

addition

Matric
Referencesb value 

(sec/mm2)
SNR with 

DLR
SNR  

without DLR
p value

CNR with 
DLR

CNR without 
DLR

p value

1 Deep Learning 
Reconstruction 
(DLR)

Image 
quality 

1000 38.7±0.6 17.8±0.6 <0.001 18.4±5.6 7.4±5.6 <0.001 Ueda T. et al. 
2022. [62]3000 22.8±0.6 12.1±0.6 <0.001 16.4±6.6 7.0±3.9 <0.001

5000 15.9±0.6 9.5±0.6 <0.001 12.5±3.9 5.2±3.3 <0.001

2 Variational 
Network (VN)

Acquisition 
time

With VN Standard Johnson PM et 
al. 2022 [66]3.2 minutes 11.8 minutes

Abbreviations: SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio.

Table 6. Brief outline of the Integrated detection model/Nomogram/tool

Sr. 
No.

Nomogram/Tool/
DL based setup Component

Annotations
ROC-AUC References

Radiologist Pathologist Clinical 
variables

1 CLaD PI-RADS score, DL based 
imaging predictors and clinical 
variables

No Yes Yes 0.81 Hiremath A., 
et al. [55]

2 SPCNet CNN with annotated whole 
mount digital histopathology 
images

No Yes No 0.75 (RP cases)
0.80 (for biopsy 
patients)

Seetharaman 
A, et al. [57]

3 CorrSigNIA CNN with dual source of 
groundtruths: MRI and digital 
histopathology images

Yes Yes No 0.81 Bhattacharya 
I. et al. [12]

4 PRISK Integration of clinical indica-
tors, high-throughput MRI 
features for PC with hybrid 
stacked-ensemble learning 
algorithms

No No Yes For external test 
set: macro-AUC: 
0.762

Bao J et al. 
[73]

Application of PROSTATEx grand challenge 
data

A total of 10 studies [51, 52, 54, 55, 58,  
63-65, 72, 75] utilizes the PROSTATEx datas-
ets. A brief overview regarding the studies is 
given in Table 4.

Integrated detection model/Nomogram/tool

A total of four studies [12, 55, 57, 73] devel-
oped and evaluated the performance of DL 
based model for the PC detection, localization 
and stratification (Table 6).

Improvement in prostate MRI image quality/
reduction in acquisition time

Two studies evaluated DL based approaches  
to improve the image quality [62] and devel-
oped the method for reduced scan time [66] 
(Table 7).

Discussion 

PC remains a significant global health concern, 
and its early detection and accurate diagnosis 
are crucial for optimizing patient outcomes. 
Current diagnostic methods, such as mpMRI, 
while valuable, are hindered by inter-reader 
variability and subjective interpretation. We 
propose that AI should not only supplement 
existing methodologies but actively transform 
diagnostic workflows by embedding automat-
ed, self-improving algorithms into routine clini-
cal practice. This approach will help reduce  
reliance on radiologist expertise, standardize 
assessments, and ultimately improve the accu-
racy and efficiency of PC diagnosis.

Advancements in mpMRI and AI for prostate 
cancer

Improving diagnostic accuracy: Despite the 
widespread adoption of the PI-RADS, inconsis-
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Data augmentation: To enhance model perfor-
mance with a limited dataset, data augmenta-
tion techniques are applied. The primary goal is 
to determine the most effective augmentation 
method in conjunction with the best perform- 
ing CNN architecture. Due to the prostate’s 
symmetrical morphology, random rotation has 
been identified as the most effective augmen-
tation technique for prostate DWI using a nar-
row CNN architecture [60]. 

Enhanced detection and staging: Inclusion of 
diversified data, relevant features and appro-
priate CNN architecture/s in the training set of 
DL model are key strategies to enhance the 
performance. Advanced architectures, such as 
convolutional encoder-decoder models, have 
demonstrated high accuracy in tumor segmen-
tation and diagnosis, with AUC scores as high 
as 0.995 [49].

Comparative performance: The rapid detection 
and reporting of PC require urgent attention. 
The integration of DL has opened promising 
avenues to address this challenge. Further 
developments are needed to enhance the diag-
nostic accuracy and develop high-throughput 
systems for clinical use. DL-based models have 
demonstrated significant potential, often out-
performing radiologists in PC detection and 
stratification (Table 5).

Multifaceted DL applications: Selection of 
robust input variables for the development of 
DL-based detection models, nomograms, and 
applications remains a major challenge. Va- 
rious DL-based models, such as CorrSigNIA, 
CLaD, SPCNet, and PRISK, have been design- 
ed using various inputs, including PI-RADS 
scores, clinical variables, DL-based imaging 
predictors and annotated histopathology imag-
es, leading to improve diagnostic performance 
[12, 55, 57, 73].

Accelerated detection rates: Timely reporting is 
crucial for rapid clinical decision-making and 
treatment planning. AI-based software like 
Quantib has shortened reporting times for 
prostate bi-parametric MRI (bp-MRI) [70]. 

Improved diagnostic accuracy: Inter-reader va- 
riability remains a significant challenge in pros-
tate MRI assessment. Integrating assistive 
tools may play a crucial role in enhancing diag-

tencies persist in its clinical application. While 
PI-RADS v2.1 introduced refinements, it has 
not significantly improved diagnostic accuracy. 
The pooled diagnostic performance of PI-RADS 
v2.1 for csPC does not outperform the earlier 
v2, showing slight improvement in sensitivity 
but reduced specificity, resulting in higher rates 
of negative targeted biopsies for PI-RADS 3 
lesions [29]. In addition to these concerns, 
PI-RADS 2.1 presents several limitations (Table 
2). In our view, PI-RADS should evolve into an 
AI-assisted system where deep learning mod-
els continuously adapt to real-world clinical 
data. This approach enables data-driven lesion 
classification, reducing dependence on subjec-
tive expertise. Therefore, it is imperative to 
enhance PI-RADS v2.1 with targeted measures 
to address these challenges effectively. 

Deep learning in mpMRI: AI-driven DL models 
offer transformative potential in overcoming 
current limitations in mpMRI for PC detection 
and stratification. The primary focus should  
be on practical integration within clinical work-
flows rather than simply demonstrating techni-
cal feasibility in single studies. 

Reduction in acquisition time: One of the major 
challenges of mpMRI for prostate imaging is  
its long acquisition time, which delays clinical 
decision-making and increases the duration of 
patient exposure under the strong magnetic 
field. We believe the most logical solution lies  
in Variational Networks (VN), which can signifi-
cantly shorten scan duration while preserving 
diagnostic quality. However, rather than so- 
lely focusing on vendor-specific optimizations, 
research should prioritize vendor-agnostic AI 
models to ensure broad clinical applicability 
[66].

Improved DWI image quality: Image quality is a 
key limiting factor in accurately assessing the 
region of interest (ROI) within the field of view 
(FOV). Enhancing image quality while preserv-
ing pathophysiological imaging features can 
improve diagnostic potential. DLR has been 
shown to enhance the quality of DWI without 
affecting ADC quantitation, thereby improving 
lesion detection [62]. Future AI applications 
should incorporate adaptive filtering mecha-
nisms that dynamically adjust noise reduction 
based on lesion morphology. 
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nostic performance. DL-based computer-aided 
diagnosis (DL-CAD) systems have improved 
diagnostic accuracy, reduced reporting times 
and minimized inter-reader variability [58]. 

Federated learning: To maintain the partici-
pant’s data privacy is one of the major con- 
cerns in multi-centric studies. Federated Lear- 
ning (FL) has gained momentum in the health-
care sector for its potential to enhance data 
privacy, security and efficiency. Inclusion of 
diversified data-set along with radiological and 
histopathological annotations to train the mo- 
del are major approaches to enhance the 
detection potential. AI model utilizing FL have 
shown promise in multi-centric study, enabling 
cross-site data collaboration while preserving 
patient privacy [74]. However, further research 
is needed to address the practical complexi- 
ties to establish model with absolute perfor- 
mance.

Challenges in detection of TZ-prostate cancer: 
Detection and stratification of PC in the transi-
tion zone (TZ-PC) remains a challenge. TZ-PC 
accounts for approximately 30% of all PC cases, 
and its similarity to benign prostatic hyperpla-
sia (BPH) on MRI often causes ambiguity in 
visual assessment. However, DL-based models 
have shown promising results in TZ-PC detec-
tion, achieving sensitivity and precision scores 
of 0.829 and 0.617, respectively, using only 
ADC as input [61]. We argue that a multi-para-
metric AI-driven approach, incorporating T2- 
weighted imaging, radiomics-based texture an- 
alysis, and AI-guided contrast enhancement, is 
essential for improving TZ-PC differentiation. 
Additionally, adaptive AI models that learn from 
individual patient imaging histories could fur-
ther refine detection strategies.

Addressing bias in multi-centric MRI studies: In 
multi-center and multi-vendor studies, biases 
may arise due to inconsistencies in acquisition 
parameters, participant populations, imaging 
protocols, and scanner calibrations. These vari-
ations can impact the detection of subtle ima- 
ge features, ultimately impacting the diagnostic 
performance of AI models. Factors such as 
CNR, rectal susceptibility artifacts, ADC, and 
lesion diameter have been identified as key 
contributors to false positive and false negative 
results in DL-CAD models [71].

Recommendations for future studies

To evaluate the DL model performance more 
comprehensively, a multi-center prospective 
study should be designed with the following 
considerations: 1. Inclusion of multi-ethnic par-
ticipant group with large sample size. 2. Use of 
multi-vender MRI machines. 3. Application of 
image quality enhancement techniques. 4. 
Inclusion of labelled imaging features from  
heterogenous cohorts, including annotated his-
topathology images for validation. 5. Use of 
optimized CNN architectures and performance-
enhancing techniques. 6. Proportionate train-
ing and external validation cohorts, as well as 
comparative assessment against PI-RADS.

Limitations

The present review highlights several limita-
tions: 1. Many of the included studies are re- 
trospective and single-centered, often lacking 
comprehensive demographic information, whi- 
ch may reduce the relevance of their findings 
for broader consensus and diverse applica-
tions. 2. Excluding studies that utilized 1.5T 
MRI for data acquisition may limit the overall 
scope and inclusivity of the findings. 3. 
Restricting the review to articles published in 
English could result in the omission of valuable 
data from studies in other languages. 4. The 
exclusion of articles due to a lack of full-text 
access may further constrain the review’s abil-
ity to present a comprehensive perspective on 
the topic. These limitations underscore the 
need for broader and more inclusive methodol-
ogies in future reviews.

Conclusion

In our view, this study underscores the signifi-
cant potential of integrating prostate mpMRI 
with DL applications for the detection and strat-
ification of PC. Although many of the studies 
reviewed were retrospective and single-cen-
tered, and some included comparisons with 
human radiologists, the promising results sug-
gest that this integration could revolutionize 
clinical workflows. We believe the integration of 
mpMRI and DL represents a promising proto-
type for creating a more efficient and refined 
diagnostic system. This approach has potential 
to deliver sensitive, specific, non-invasive, and 
rapid detection and grading of PC, ultimately 
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leading to a more robust and automated sys-
tem that could serve as an alternative to inva-
sive biopsy.
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Appendix 1. PRISMA 2020 abstract checklist
Section and Topic Items Checklist item
TITLE
    Title 1 Integration of magnetic resonance imaging and deep learning for prostate cancer detection: A systematic review
BACKGROUND
    Objective 2 To evaluate the overall impact of incorporating deep learning (DL) with magnetic resonance imaging (MRI) for improving diagnostic performance 

in the detection and stratification of prostate cancer (PC)
METHODS
    Eligibility criteria 3 Inclusion Criteria:

1. Original articles indexed in PubMed and Medline 
2. Published between January 2019 to March 2023 
3. Utilized DL with MRI for the PC detection and/or stratification
4. MRI data acquired at a field strength of 3.0 Tesla
5. Articles written in English 
6. Full text access availability
Exclusion Criteria:
1. Duplicate records
2. Review articles, systematic reviews, meta-analysis, editorials, books, or other non-original research documents 
3. Use of non-relevant imaging techniques (e.g., CT, PET)
4. Focused on unrelated topics (e.g., segmentation, radiotherapy)

    Information sources 4 PubMed 
    Risk of bias 5 To access the risk of bias with applicability of primary diagnostic accuracy of studies QUADAS 2 tool was applied. To access the scientific quality, 

adherence with the of the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines were applied
    Synthesis of Results 6 Descriptive statistics, presented in the form of tables, figures and graphs
RESULTS
    Included studies 7 29 articles included; 17,954 participants included
    Synthesis of results 8 The median agreement to the 42 CLAIM checklist items across studies was 61.90% (IQR: 57.14-66.67, range: 40.48-80.95). Most studies 

utilized T2WI and/or ADC derived from DWI as input for evaluating the performance of DL-based architectures. Detection and stratification of PC 
in the transition zone was the least explored area

DISCUSSION
    Limitations of evidence 9 1. Many of the included studies are retrospective and single-centered, often lacking comprehensive demographic information, which may reduce 

the relevance of their findings for broader consensus and diverse applications.
2. Excluding studies that utilized 1.5T MRI for data acquisition may limit the overall scope and inclusivity of the findings.
3. Restricting the review to articles published in English could result in the omission of valuable data from studies in other languages.
4. The exclusion of articles due to a lack of full-text access may further constrain the review’s ability to present a comprehensive perspective on 
the topic

    Interpretation 10 Integration of MRI with DL demonstrated a promising prototype for rapid, sensitive, specific, and robust detection and grading. of PC. Advanced 
applications include enhancing the quality of DWI, developing advanced DL models, and designing innovative nomograms or diagnostic tools to 
improve clinical decision-making

OTHER
    Funding 11 Financial support was provided by the Indian Council of Medical Research, New Delhi, India, Award No. [5/3/8/46/ITR-F/2020 to D.K.]
    Registration 12 None



Deep learning with MRI for prostate cancer detection

91	 Am J Clin Exp Urol 2025;13(2):69-91

Appendix 2. CLAIM adherence evaluation of the included studies
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 Total

Akadi et al. 2019 [49] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 24

Schelb P et al. 2019 [50] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 29

Yuan Y et al. 2019 [51] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27

Chen Q et al. 2019 [52] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23

Arif M et al. 2020 [53] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25

Wang Y et al. 2020 [54] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 26

Hiremath et al. 2021 [55] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 34

Cao R et al. 2021 [56] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28

Seetharaman A et al. 2021 [57] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 29

Winkel DJ et al. 2021 [58] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 26

Schelb P et al. 2021 [59] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 31

Hao R. et al. 2021 [60] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22

Wong T. et al. 2021 [61] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28

Ueda T., et al. 2022 [62] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Mehralivand et al. 2022 [63] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 29

Mehralivand et al. 2022 [64] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 24

Pellicer-Valero OJ et al. 2022 [65] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 26

Johnson PM. et al. 2022 [66] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21

Hosseinzadeh M. et al. 2022 [67] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28

Zong W. et al. 2022 [68] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23

Bhattacharya I. et al. 2022 [12] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22

Bhattacharya I, et al. 2022 [69] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27

Cippolari et al. 2022 [70] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17
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