

Review Article

Mechanisms of prostatic inflammation-mediated male lower urinary tract symptoms

Brandon R Scharpf^{1,2}, Chad M Vezina^{1,2}

¹Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; ²University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O'Brien Center, University of Wisconsin-Madison, Madison, WI 53706, USA

Received June 4, 2025; Accepted October 26, 2025; Epub December 15, 2025; Published December 30, 2025

Abstract: Lower urinary tract dysfunction (LUTD) is prevalent in aging men. It is characterized by urinary symptoms such as weak stream and more frequent urination, and is linked to a variety of prostate and urethral pathologies. While the leading medical therapies for male LUTD aim to reduce the tone and volume of the prostate and urethra, no current therapies target two prominent emerging mechanisms of male LUTD: prostate inflammation and fibrosis. LUTD arises and progresses over decades of a man's life, making it difficult to pinpoint disease mechanisms. Non-human research models, including mice, have been useful for investigating slow-progressing diseases of aging. Research involving mouse models of lower urinary tract dysfunction is surging due to a growing suite of genetic, pharmacological and immune-based tools for manipulating mouse prostate histopathology, cell signaling and phenotyping mouse urinary voiding. Current research is focused on understanding how macrophages, fibrocytes, mast cells and other cells are recruited to the prostate and how these cells are activated to drive prostate inflammation and fibrosis. This review highlights recent mouse studies to investigate the cellular and molecular underpinnings of prostate inflammation and fibrosis, and the molecular mechanisms that have emerged from these studies as potential therapeutic targets

Keywords: LUTD, prostate, inflammation, collagen, fibrosis

Introduction

Male LUTD affects over 4 billion individuals worldwide [1] and is characterized by a disorders of the bladder, urinary sphincter, urethra, and the prostate. LUTD can vary in severity and is often accompanied by lower urinary tract symptoms (LUTS) such as incomplete bladder emptying, hesitancy and intermittency, weak stream, and frequent urination, especially at night [2, 3]. Male LUTS becomes more frequent and severe with age [4-7]. The worldwide geriatric population is expected to nearly double over the next three decades, increasing the medical burden for male LUTS and making the quest for new and more effective therapies urgent [8, 9].

Male LUTS can arise from a multitude of pathologies, making it difficult to pinpoint effective treatment options that extend across the population. A historical cause and clinical predictor of male LUTS has been urethral obstruction

due to benign prostatic hyperplasia (BPH). Steroid 5 α -reductase inhibitors (5ARIs) are given to patients who have BPH, with the goal of shrinking the prostate by blocking the enzymatic conversion of testosterone into its more potent androgen receptor agonist, dihydrotestosterone [10]. Smooth muscle dysfunction of the prostate and bladder neck are also contributors to LUTS development, usually through hypertonia [11]. Men with smaller prostate volumes and LUTS are generally prescribed α -adrenergic receptor antagonists (α -blockers), which reduce smooth muscle tone in the prostate and bladder neck [11]. 5ARIs and α -blockers are more effective in combination than as monotherapies [11], but even in combination do not alleviate symptoms in all men [11, 12]. Recent developments in drug therapy have introduced several promising new options for treating LUTS, including beta-3 adrenoceptor agonists, which increase bladder capacity by relaxing smooth muscle [13]; phosphodiester-

Mechanisms of prostatic inflammation-mediated LUTS

use five inhibitors, whose exact mechanisms are still unknown but are believed to promote smooth muscle relaxation by increasing cyclic guanosine monophosphate [14]; and anticholinergic agents, which relax bladder smooth muscle by reducing the effects of acetylcholine [15]. Although medical therapies and surgery have been effective in improving symptoms in some men, some men do not experience improvement from these treatments. In some cases, symptoms may persist, recur or worsen and can cause lasting and irreversible damage to bladder function [11, 16-19].

It is necessary to look beyond smooth muscle dysfunction and BPH to uncover additional mechanisms that drive male LUTD. Understanding the additional drivers of LUTD is crucial in the development of new therapies that are effective across a broader cohort of men. Inflammation-mediated prostate fibrosis is a prominent candidate in the mechanism for clinical progression of LUTS. Inflammation is caused by a multitude of factors, and involves the infiltration of both pro- and anti-inflammatory cells that promote tissue repair through collagen synthesis [3]. Clear evidence links inflammation to prostatic collagen deposition and LUTS [2, 4, 5, 20-22]. Around 50% of men with chronic prostatitis experience LUTS [23], which may be due to swelling and irritation of the prostate and urethra, thereby interrupting urine flow, or to prolonged inflammation, which can cause collagen accumulate in the prostate. Inflammation is a driver of collagen accumulation in the mouse prostate [24]. Collagen deposition on the prostate leads to tissue stiffening, urethral constriction, and voiding dysfunction [20, 24-26]. Prostatic collagen content in men, particularly in the transition zone, positively correlates with LUTS severity [27]. A study comparing the prostates of men with LUTS, who were being treated with both 5ARIs and α -blockers but without significant symptom relief, with prostates of men without LUTS, found higher periurethral collagen content in the prostates of men with LUTS [27]. Additionally, these studies provide evidence that prostatic fibrosis contributes to LUTS development independently of BPH or smooth muscle dysfunction.

While connections between inflammation, prostatic collagen content, and voiding dysfunction have been established, further pre-clinical research is needed to identify key cell types,

mediators, and mechanisms. This is crucial for the development of new targeted therapies for the treatment of prostate fibrosis.

Evaluating the role of mouse models in the study of male urinary voiding dysfunction

Non-malignant prostate pathologies that contribute to LUTS arise and progress over decades, making it difficult to pinpoint disease mechanisms. Non-human research models offer an opportunity to study disease progression in a more rapid timeline and under controlled conditions. Mouse models have been used to study non-malignant male urinary voiding dysfunction but not without controversy [28, 29]. One criticism is based on anatomical differences between human and mouse prostate. The human prostate features a thick fibromuscular capsule surrounding glandular tissue that was initially divided into zones based on where histological diseases are most prevalent. Prostate cancer primarily affects the peripheral zone, while benign hyperplastic nodules typically occur in the transition and sometimes central zone [30, 31]. Interestingly, a recent single cell RNA sequencing analysis demonstrates that each human prostate zone is populated by a unique distribution of fibroblasts [32]. It has been proposed that the capsule surrounding the human prostate confines the prostate in a limited space and that the growth of benign prostatic nodules place increasing pressure on the urethra, impeding expansion of the urethra and bladder emptying [33, 34]. The concept is supported by the effectiveness of surgical prostate enucleation procedures such as transurethral resection of the prostate, holmium laser enucleation, and others that improve voiding function [33]. It is important note that prostatic collagen is dense and expands with age in the periurethral region [35], the region enucleated by surgical procedures for treating LUTS.

Mouse prostate anatomy differs from that of humans in that it features four distinct lobes (anterior, dorsal, lateral, and ventral) that are not confined by a substantial fibromuscular capsule. While the distal tips of the mouse prostate (acini) are not confined, the proximal ductal segments are restrained in a space between the striated muscle rhabdosphincter and urethral epithelium, and course parallel to the urethral epithelium for some distance before draining into the urethral lumen. It was initially be-

Table 1. Mouse models of prostatic inflammation which show accumulation of collagen

Mouse model of prostatic collagen accumulation	References
Transurethral instillation of <i>E. coli</i>	[22, 48, 138]
Sustained exposure to exogenous testosterone and 17 β estradiol	[49, 131]
Aged mice	[21, 100]
High fat diet/Diabetes	[50, 51]
Experimental autoimmune prostatitis	[52, 53, 116]
Environmental contaminant exposure	[56-58]
Genetic gain and loss of function	[53-55]

lieved that only dogs and humans develop prostate-related voiding dysfunction with age; However, a recent study demonstrated that when male mouse urinary voiding patterns are monitored across lifespan, aging male mice also develop urinary voiding dysfunction [21]. Clinically relevant urodynamic testing and validated measurements of spontaneous urinary voiding activity in mice have revealed numerous similarities between urinary voiding dysfunction in mouse models with voiding dysfunction experienced by human men [36-45]. There are also histological similarities among human, canine and mouse prostate cells that give rise to inflammatory pathologies [35, 46, 47].

Several mouse models accumulate prostatic collagen (**Table 1**). Transurethral infection of male mice with uropathogenic *Escherichia coli* (*E. coli*) yields histological changes to the mouse prostate that resemble, in part, histological changes to the inflamed human prostate [22, 48]. *E. coli* induced prostatic inflammation and collagen accumulation also elicits urinary voiding dysfunction that resembles voiding dysfunction in humans with LUTS [22, 25, 48]. Mice exposed to exogenous testosterone and 17 β estradiol accumulate prostatic collagen and void more frequently over time [49]. The prostates of 24-month-old (aged) male mice feature a denser collagen network and more cellular proliferation than 2-month-old mice [21]. The prostates of male mice fed a high fat diet (HFD) or of mice with diabetes feature immune cell infiltration, increased collagen content and urinary voiding dysfunction [50, 51]. Autoimmune prostatitis has been linked to prostate fibrosis in mice [52], along with increased abundance of prostatic interferon regulatory factor 7, enhanced prostatic cell glycolysis, and an increased density of M1 polarized macrophages [53]. A reduction in interferon regulatory factor 7 reduced prostatic collagen content

in this mouse model [53]. A genetic approach to hyperactivate phosphoinositide 3-kinase (PI3K) signaling in prostatic epithelial cells of mice resulted in inflammation and prostate fibrosis starting at 4-months of age and progressing until at least 12-months of age [54]. Additionally, a model with E-cadherin deficiency promoted increase immune cell infiltration and inflammation in aged mice [55]. Mice exposed to common environmental contaminants (cigarette smoke, bisphenol A, and cadmium) also develop prostate inflammation and fibrosis [56-58].

Despite the challenges of recapitulating human LUTS in mice, mice have contributed to our understanding of prostate fibrosis mechanisms and potential therapies.

Cytokines and chemokines linked to prostate inflammation and fibrosis

Transforming growth factor (TGFB)

TGFB is a pro- and anti-inflammatory cytokine, depending on environmental context and cellular landscape, that binds the TGFB receptor and drives phosphorylation of SMAD family members 2 & 3 (SMAD2/3) to initiate collagen transcription or to differentiate inflammatory cells [59]. TGFB is associated with, and in some cases required for fibrosis across many tissues [60-64]. The TGFB pathway has been pharmacologically targeted using small molecule inhibitors, and recent phase 1 clinical trials for the TGFB receptor kinase inhibitor, vactosertib, has been shown to be safe and effective [65]. Targeting TGFB function in animal models of renal and idiopathic pulmonary fibrosis is sufficient to alleviate fibrosis and associated symptoms [62, 66]. Few studies have focused on the role of TGFB in prostate inflammation, fibrosis, and LUTS. Since TGFB has been an effective target

in alleviating collagen accumulation in fibrotic diseases, it most likely has a similar role in the inflamed prostate. Connective tissue growth factor (CTGF) is a downstream target of TGFB, and its activity has been targeted by the CTGF blocking antibody FG-3019 for treating idiopathic pulmonary fibrosis, which was generally well-tolerated with a safety profile like placebo, but did not meet the study endpoints in phase 3 clinical trials [67]. Similarly, the CTGF blocking antibody RXI-109 for treating subretinal fibrosis also showed effectiveness with no significant side effects of toxicity as of stage 2 clinical trials [68].

Nuclear factor- κ B (NF- κ B) and related inflammatory cytokines

Several other inflammatory cytokines have been implicated in prostate inflammation, some of which are potential targets for new LUTS therapies [69, 70]. Interleukin 1B (IL1B) and tumor necrosis factor (TNF) are expressed in mouse models of prostate inflammation [26, 71] and in human clinical specimens [72, 73] and can function in concert to promote NF- κ B activation, driving cytokine/chemokine expression. Many males with LUTD and ranging from ages 50-80 years have elevated levels of TNF [74], and TNF blockade significantly decreases epithelial hyperplasia, macrophage-mediated inflammation, and BPH incidence [71]. IL1B is highly expressed both in the prostates of patients with chronic prostatitis and patients with BPH [72, 75]. High fat diets induce urinary voiding dysfunction in mice, a phenotype linked to higher levels of oxidative stress/NADPH oxidase deregulation, which elevate prostate inflammatory cytokines via NF- κ B activation [25, 76-78].

Studies involving men with BPH [79] and abdominal obesity [80], connected elevated low-density lipoprotein-cholesterol and HFDs with increased systemic inflammation/LUTS. NF- κ B activation is likely to play a strong role in starting or increasing the initial inflammation response via TNF and IL1B, especially in LUTD pathologies involving HFDs. NF- κ B mediated inflammation has also been linked to prostate cell proliferation [81, 82]. NF- κ B regulates cyclooxygenase-2 (COX2), which drives cell proliferation and inflammation [83, 84]. COX2 is necessary for ROS-dependent activation of NF- κ B [85] and *in vitro* inhibition of NF- κ B with an

isoliquirtigenin, a licorice root extracted flavonoid with anti-inflammatory properties [86], decreases COX2 expression and reduces inflammation [87]. In the prostate, COX2 contributes to inflammation by converting arachidonic acid into pro-inflammatory prostaglandins [88]. COX2 activity is elevated in inflamed and enlarged prostates and is a target for nonsteroidal anti-inflammatory drugs (NSAIDs) [88, 89]. NSAIDs have been evaluated for therapeutic use in patients with male LUTS, but do not clearly offer long-term benefits, despite some short-term benefits for patients with nocturia [89-91]. However, NSAIDs have provided better short-term benefits in combination with 5ARIs and α -blockers [92-94]. NSAIDs may be available as an adjuvant to 5ARIs, particularly in the early phase of 5ARI therapy, as 5ARIs take a few months to exert symptom improvement [95, 96].

Notably, in a recent study that examined prostates of human patients with and without BPH, and of mice, treatment with celecoxib and/or finasteride decreased the abundance of NADH: ubiquinone oxidoreductase core subunit S3 (NDUFS3) without significantly changing the density of inflammatory cells [97]. The authors also reported that BPH prostates had less NDUFS3 than prostates without BPH [97]. The authors concluded NSAIDs may have a potential negative drug interaction with mitochondrial complex I [97], interrupting ATP synthesis by uncoupling mitochondrial oxidative phosphorylation [98], a mechanism recently shown to cause hepatotoxicity in rats [99]. A recent study gives further support to the hypothesis that mitochondrial dysfunction is a mechanism of non-malignant prostate disease, as age-related decreases in C1 mitochondrial proteins were observed in BPH/LUTS patients [100], but this connection requires further investigation. Uncontrolled NF- κ B regulation of COX2 promotes BPH and prostate inflammation, and while inhibitors of COX2 have shown some benefits, though further testing is needed to understand if there is a significant negative interaction with mitochondrial CI function.

The chemokine ligand C-C motif chemokine ligand 2 (CCL2) and its receptor C-C motif chemokine receptor 2 (CCR2)

CCL2/CCR2 has a key role in fibrosis by modulating the recruitment of immune cells, includ-

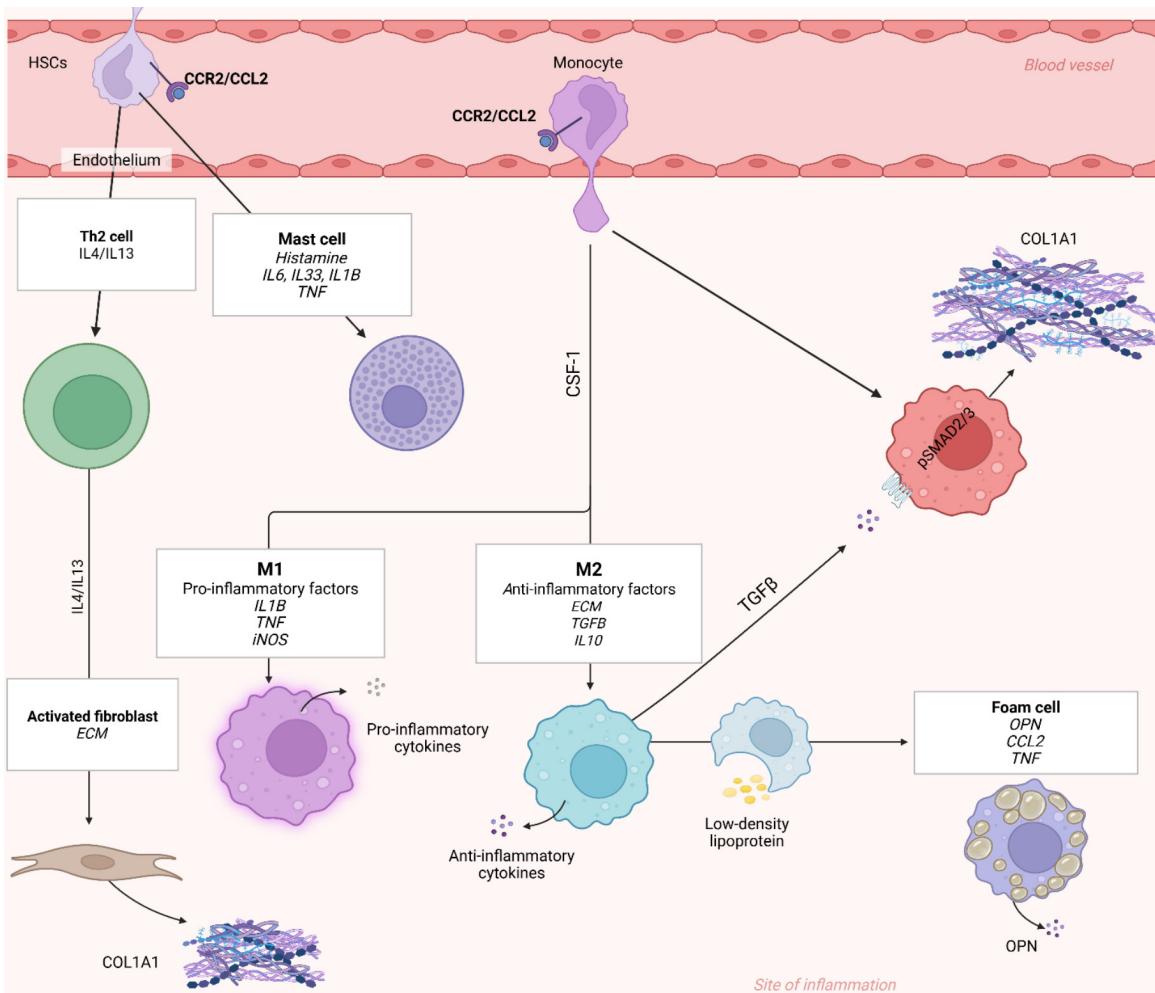
ing dendritic cells, monocytes, and T cells [101], but may also activate mast cells and basophils [102]. CCL2 can be secreted by several cells including monocytes, macrophages, dendritic cells, endothelial cells, and fibroblasts, and is induced by TNF, TGFB, IL4, and IL1B [102]. CCL2/CCR2 signaling mediates macrophage involvement in testicular and colon fibrosis [103, 104] and fibrocyte recruitment in the kidney and prostate (discussed in more depth in fibrocyte section) [35, 105]. Functional blockades of CCL2/CCR2 partially alleviate fibrosis of the liver, kidney, and lung [106-108]. In the prostate, CCL2/CCR2 plays a significant role in mediating inflammation and fibrosis. CCL2/CCR2 is elevated in prostatic fluid of men with chronic pelvic syndrome [109] and in urine specimens of BPH/LUTS patients [110], correlating with obesity and prostatic inflammation [111]. CCR2+ monocytes and macrophages drive the prostate fibrotic response in mice implanted with slow-release implants of exogenous testosterone and estradiol [49]. Additionally, CCR2 is an essential mediator of autoimmune prostatitis in a mouse model of chronic pelvic pain [112]. Fibrosis was also shown to be mediated in part by CCL2/CCR2, as *Ccr2* null mice infected with uropathogenic *E. coli* to induce prostate inflammation accumulated significantly less collagen than infected wild type mice [35].

The stromal cell-derived factor-1 (CXCL12)/C-X-C receptor 4 (CXCR4) axis

The CXCL12/CXCR4 axis promotes ECM changes and fibroblast activation [50, 113, 114], and CXCR4 inhibitors are in development as anti-inflammatory therapies [115]. CXCL12/CXCR4 has pro-inflammatory properties and promote M1 macrophage polarization and cytokine production [116, 117]. CXCL12/CXCR4 signaling promotes the activation and proliferation of CD4+ cells [118, 119], which are involved in BPH/LUTS disease progression (see Leukocyte section). CXCL12 drives fibrosis of several tissues [120, 121], including the prostate [50, 116]. These prostate studies identified CXCR4 as a mediator of pro-inflammatory M1 macrophages; while blocking CXCR4 inhibits fibroblast activation in chronic prostatitis mouse models [116]. Additionally, inhibiting CXCR4 activity leads to decreased fibrosis and voiding dysfunction in high fat diet mouse models of prostate inflammation [50]. CXCL12/CXCR4 sig-

naling drives phenoconversion of prostate fibroblasts into myofibroblasts *in vitro* [122], but more studies are needed to confirm a similar action *in vivo*.

The CX3C chemokine receptor type 1 and its ligand CX3CL1


CX3CF1 and CX3CL1 activate several signaling cascades, including PI3K [123], which in turn simulates NF- κ B signaling, cytokine production, production of extracellular matrix components by intestinal epithelial cells [124], and fibroblasts [125]. CX3CR1 can also activate TNF, leading to signal transducer and activator of transcription 3 (STAT3) pathway activation [123]. Genetic deletion of CX3CR1 in mice reduces collagen production by 50% in granulation tissues injected with TGFB and CTGF [126] and reduces kidney fibrosis by halting expansion of pro-fibrotic macrophages [127]. CX3CR1 activation also drives M2 macrophage differentiation [128], cells which are implicated as major drivers of prostate inflammation and urinary voiding dysfunction [129-132]. CX3CR1 has not been a target in preclinical studies of prostate related voiding dysfunction but has been related to prostate cancer and metastasis [133, 134].

Cells implicated in prostate inflammation, fibrosis and urinary voiding dysfunction (Summarized in Figure 1)

Mast cells

Mast cells are histamine producing immune cells that derive from the yolk sac (YS) and seed tissues during embryogenesis or derive from bone marrow and seed tissues later in life [135, 136]. Erythromyeloid progenitors populate adipose, pleural cavity, and connective tissue, while bone marrow derived mast cells populate mucosal tissues including the prostate and urethra [136]. Mast cells have also been reported in endocrine glands and in perivascular tissues near nerve termini [137]. Definitive hematopoietic stem cells have the potential to differentiate into all blood lineage cells, while it is currently thought that the differentiation potential for YS-derived mast cells is limited to erythrocytes, megakaryocytes, and macrophages [135]. Definitive adult mast cells express CCR2/CCL2 and embryotic YS-derived mast cells selectively express CX3CR1 [135]. In the

Mechanisms of prostatic inflammation-mediated LUTS

Figure 1. Summary of cells reported in prostate inflammation, fibrosis, and voiding dysfunction.

prostate, mast cell can produce interleukin 6 (IL6) to stimulate STAT3/Cyclin D1 signaling in epithelial cells, driving their proliferation [138]. This has been demonstrated *in vitro* by exposing BPH-1 epithelial cells to IL6 [139]. Mast cells have been implicated in prostate inflammation through secretion of pro-inflammatory cytokines like TNF, IL1B and interleukin 33 [137]. Mast cell inhibition reduces CD3+/CD8+ T cells and CD11b+ macrophages, while alleviating prostate fibrosis/LUTS in mice with bacterial infections of the prostate [138]. Mast cells are also more numerous in inflamed prostate tissue resulting from exposure to exogenous testosterone and 17 β estradiol [131]. Additionally, mast cells are observed in prostate tissues of men with chronic pelvic pain syndrome and LUTS [140-143] and abolishing mast cell activity in bladder autoimmune inflammation models alleviates bladder inflammation and LUTD

[144]. Identifying additional characteristic roles for mast cells in prostate inflammation and fibrosis mediation could reveal new mechanistic targets for LUTD treatments.

T lymphocytes

T lymphocytes are white blood cells that mediate the acquired or antigen-specific immune response. Mast cells may play a role in activating T cells since inactivation of mast cells reduces CD3+ and CD8+ T cells in the prostate of mice with bacterial infections [138]. Early studies involving T cells and their role in BPH/LUTS report conflicting roles of T cells. A 2009 study showed that prostate-localized CD8+ and CD4+ T cells were more frequent than other inflammatory cells in BPH biopsies of 282 men undergoing open prostatectomy or transurethral resection [145]. A different study conducted in

Mechanisms of prostatic inflammation-mediated LUTS

2011 did not support that T cells are reliable predictors of clinical progression of LUTS in BPH patients, implied through the lack of immunostaining evidence in 96 BPH biopsy tissues [146]. However, a more recent study also cast doubt on the importance of CD8+ cells in prostate inflammation but instead raised the hypothesis that CD4-Th1 cells drive autoimmune prostate inflammation [147]. Looking back at some supporting older studies, CD4+ cells were seen to make up 70% of the inflammatory infiltrate in transurethral prostate tissues from men with LUTS [148], while the CD4 subset, Type 2 (Th2) cells, were seen promoting interleukin 4/interleukin 13 (IL4/IL13) axis signaling in BPH tissue [149]. Increased Th2 cell densities were observed in the periurethral region of BPH patients [150], an area known for increased collagen density and disease progression. Pro-fibrotic IL4/IL13 signaling [151] has been implicated in LUTS progression by promoting T cell activation through STAT3 signaling and subsequent fibroblast activation [114]. Inhibition of STAT3 and the IL4/IL13 axis attenuated fibrosis in bacterial-inflamed mouse prostate [20]. CD4+ cells and specifically their Th2 subtype have been shown to be present and active in prostate inflammation, mediated through IL4/IL13 axis signaling [20, 114].

Macrophages

Macrophages have been associated with inflammation and fibrosis, including inflammation-mediated prostatic collagen accumulation [48, 104, 116, 130, 132, 152-154]. Macrophages are derived from monocytes, recruited via CCR2/CCL2 or CX3CR1 [128] and differentiated through macrophage colony stimulating factor [155]. M1 or classically activated macrophages secrete pro-inflammatory factors like IL1B and TNF. M2, or alternatively activated macrophages, are better recognized for their roles in tissue wound healing, fibrosis and resolution of inflammation through secreting of growth factors like TGFB, fibroblast growth factor, and tissue inhibitor of matrix metalloproteinase 1 [156-158]. In autoimmune prostatic inflammation, macrophages secrete TNF and stimulate fibroblast proliferation, leading to BPH and inflammation [71]. In bacterial models of prostate inflammation, M1 macrophages can be activated by bacterial lipopolysaccharide and promote pro-inflammatory signaling through the NF- κ B pathway [159, 160]. M2 macroph-

ages secret TGFB, which promotes collagen production [160] and are abundant in the collagen-dense periurethral region of men with BPH [129, 161, 162]. M1 and M2 macrophages are necessary for early prostate inflammation (M1 macrophages) and fibrosis (M2 macrophages). Identifying the specific mechanisms by which macrophages contribute to prostate inflammation, fibrosis and LUTS is an invaluable focal point in developing targeted treatments.

Foam cells

Foam cells are a subset of macrophages deriving from activation of the CXCL12/CXCR4 axis, which promotes phagocytosis of low-density lipoprotein [163, 164]. Phagocytosis of low-density lipoproteins gives rise to lipid-laden cells with a M2 macrophage-like phenotype. Foam cells drive osteopontin (OPN) production [48, 131] and production of cytokines such as TNF and chemokines like CCL2 [165]. A mouse model of urinary voiding dysfunction driven by slow-release implants of testosterone and 17 β estradiol features periurethral accumulation of OPN+ foam cells, increased urinary frequency, increased prostatic collagen deposition, increased densities of macrophages in the ventral lobe and mast cells in the dorsal lobe [131]. Genetic deletion of OPN prevented each of these testosterone and estradiol-dependent histological and physiological changes in mice [131]. In the same study, testosterone and estradiol increased the prostatic density of M1 macrophages in an OPN-dependent fashion, while OPN deletion increased the density of M2 macrophages [131]. The results suggest a role OPN+ foam cells in the regulation of M1/M2 macrophage differentiation and fibrosis.

Myofibroblasts

Myofibroblasts are activated fibroblasts that co-express α -smooth muscle actin and the intracellular collagen marker proCOL1 [166]. Myofibroblasts contribute to the pathogenesis of fibrotic diseases in several organs, including the lungs, heart, skin, and kidney [151, 167-169]. Myofibroblast activity in LUTS/BPH development has been controversial and many studies have stated or implied their role in LUTD development without histological evidence, especially *in vivo* [2, 170, 171]. There is more evidence of prostate fibroblasts to myofibroblasts phenocconversion *in vitro*, especially in response

to TGFB and/or CXC-type chemokines [120, 130, 172, 173]. One study using single cell analysis of mouse and human prostate tissue shows an increase of myofibroblast populations in BPH, but the authors noted this was not evidence due to the phenotype potentially being part of cell culture conditions [46]. It has been recently reported that many of the cells that populate and contribute to collagen deposition in the prostates of mice, dogs, and humans are not positive for α -smooth muscle actin [22, 35].

Additionally, it was recently shown that fibroblasts activated by IL4/IL13 expressed ECM proteins but do not differentiate completely into myofibroblasts, showing a lack of α -smooth muscle actin expression or contractile activity [114]. However, an ex vivo study suggests that TGFB-induced fibroblast to myofibroblast conversion in the prostate is dependent on elevated IGF binding protein 3 mediated by cancerous cells [174], while a different *in vivo* study using hormone-accelerated BPH tissue but excluding any tissue with prostatitis or infection, made similar conclusions [175]. This could suggest that myofibroblasts mediate fibrosis in some hyperplastic fibromuscular stroma, but the precise *in vivo* conditions for this phenomenon are unknown.

Fibrocytes

Fibrocytes have been described as mesenchymal progenitors arising from myeloid precursors [176]. Fibrocytes express markers associated with hematopoietic cells (CD45 and LYZ) but possess characteristics typical of mesenchymal cells or fibroblasts (collagen production, occasional spindle-shaped morphology, S100A4 expression), making them difficult to track *in vivo* [35, 177-179]. Fibrocytes express collagen and expand when faced with bacterial-induced prostate inflammation [35]. They are also implicated as a contributor to inflammation in fibrotic conditions including cystic, pulmonary, liver, corneal, and prostatic fibrosis [35, 177, 180-183]. Fibrocytes can be activated by TGFB, promoting SMAD2/3 phosphorylation and collagen transcription [184]. Specifically in the prostate, *Ccr2* null mice faced with uropathogenic *E. coli* prostate infection had significant decreases in both overall collagen density and fibrocyte population, suggesting a CCR2- dependent mechanism where

fibrocytes synthesize the majority of collagen when faced with bacterial infection [35]. Additionally, fibrocytes labeled with CD45 and vimentin are denser in the prostates of mice with type 1 diabetes and bacterial-induced inflammation [24, 51]. Fibrocytes are promising as targets for LUTS therapy as they have both pro- and anti-inflammatory properties but have been difficult to work with. Most agree that additional specific fibrocyte markers are needed to confirm and further investigate the role of these cells in inflammation-mediated prostatic collagen accumulation.

Discussion and conclusion

The connection between prostatic collagen accumulation and LUTS has prompted significant efforts to identify key cellular mediators, underlying mechanisms, and potential therapeutic targets. While mouse models of human urinary dysfunction were once met with skepticism, they have become indispensable tools for understanding the pathophysiology of LUTS. Using these models, recent studies have highlighted several mechanisms, cell types, cytokines, and chemokines as central players in the development of prostate inflammation and collagen accumulation, with each contributing uniquely to disease progression. All of the cell types discussed in this review have a role to play in inflammation mediated prostatic collagen accumulation and LUTD development, which warrants the need for further investigation. Some of these cells, including fibrocytes, macrophages, and mast cells have been shown to have direct roles in inflammation and fibrosis, mainly through the release of mediating cytokines, like TGFB, or direct transcription of pro-collagen. The studies involving these cells highlight their potential as new targets for therapeutic drugs [50, 114, 131, 138, 185]. Future research should focus on identifying specific markers for each respective cell type to improve *in vivo* tracking and exploring the potential interaction between other cell populations.

Moreover, the cytokines and chemokines discussed in this review each have a specific role in promoting prostate inflammation and fibrosis. Inhibition of TGFB has shown promise in other fibrotic disease treatments and investigating the role TGFB has in LUTD development may be an optimal start for the development of targeted treatments. However, each one should

be considered for further investigations because painting a more complete picture of each respective mechanism will improve our understanding of their specific interactions, which may lead to the information needed to develop new therapies.

Acknowledgements

This study was supported by NIH/NIDDK U54-DK104310, U01DK110807 and NIH/NIEHS R01ES001332. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Disclosure of conflict of interest

None.

Address correspondence to: Chad M Vezina, Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA. E-mail: chad.vezina@wisc.edu

References

- [1] Irwin DE, Kopp ZS, Agatep B, Milsom I and Abrams P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. *BJU Int* 2011; 108: 1132-1138.
- [2] Ma J, Gharaee-Kermani M, Kunju L, Hollingsworth JM, Adler J, Arruda EM and Macoska JA. Prostatic fibrosis is associated with lower urinary tract symptoms. *J Urol* 2012; 188: 1375-1381.
- [3] Rodriguez-Nieves JA and Macoska JA. Prostatic fibrosis, lower urinary tract symptoms, and BPH. *Nat Rev Urol* 2013; 10: 546-550.
- [4] Cantiello F, Cicione A, Salonia A, Autorino R, Tucci L, Madeo I and Damiano R. Periurethral fibrosis secondary to prostatic inflammation causing lower urinary tract symptoms: a prospective cohort study. *Urology* 2013; 81: 1018-1023.
- [5] Cantiello F, Cicione A, Salonia A, Autorino R, Ucciero G, Tucci L, Briganti A and Damiano R. Metabolic syndrome correlates with peri-urethral fibrosis secondary to chronic prostate inflammation: evidence of a link in a cohort of patients undergoing radical prostatectomy. *Int J Urol* 2014; 21: 264-269.
- [6] Mohamad Anuar MF, Solihin Rezali M, Mohamed Daud MA and Ismail SB. A community-based study on lower urinary tract symptoms in Malaysian males aged 40 years and above. *Sci Rep* 2022; 12: 2345.
- [7] Kim Y, Hong S, Kang T, Chung H, Kim T, Kim S, Koh S and Jung J. Trends in age-specific prevalence of lower urinary tract dysfunction: a nationwide population-based cohort study. *Urogenit Tract Infect* 2023; 18: 101-106.
- [8] He W, Goodkind D and Kowal P. An aging world, P95-16-1, 2015, U.S. Census Bureau, Washington, DC, 2015.
- [9] Lage I, Braga F, Almendra M, Meneses F, Teixeira L and Araújo O. Older people living alone: a predictive model of fall risk. *Int J Environ Res Public Health* 2023; 20: 6284.
- [10] Smith AB and Carson CC. Finasteride in the treatment of patients with benign prostatic hyperplasia: a review. *Ther Clin Risk Manag* 2009; 5: 535-545.
- [11] McConnell JD, Roehrborn CG, Bautista OM, Andriole GL Jr, Dixon CM, Kusek JW, Lepor H, McVary KT, Nyberg LM Jr, Clarke HS, Crawford ED, Diokno A, Foley JP, Foster HE, Jacobs SC, Kaplan SA, Kreder KJ, Lieber MM, Lucia MS, Miller GJ, Menon M, Milam DF, Ramsdell JW, Schenkman NS, Slawin KM and Smith JA; Medical Therapy of Prostatic Symptoms (MTOPS) Research Group. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. *N Engl J Med* 2003; 349: 2387-2398.
- [12] Lepor H, Williford WO, Barry MJ, Brawer MK, Dixon CM, Gormley G, Haakenson C, Machi M, Narayan P and Padley RJ. The efficacy of terazosin, finasteride, or both in benign prostatic hyperplasia. Veterans Affairs Cooperative Studies Benign Prostatic Hyperplasia Study Group. *N Engl J Med* 1996; 335: 533-539.
- [13] Goulooze SC, Cohen AF and Rissmann R. Mirabegron. *Br J Clin Pharmacol* 2015; 80: 762-764.
- [14] Mónica FZ and De Nucci G. Tadalafil for the treatment of benign prostatic hyperplasia. *Expert Opin Pharmacother* 2019; 20: 929-937.
- [15] Löfling L, Sundström A, Kieler H, Bahmanyar S and Linder M. Exposure to antimuscarinic medications for treatment of overactive bladder and risk of lung cancer and colon cancer. *Clin Epidemiol* 2019; 11: 133-143.
- [16] Singla N and Singla AK. Evaluation and management of lower urinary tract symptoms after outlet surgery for benign prostatic hyperplasia. *Curr Bladder Dysfunct Rep* 2016; 11: 242-247.
- [17] Hollingsworth JM and Wilt TJ. Lower urinary tract symptoms in men. *BMJ* 2014; 349: g4474.
- [18] Cindolo L, Pirozzi L, Sountoulides P, Fanizza C, Romero M, Castellan P, Antonelli A, Simeone C, Tubaro A, de Nunzio C and Schips L. Patient's adherence on pharmacological therapy for benign prostatic hyperplasia (BPH)-associated

Mechanisms of prostatic inflammation-mediated LUTS

lower urinary tract symptoms (LUTS) is different: is combination therapy better than monotherapy? *BMC Urol* 2015; 15: 96.

- [19] Abreu-Mendes P, Silva J and Cruz F. Pharmacology of the lower urinary tract: update on LUTS treatment. *Ther Adv Urol* 2020; 12: 1756287220922425.
- [20] Bell-Cohn A, Mazur DJ, Hall C, Schaeffer AJ and Thumbikat P. Uropathogenic *Escherichia coli*-induced fibrosis, leading to lower urinary tract symptoms, is associated with Type-2 cytokine signaling. *Am J Physiol Renal Physiol* 2019; 316: F682-F692.
- [21] Liu TT, Thomas S, McLean DT, Roldan-Alzate A, Hernando D, Ricke EA and Ricke WA. Prostate enlargement and altered urinary function are part of the aging process. *Aging (Albany NY)* 2019; 11: 2653-2669.
- [22] Ruetten H, Sandhu J, Mueller B, Wang P, Zhang HL, Wegner KA, Cadena M, Sandhu S, L Abler L, Zhu J, O'Driscoll CA, Chelgren B, Wang Z, Shen T, Barasch J, BJORLING DE and Vezina CM. A uropathogenic *E. coli* UTI89 model of prostatic inflammation and collagen accumulation for use in studying aberrant collagen production in the prostate. *Am J Physiol Renal Physiol* 2021; 320: F31-F46.
- [23] Nickel JC. Lower urinary tract symptoms associated with prostatitis. *Can Urol Assoc J* 2012; 6 Suppl 2: S133-S135.
- [24] Wong L, Hutson PR and Bushman W. Prostatic inflammation induces fibrosis in a mouse model of chronic bacterial infection. *PLoS One* 2014; 9: e100770.
- [25] Gharaei-Kermani M, Rodriguez-Nieves JA, Mehra R, Vezina CA, Sarma AV and Macoska JA. Obesity-induced diabetes and lower urinary tract fibrosis promote urinary voiding dysfunction in a mouse model. *Prostate* 2013; 73: 1123-1133.
- [26] Bushman WA and Jerde TJ. The role of prostate inflammation and fibrosis in lower urinary tract symptoms. *Am J Physiol Renal Physiol* 2016; 311: F817-F821.
- [27] Macoska JA, Uchtmann KS, Leverson GE, McVary KT and Ricke WA. Prostate transition zone fibrosis is associated with clinical progression in the MTOPS study. *J Urol* 2019; 202: 1240-1247.
- [28] Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bannister PE, Johnson JL, Sperry J, Nathens AB, Biliar TR, West MA, Jeschke MG, Klein MB, Gammelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W and Tompkins RG; Inflammation and Host Response to Injury, Large Scale Collaborative Research Program. Genomic responses in mouse models poorly mimic human inflammatory diseases. *Proc Natl Acad Sci U S A* 2013; 110: 3507-3512.
- [29] Andersson KE, Birder L, Chermansky C, Chess-Williams R and Fry C. Are there relevant animal models to set research priorities in LUTD? *ICIRRS 2019. Neurourol Urodyn* 2020; 39 Suppl 3: S9-S15.
- [30] McNeal JE. The zonal anatomy of the prostate. *Prostate* 1981; 2: 35-49.
- [31] Ittmann M. Anatomy and histology of the human and murine prostate. *Cold Spring Harb Perspect Med* 2018; 8: a030346.
- [32] Henry GH, Malewska A, Joseph DB, Malladi VS, Lee J, Torrealba J, Mauck RJ, Gahan JC, Raj GV, Roehrborn CG, Hon GC, MacConmara MP, Reese JC, Hutchinson RC, Vezina CM and Strand DW. A cellular anatomy of the normal adult human prostate and prostatic urethra. *Cell Rep* 2018; 25: 3530-3542, e5.
- [33] McVary KT, Roehrborn CG, Avins AL, Barry MJ, Bruskewitz RC, Donnell RF, Foster HE Jr, Gonzalez CM, Kaplan SA, Penson DF, Ulchaker JC and Wei JT. Update on AUA guideline on the management of benign prostatic hyperplasia. *J Urol* 2011; 185: 1793-1803.
- [34] Holder KG, Galvan B, Knight AS, Ha F, Collins R, Weaver PE, Brandi L and de Riese WT. Possible clinical implications of prostate capsule thickness and glandular epithelial cell density in benign prostate hyperplasia. *Investig Clin Urol* 2021; 62: 423-429.
- [35] Scharpf BR, Ruetten H, Sandhu J, Wegner KA, Chandrashekhar S, Fox O, Turco AE, Cole C, Arrendt LM, Strand DW and Vezina CM. Prostatic *E. coli* infection drives CCR2-dependent recruitment of fibrocytes and collagen production. *Dis Model Mech* 2025; 18: DMM052012.
- [36] Takezawa K, Kondo M, Kiuchi H, Soda T, Takao T, Miyagawa Y, Tsujimura A, Nonomura N and Shimada S. Combination of bladder ultrasonography and novel cystometry method in mice reveals rapid decrease in bladder capacity and compliance in LPS-induced cystitis. *Am J Physiol Renal Physiol* 2014; 307: F234-F241.
- [37] Boonen KJ, Koldewijn EL, Arents NL, Raaymakers PA and Scharnhorst V. Urine flow cytometry as a primary screening method to exclude urinary tract infections. *World J Urol* 2013; 31: 547-551.
- [38] De Bruyn H, Corthout N, Munck S, Everaerts W and Voets T. Machine learning-assisted fluoroscopy of bladder function in awake mice. *Elife* 2022; 11: e79378.
- [39] Yu W, Ackert-Bicknell C, Larigakis JD, MacIver B, Steers WD, Churchill GA, Hill WG and Zeidel ML. Spontaneous voiding by mice reveals

Mechanisms of prostatic inflammation-mediated LUTS

strain-specific lower urinary tract function to be a quantitative genetic trait. *Am J Physiol Renal Physiol* 2014; 306: F1296-F1307.

[40] Wegner KA, Abler LL, Oakes SR, Mehta GS, Ritter KE, Hill WG, Zwaans BM, Lamb LE, Wang Z, Bjorling DE, Ricke WA, Macoska J, Marker PC, Southard-Smith EM, Eliceiri KW and Vezina CM. Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. *Am J Physiol Renal Physiol* 2018; 315: F1067-F1080.

[41] Ruetten HM, Henry GH, Liu TT, Spratt HM, Ricke WA, Strand DW and Vezina CM. A NEW approach for characterizing mouse urinary pathophysiologies. *Physiol Rep* 2021; 9: e14964.

[42] Sartori AM, Kessler TM and Schwab ME. Methods for assessing lower urinary tract function in animal models. *Eur Urol Focus* 2021; 7: 186-189.

[43] Bjorling DE, Wang Z, Vezina CM, Ricke WA, Keil KP, Yu W, Guo L, Zeidel ML and Hill WG. Evaluation of voiding assays in mice: impact of genetic strains and sex. *Am J Physiol Renal Physiol* 2015; 308: F1369-F1378.

[44] Keil KP, Abler LL, Altmann HM, Bushman W, Marker PC, Li L, Ricke WA, Bjorling DE and Vezina CM. Influence of animal husbandry practices on void spot assay outcomes in C57BL/6J male mice. *Neurourol Urodyn* 2016; 35: 192-198.

[45] Hill WG, Zeidel ML, Bjorling DE and Vezina CM. Void spot assay: recommendations on the use of a simple micturition assay for mice. *Am J Physiol Renal Physiol* 2018; 315: F1422-F1429.

[46] Joseph DB, Henry GH, Malewska A, Reese JC, Mauck RJ, Gahan JC, Hutchinson RC, Malladi VS, Roehrborn CG, Vezina CM and Strand DW. Single-cell analysis of mouse and human prostate reveals novel fibroblasts with specialized distribution and microenvironment interactions. *J Pathol* 2021; 255: 141-154.

[47] Ruetten H, Wegner KA, Romero MF, Wood MW, Marker PC, Strand D, Colopy SA and Vezina CM. Prostatic collagen architecture in neutered and intact canines. *Prostate* 2018; 78: 839-848.

[48] Popovics P, Jain A, Skalitzky KO, Schroeder E, Ruetten H, Cadena M, Uchtmann KS, Vezina CM and Ricke WA. Osteopontin deficiency ameliorates prostatic fibrosis and inflammation. *Int J Mol Sci* 2021; 22: 12461.

[49] Popovics P, Silver SV, Uchtmann KS, Arendt LM, Vezina CM and Ricke WA. CCR2+ monocytes/macrophages drive steroid hormone imbalance-related prostatic fibrosis. *Sci Rep* 2024; 14: 15736.

[50] Macoska JA, Wang Z, Virta J, Zacharias N and Bjorling DE. Inhibition of the CXCL12/CXCR4 axis prevents periurethral collagen accumulation and lower urinary tract dysfunction in vivo. *Prostate* 2019; 79: 757-767.

[51] Lee S, Yang G, Mulligan W, Gipp J and Bushman W. Ventral prostate fibrosis in the Akita mouse is associated with macrophage and fibrocyte infiltration. *J Diabetes Res* 2014; 2014: 939053.

[52] Zhang Y, Feng R, Chen S, Wang Z, Huang C, Zhang L, Chen J and Liang C. The causative effect of CXCR7 on experimental autoimmune prostatitis injury and fibrosis. *Int Immunopharmacol* 2025; 144: 113685.

[53] Meng T, Zhang Y, Wang H, Wu W, Peng W, Yue J, Huang C, Liu W, Liang C, Yang C and Chen J. Irf7 aggravates prostatitis by promoting Hif-1 α -mediated glycolysis to facilitate M1 polarization. *Cell Mol Life Sci* 2025; 82: 90.

[54] Wegner KA, Mueller BR, Unterberger CJ, Avila EJ, Ruetten H, Turco AE, Oakes SR, Girardi NM, Halberg RB, Swanson SM, Marker PC and Vezina CM. Prostate epithelial-specific expression of activated PI3K drives stromal collagen production and accumulation. *J Pathol* 2020; 250: 231-242.

[55] Pascal LE, Igarashi T, Mizoguchi S, Chen W, Rigatti LH, Madigan CG, Dhir R, Bushman W, DeFranco DB, Yoshimura N and Wang Z. E-cadherin deficiency promotes prostate macrophage inflammation and bladder overactivity in aged male mice. *Aging (Albany NY)* 2022; 14: 2945-2965.

[56] He Q, Xu C, Guo J, Chen Y, Huang N and Chen J. Bisphenol A exposure stimulates prostatic fibrosis via exosome-triggered epithelium changes. *Food Chem Toxicol* 2024; 185: 114450.

[57] Huang T, Chen J, Zhang Y, Chen Y, Xu C, Guo J and Ming H. Circ_0027470 promotes cadmium exposure-induced prostatic fibrosis via sponging miRNA-1236-3p and stimulating SHH signaling pathway. *J Appl Toxicol* 2023; 43: 973-981.

[58] Zhu S, Wang YY, Hu XY, Zhou HL, Wang G, Chen HX, Zeng HB, Xie H, Wang ZX and Xu R. Akkermansia muciniphila-derived extracellular vesicles mitigate smoking-induced prostate inflammation and fibrosis. *Int Immunopharmacol* 2025; 149: 114195.

[59] Verrecchia F, Chu ML and Mauviel A. Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. *J Biol Chem* 2001; 276: 17058-17062.

[60] Kim KK, Sheppard D and Chapman HA. TGF- β 1 signaling and tissue fibrosis. *Cold Spring Harb Perspect Biol* 2018; 10: a022293.

[61] Chen S, Wei Y, Li S, Miao Y, Gu J, Cui Y, Liu Z, Liang J, Wei L, Li X, Zhou H and Yang C. Zanu-

Mechanisms of prostatic inflammation-mediated LUTS

brutinib attenuates bleomycin-induced pulmonary fibrosis by inhibiting the TGF- β 1 signaling pathway. *Int Immunopharmacol* 2022; 113: 109316.

[62] Jackson JW, Frederick C Streich Jr, Pal A, Corcoran G, Boston C, Brueckner CT, Canonico K, Chapron C, Cote S, Dagbay KB, Danehy FT Jr, Kavosi M, Kumar S, Lin S, Littlefield C, Looby K, Manohar R, Martin CJ, Wood M, Zawadzka A, Wawersik S, Nicholls SB, Datta A, Buckler A, Schürpf T, Carven GJ, Qatanani M and Fogel Al. An antibody that inhibits TGF- β 1 release from latent extracellular matrix complexes attenuates the progression of renal fibrosis. *Sci Signal* 2024; 17: eadn6052.

[63] Luong VH, Chino T, Oyama N, Matsushita T, Sasaki Y, Ogura D, Niwa SI, Biswas T, Hamasaki A, Fujita M, Okamoto Y, Otsuka M, Ihn H and Hasegawa M. Blockade of TGF- β /smad signaling by the small compound HPH-15 ameliorates experimental skin fibrosis. *Arthritis Res Ther* 2018; 20: 46.

[64] Nüchel J, Ghatak S, Zuk AV, Illerhaus A, Mörgelin M, Schönborn K, Blumbach K, Wickström SA, Krieg T, Sengle G, Plomann M and Eckes B. TGF β 1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. *Autophagy* 2018; 14: 465-486.

[65] Malek E, Rana PS, Swamydas M, Daunov M, Miyagi M, Murphy E, Ignatz-Hoover JJ, Metheny L, Kim SJ and Driscoll JJ. The TGF β type I receptor kinase inhibitor vactosertib in combination with pomalidomide in relapsed/refractory multiple myeloma: a phase 1b trial. *Nat Commun* 2024; 15: 7388.

[66] Peng D, Fu M, Wang M, Wei Y and Wei X. Targeting TGF- β signal transduction for fibrosis and cancer therapy. *Mol Cancer* 2022; 21: 104.

[67] Raghu G, Richeldi L, Fernández Pérez ER, De Salvo MC, Silva RS, Song JW, Ogura T, Xu ZJ, Belloli EA, Zhang X, Seid LL and Poole L; ZEPHYRUS-1 Study Investigators. Pamrevlumab for idiopathic pulmonary fibrosis: the ZEPHYRUS-1 randomized clinical trial. *JAMA* 2024; 332: 380-389.

[68] Byrne M, Gagne N, Hafiz G, Mir T, Survi M, Barefoot L, Cardia J, Bullock K, Pavco PA and Campochiaro PA. A Phase 1/2 multidose, dose escalation study to evaluate RXI-109 administered by intravitreal injection to reduce the progression of subretinal fibrosis in subjects with advanced neovascular AMD (NVAMD). *IOVS* 2017; 58: 3210.

[69] Samarin M, Gacci M, de la Taille A and Gravas S. Prostatic inflammation: a potential treatment target for male LUTS due to benign prostatic obstruction. *Prostate Cancer Prostatic Dis* 2018; 21: 161-167.

[70] Naiyila X, Li J, Huang Y, Chen B, Zhu M, Li J, Chen Z, Yang L, Ai J, Wei Q, Liu L and Cao D. A novel insight into the immune-related interaction of inflammatory cytokines in benign prostatic hyperplasia. *J Clin Med* 2023; 12: 1821.

[71] Vickman RE, Aaron-Brooks L, Zhang R, Laman NA, Lapin B, Gil V, Greenberg M, Sasaki T, Cresswell GM, Broman MM, Paez JS, Petkewicz J, Talaty P, Helfand BT, Glaser AP, Wang CH, Franco OE, Ratliff TL, Nastiuk KL, Crawford SE and Hayward SW. TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease. *Nat Commun* 2022; 13: 2133.

[72] Ashok A, Keener R, Rubenstein M, Stookey S, Bajpai S, Hicks J, Alme AK, Drake CG, Zheng Q, Trabzonlu L, Yegnasubramanian S, De Marzo AM and Biebrich CJ. Consequences of interleukin 1 β -triggered chronic inflammation in the mouse prostate gland: Altered architecture associated with prolonged CD4+ infiltration mimics human proliferative inflammatory atrophy. *Prostate* 2019; 79: 732-745.

[73] van Loo G and Bertrand MJM. Death by TNF: a road to inflammation. *Nat Rev Immunol* 2023; 23: 289-303.

[74] Duarsa GWK, Kusumah YG, Sugianto R, Tirtayasa PMW and Mahadewa TGB. Tumor necrosis factor-alpha, transforming growth factor-beta, degree of lower urinary tract symptoms as predictors of erectile dysfunction in benign prostatic hyperplasia patients. *Asian J Urol* 2024; 11: 280-285.

[75] Hata J, Matsuoka K, Harigane Y, Yaginuma K, Akaihata H, Meguro S, Honda-Takinami R, Onagi A, Sato Y, Ogawa S, Uemura M and Kojima Y. Proliferative mechanism of benign prostatic hyperplasia by NLRP3 inflammasome through the complement pathway. *Int J Urol* 2024; 31: 1429-1437.

[76] Vykhanovets EV, Shankar E, Vykhanovets OV, Shukla S and Gupta S. High-fat diet increases NF- κ B signaling in the prostate of reporter mice. *Prostate* 2011; 71: 147-156.

[77] Shankar E, Bhaskaran N, MacLennan GT, Liu G, Daneshgari F and Gupta S. Inflammatory signaling involved in high-fat diet induced prostate diseases. *J Urol Res* 2015; 2: 1018.

[78] Li Y, Shi B, Dong F, Zhu X, Liu B and Liu Y. Effects of inflammatory responses, apoptosis, and STAT3/NF- κ B- and Nrf2-mediated oxidative stress on benign prostatic hyperplasia induced by a high-fat diet. *Aging (Albany NY)* 2019; 11: 5570-5578.

[79] Erbay G and Ceyhun G. Association between hyperlipidemia and prostatic enlargement: a case-control study. *Urologia* 2022; 89: 58-63.

[80] Khoo J, Piantadosi C, Duncan R, Worthley SG, Jenkins A, Noakes M, Worthley MI, Lange K

Mechanisms of prostatic inflammation-mediated LUTS

and Wittert GA. Comparing effects of a low-energy diet and a high-protein low-fat diet on sexual and endothelial function, urinary tract symptoms, and inflammation in obese diabetic men. *J Sex Med* 2011; 8: 2868-2875.

[81] Austin DC, Strand DW, Love HL, Franco OE, Jang A, Grabowska MM, Miller NL, Hameed O, Clark PE, Fowke JH, Matusik RJ, Jin RJ and Hayward SW. NF- κ B and androgen receptor variant expression correlate with human BPH progression. *Prostate* 2016; 76: 491-511.

[82] Wang KY and Wu JH. Regulatory effect of NF- κ B on prostatic hyperplasia: progress in researches. *Zhonghua Nan Ke Xue* 2021; 27: 1025-1029.

[83] Lim JW, Kim H and Kim KH. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. *Lab Invest* 2001; 81: 349-360.

[84] Kirkby NS, Chan MV, Zaiss AK, Garcia-Vaz E, Jiao J, Berglund LM, Verdu EF, Ahmetaj-Shala B, Wallace JL, Herschman HR, Gomez MF and Mitchell JA. Systematic study of constitutive cyclooxygenase-2 expression: role of NF- κ B and NFAT transcriptional pathways. *Proc Natl Acad Sci U S A* 2016; 113: 434-439.

[85] Zhao Y, Yang Y, Liu M, Qin X, Yu X, Zhao H, Li X and Li W. COX-2 is required to mediate cross-talk of ROS-dependent activation of MAPK/NF- κ B signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis. *PLoS Negl Trop Dis* 2022; 16: e0010402.

[86] Xin W, Fang Q, Sun J, Kong S, Chen L and Huang P. Anticancer activity of isoliquiritigenin: biological effects and molecular mechanisms. *J Chin Pharm Sci* 2019; 28: 673-686.

[87] Li M, Lu G, Ma X, Wang R, Chen X, Yu Y and Jiang C. Anti-inflammation of isoliquiritigenin via the inhibition of NF- κ B and MAPK in LPS-stimulated MAC-T cells. *BMC Vet Res* 2022; 18: 320.

[88] Zha S, Gage WR, Sauvageot J, Saria EA, Putzi MJ, Ewing CM, Faith DA, Nelson WG, De Marzo AM and Isaacs WB. Cyclooxygenase-2 is upregulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. *Cancer Res* 2001; 61: 8617-8623.

[89] Sutcliffe S, Grubb III RL, Platz EA, Ragard LR, Riley TL, Kazin SS, Hayes RB, Hsing AW and Andriole GL; Urologic Diseases in America Project. Non-steroidal anti-inflammatory drug use and the risk of benign prostatic hyperplasia-related outcomes and nocturia in the prostate, lung, colorectal, and ovarian cancer screening trial. *BJU Int* 2012; 110: 1050-1059.

[90] Falahatkar S, Mokhtari G, Pourreza F, Asgari SA and Kamran AN. Celecoxib for treatment of nocturia caused by benign prostatic hyperplasia: a prospective, randomized, double-blind, placebo-controlled study. *Urology* 2008; 72: 813-816.

[91] Araki T, Yokoyama T, Araki M and Furuya S. A clinical investigation of the mechanism of ibuprofen, a non-steroidal anti-inflammatory drug, for patients with nocturia. *Acta Med Okayama* 2008; 62: 373-378.

[92] Jhang JF, Jiang YH and Kuo HC. Adding Cyclooxygenase-2 inhibitor to alpha blocker for patients with benign prostate hyperplasia and elevated serum prostate specific antigen could not improve prostate biopsy detection rate but improve lower urinary tract symptoms. *Int J Clin Pract* 2013; 67: 1327-1333.

[93] Di Silverio F, Bosman C, Salvatori M, Albanesi L, Proietti Pannunzi L, Ciccarello M, Cardi A, Salvatori G and Sciarra A. Combination therapy with rofecoxib and finasteride in the treatment of men with lower urinary tract symptoms (LUTS) and benign prostatic hyperplasia (BPH). *Eur Urol* 2005; 47: 72-78; discussion 78-9.

[94] Ozdemir I, Bozkurt O, Demir O, Aslan G and Esen AA. Combination therapy with doxazosin and tenoxicam for the management of lower urinary tract symptoms. *Urology* 2009; 74: 431-435.

[95] Unger JM, Till C, Thompson IM Jr, Tangen CM, Goodman PJ, Wright JD, Barlow WE, Ramsey SD, Minasian LM and Hershman DL. Long-term consequences of finasteride vs placebo in the prostate cancer prevention trial. *J Natl Cancer Inst* 2016; 108: djw168.

[96] Musquera M, Fleshner NE, Finelli A and Zlotta AR. The REDUCE trial: chemoprevention in prostate cancer using a dual 5alpha-reductase inhibitor, dutasteride. *Expert Rev Anticancer Ther* 2008; 8: 1073-1079.

[97] Liu TT, Igarashi T, El-Khoury N, Ihejirika N, Paxton K, Jaumotte J, Dhir R, Hudson CN, Nelson JB, DeFranco DB, Yoshimura N, Wang Z and Pascal LE. Benign prostatic hyperplasia nodules in patients treated with celecoxib and/or finasteride have reduced levels of NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, a mitochondrial protein essential for efficient function of the electron transport chain. *Prostate* 2024; 84: 1309-1319.

[98] Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD and Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. *Gastroenterology* 2018; 154: 500-514.

[99] Syed M, Skonberg C and Hansen SH. Mitochondrial toxicity of selective COX-2 inhibitors via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria. *Toxicol In Vitro* 2016; 32: 26-40.

Mechanisms of prostatic inflammation-mediated LUTS

[100] Adrian AE, Liu TT, Pascal LE, Bauer SR, DeFranco DB and Ricke WA. Aging-related mitochondrial dysfunction is associated with fibrosis in benign prostatic hyperplasia. *J Gerontol A Biol Sci Med Sci* 2024; 79: glad222.

[101] Restrepo C, Gutierrez-Rivas M, Pacheco YM, García M, Blanco J, Medrano LM, Navarrete-Muñoz MA, Gutiérrez F, Miralles P, Dalmau D, Gómez JL, Górgolas M, Cabello A, Resino S, Benito JM and Rallón N; CoRIS and the HIV Biobank integrated in the Spanish AIDS Research Network Project RIS/EPICLIN 10_2015. Genetic variation in CCR2 and CXCL12 genes impacts on CD4 restoration in patients initiating cART with advanced immunesuppression. *PLoS One* 2019; 14: e0214421.

[102] She S, Ren L, Chen P, Wang M, Chen D, Wang Y and Chen H. Functional roles of chemokine receptor CCR2 and its ligands in liver disease. *Front Immunol* 2022; 13: 812431.

[103] Kuroda N, Masuya M, Tawara I, Tsuboi J, Yoneda M, Nishikawa K, Kageyama Y, Hachiya K, Ohishi K, Miwa H, Yamada R, Hamada Y, Tanaka K, Kato T, Takei Y and Katayama N. Infiltrating CCR2(+) monocytes and their progenies, fibrocytes, contribute to colon fibrosis by inhibiting collagen degradation through the production of TIMP-1. *Sci Rep* 2019; 9: 8568.

[104] Peng W, Kepsch A, Kracht TO, Hasan H, Wijayarathna R, Wahle E, Pleuger C, Bhushan S, Günther S, Kauerhof AC, Planinić A, Fietz D, Schuppe HC, Wygrecka M, Loveland KL, Ježek D, Meinhardt A, Hedger MP and Fijak M. Activin A and CCR2 regulate macrophage function in testicular fibrosis caused by experimental autoimmune orchitis. *Cell Mol Life Sci* 2022; 79: 602.

[105] Reich B, Schmidbauer K, Rodriguez Gomez M, Johannes Hermann F, Göbel N, Brühl H, Ketelsen I, Talke Y and Mack M. Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. *Kidney Int* 2013; 84: 78-89.

[106] Guo Y, Zhao C, Dai W, Wang B, Lai E, Xiao Y, Tang C, Huang Z and Gao J. C-C motif chemokine receptor 2 inhibition reduces liver fibrosis by restoring the immune cell landscape. *Int J Biol Sci* 2023; 19: 2572-2587.

[107] Kitagawa K, Wada T, Furuichi K, Hashimoto H, Ishiwata Y, Asano M, Takeya M, Kuziel WA, Matushima K, Mukaida N and Yokoyama H. Blockade of CCR2 ameliorates progressive fibrosis in kidney. *Am J Pathol* 2004; 165: 237-246.

[108] Brody SL, Gunsten SP, Luehmann HP, Sultan DH, Hoelscher M, Heo GS, Pan J, Koenitzer JR, Lee EC, Huang T, Mpoy C, Guo S, Laforest R, Salter A, Russell TD, Shifren A, Combadiere C, Lavine KJ, Kreisel D, Humphreys BD, Rogers BE, Gierada DS, Byers DE, Gropler RJ, Chen DL, Atkinson JJ and Liu Y. Chemokine receptor 2-targeted molecular imaging in pulmonary fibrosis. A clinical trial. *Am J Respir Crit Care Med* 2021; 203: 78-89.

[109] Desireddi NV, Campbell PL, Stern JA, Sobkovic R, Chuai S, Shahrrara S, Thumbikat P, Pope RM, Landis JR, Koch AE and Schaeffer AJ. Monocyte chemoattractant protein-1 and macrophage inflammatory protein-1alpha as possible biomarkers for the chronic pelvic pain syndrome. *J Urol* 2008; 179: 1857-1861; discussion 1861-2.

[110] Tyagi P, Motley SS, Kashyap M, Pore S, Gingrich J, Wang Z, Yoshimura N and Fowke JH. Urine chemokines indicate pathogenic association of obesity with BPH/LUTS. *Int Urol Nephrol* 2015; 47: 1051-1058.

[111] Tyagi P, Motley SS, Koyama T, Kashyap M, Gingrich J, Yoshimura N and Fowke JH. Molecular correlates in urine for the obesity and prostatic inflammation of BPH/LUTS patients. *Prostate* 2018; 78: 17-24.

[112] Quick ML, Mukherjee S, Rudick CN, Done JD, Schaeffer AJ and Thumbikat P. CCL2 and CCL3 are essential mediators of pelvic pain in experimental autoimmune prostatitis. *Am J Physiol Regul Integr Comp Physiol* 2012; 303: R580-R589.

[113] Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. *Immunol Lett* 2020; 217: 91-115.

[114] D'Arcy Q, Gharaee-Kermani M, Zhilin-Roth A and Macoska JA. The IL-4/IL-13 signaling axis promotes prostatic fibrosis. *PLoS One* 2022; 17: e0275064.

[115] Lu L, Li J, Jiang X and Bai R. CXCR4/CXCL12 axis: "old" pathway as "novel" target for anti-inflammatory drug discovery. *Med Res Rev* 2024; 44: 1189-1220.

[116] Zhang Y, Zhang C, Feng R, Meng T, Peng W, Song J, Ma W, Xu W, Chen X, Chen J and Liang C. CXCR4 regulates macrophage M1 polarization by altering glycolysis to promote prostate fibrosis. *Cell Commun Signal* 2024; 22: 456.

[117] Seemann S and Lupp A. Administration of AMD3100 in endotoxemia is associated with pro-inflammatory, pro-oxidative, and pro-apoptotic effects in vivo. *J Biomed Sci* 2016; 23: 68.

[118] Suzuki Y, Rahman M and Mitsuya H. Diverse transcriptional response of CD4+ T cells to stromal cell-derived factor SDF-1: cell survival promotion and priming effects of SDF-1 on CD4+ T cells. *J Immunol* 2001; 167: 3064-3073.

[119] Nanki T and Lipsky PE. Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. *J Immunol* 2000; 164: 5010-5014.

Mechanisms of prostatic inflammation-mediated LUTS

[120] Patalano S, Rodríguez-Nieves J, Colaneri C, Cotellessa J, Almanza D, Zhihi-Roth A, Riley T and Macoska J. CXCL12/CXCR4-mediated procollagen secretion is coupled to cullin-RING ubiquitin ligase activation. *Sci Rep* 2018; 8: 3499.

[121] Wu X, Qian L, Zhao H, Lei W, Liu Y, Xu X, Li J, Yang Z, Wang D, Zhang Y, Zhang Y, Tang R, Yang Y and Tian Y. CXCL12/CXCR4: an amazing challenge and opportunity in the fight against fibrosis. *Ageing Res Rev* 2023; 83: 101809.

[122] Rodríguez-Nieves JA, Patalano SC, Almanza D, Gharaei-Kermani M and Macoska JA. CXCL12/CXCR4 axis activation mediates prostate myofibroblast phenoconversion through non-canonical EGFR/MEK/ERK signaling. *PLoS One* 2016; 11: e0159490.

[123] Korbecki J, Simińska D, Kojder K, Grochans S, Gutowska I, Chlubek D and Baranowska-Bosiacka I. Fractalkine/CX3CL1 in neoplastic processes. *Int J Mol Sci* 2020; 21: 3723.

[124] Brand S, Sakaguchi T, Gu X, Colgan SP and Reinecker HC. Fractalkine-mediated signals regulate cell-survival and immune-modulatory responses in intestinal epithelial cells. *Gastroenterol* 2002; 122: 166-177.

[125] Cheng WH, Chang PL, Wu YC, Wang SA, Chen CL, Hsu FL, Neoh MM, Lin LY, Yuliani FS, Lin CH and Chen BC. Neutralization of CX3CL1 attenuates TGF- β -induced fibroblast differentiation through NF- κ B activation and mitochondrial dysfunction in airway fibrosis. *Lung* 2024; 202: 343-356.

[126] Arai M, Ikawa Y, Chujo S, Hamaguchi Y, Ishida W, Shirasaki F, Hasegawa M, Mukaida N, Fujimoto M and Takehara K. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. *J Dermatol Sci* 2013; 69: 250-258.

[127] Engel DR, Krause TA, Snelgrove SL, Thiebes S, Hickey MJ, Boor P, Kitching AR and Kurts C. CX3CR1 reduces kidney fibrosis by inhibiting local proliferation of profibrotic macrophages. *J Immunol* 2015; 194: 1628-1638.

[128] de Aguiar MF, Torquato H, Salu BR, Oliveira ACD, Oliva MLV, Paredes-Gamero EJ, Abdullaad WH, Brouwer E and de Souza AWS. Monocyte subsets and monocyte-related chemokines in Takayasu arteritis. *Sci Rep* 2023; 13: 2092.

[129] Zhang J, Yu C and Li S. Histological inflammation and activation of M2 type macrophages may cause prostate fibrosis. *Asian J Surg* 2024; 47: 2515-2516.

[130] Sheng J, Yang Y, Cui Y, He S, Wang L, Liu L, He Q, Lv T, Han W, Yu W, Hu S and Jin J. M2 macrophage-mediated interleukin-4 signaling induces myofibroblast phenotype during the progression of benign prostatic hyperplasia. *Cell Death Dis* 2018; 9: 755.

[131] Popovics P, Skalitzky KO, Schroeder E, Jain A, Silver SV, Van Fritz F, Uchtmann KS, Vezina CM and Ricke WA. Steroid hormone imbalance drives macrophage infiltration and Spp1/osteopontin(+) foam cell differentiation in the prostate. *J Pathol* 2023; 260: 177-189.

[132] Ishiyama S, Hayatsu M, Toriumi T, Tsuda H, Watanabe K, Kasai H, Kishigami S, Mochizuki K and Mikami Y. Assessing the combined impact of fatty liver-induced TGF- β 1 and LPS-activated macrophages in fibrosis through a novel 3D serial section methodology. *Sci Rep* 2024; 14: 11404.

[133] Jamieson WL, Shimizu S, D'Ambrosio JA, Meucci O and Fatatis A. CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/Fractalkine in the bone marrow: potential role in prostate cancer bone tropism. *Cancer Res* 2008; 68: 1715-1722.

[134] Jeyaretnam J. The interaction between CX3CR1-CX3CL1 in prostate cancer 2019. Master of Science Thesis, University of Fribourg, Switzerland.

[135] Gentek R, Ghigo C, Hoeffel G, Bulle MJ, Msallam R, Gautier G, Launay P, Chen J, Ginhoux F and Bajenoff M. Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. *Immunity* 2018; 48: 1160-1171, e5.

[136] Li Z, Liu S, Xu J, Zhang X, Han D, Liu J, Xia M, Yi L, Shen Q, Xu S, Lu L and Cao X. Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. *Immunity* 2018; 49: 640-653, e5.

[137] Theoharides TC, Alyssandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A and Kalogeromitros D. Mast cells and inflammation. *Biochim Biophys Acta* 2012; 1822: 21-33.

[138] Pattabiraman G, Bell-Cohn AJ, Murphy SF, Mazur DJ, Schaeffer AJ and Thumbikat P. Mast cell function in prostate inflammation, fibrosis, and smooth muscle cell dysfunction. *Am J Physiol Renal Physiol* 2021; 321: F466-F479.

[139] Ou Z, He Y, Qi L, Zu X, Wu L, Cao Z, Li Y, Liu L, Dube DA, Wang Z and Wang L. Infiltrating mast cells enhance benign prostatic hyperplasia through IL-6/STAT3/Cyclin D1 signals. *Oncotarget* 2017; 8: 59156-59164.

[140] Breuer ML, Salazar FC, Rivero VE and Motrich RD. Immunological mechanisms underlying chronic pelvic pain and prostate inflammation in chronic pelvic pain syndrome. *Front Immunol* 2017; 8: 898.

[141] Malykhina A. Neural mechanisms of pelvic organ cross-sensitization. *Neuroscience* 2007; 149: 660-672.

[142] Conti P, Ronconi G, Lauritano D, Mastrangelo F, Caraffa A, Gallenga CE, Frydas I, Kritas SK,

Mechanisms of prostatic inflammation-mediated LUTS

Carinci F, Gaudelli F, Annicchiarico C and D'Ovidio C. Impact of TNF and IL-33 cytokines on mast cells in neuroinflammation. *Int J Mol Sci* 2024; 25: 3248.

[143] Yeo E, Shim J, Oh SJ, Choi Y, Noh H, Kim H, Park JH, Lee KT, Kim SH, Lee D and Lee LH. Revisiting roles of mast cells and neural cells in keloid: exploring their connection to disease activity. *Front Immunol* 2024; 15: 1339336.

[144] Wang X, Liu W, O'Donnell M, Lutgendorf S, Bradley C, Schrepf A, Liu L, Kreder K and Luo Y. Evidence for the role of mast cells in cystitis-associated lower urinary tract dysfunction: a multidisciplinary approach to the study of chronic pelvic pain research network animal model study. *PLoS One* 2016; 11: e0168772.

[145] Robert G, Descazeaud A, Nicolaïew N, Terry S, Sirab N, Vacherot F, Maillé P, Allory Y and de la Taille A. Inflammation in benign prostatic hyperplasia: a 282 patients' immunohistochemical analysis. *Prostate* 2009; 69: 1774-1780.

[146] Lamb AD, Qadan M, Roberts S, Timlin H, Vowler SL, Campbell FM, Grigor K, Bartlett JM and McNeill SA. CD4+ and CD8+ T-lymphocyte scores cannot reliably predict progression in patients with benign prostatic hyperplasia. *BJU Int* 2011; 108: E43-E50.

[147] Salazar FC, Martinez MS, Paire DA, Chocobar YA, Olivera C, Godoy GJ, Acosta-Rodriguez EV, Rivero VE and Motrich RD. CD8 T cells are dispensable for experimental autoimmune prostatitis induction and chronic pelvic pain development. *Front Immunol* 2024; 15: 1387142.

[148] Theyer G, Kramer G, Assmann I, Sherwood E, Preinfalk W, Marberger M, Zechner O and Steiner GE. Phenotypic characterization of infiltrating leukocytes in benign prostatic hyperplasia. *Lab Invest* 1992; 66: 96-107.

[149] Steiner GE, Stix U, Handisurya A, Willheim M, Haitel A, Reithmayr F, Paikl D, Ecker RC, Hrachowitz K, Kramer G, Lee C and Marberger M. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. *Lab Invest* 2003; 83: 1131-1146.

[150] Torkko KC, Wilson RS, Smith EE, Kusek JW, van Bokhoven A and Lucia MS. Prostate biopsy markers of inflammation are associated with risk of clinical progression of benign prostatic hyperplasia: findings from the MTOPS study. *J Urol* 2015; 194: 454-461.

[151] Wynn TA. Cellular and molecular mechanisms of fibrosis. *J Pathol* 2008; 214: 199-210.

[152] Wang X, Chen J, Xu J, Xie J, Harris DCH and Zheng G. The role of macrophages in kidney fibrosis. *Front Physiol* 2021; 12: 705838.

[153] Patel NK, Nunez JH, Sorkin M, Marini S, Pagani CA, Strong AL, Hwang CD, Li S, Padmanabhan KR, Kumar R, Bancroft AC, Greenstein JA, Nelson R, Rasheed HA, Livingston N, Vasquez K, Huber AK and Levi B. Macrophage TGF- β signaling is critical for wound healing with heterotopic ossification after trauma. *JCI Insight* 2022; 7: e144925.

[154] Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF and Wang H. Immune cell subset differentiation and tissue inflammation. *J Hematol Oncol* 2018; 11: 97.

[155] Hamidzadeh K, Belew AT, El-Sayed NM and Mosser DM. The transition of M-CSF-derived human macrophages to a growth-promoting phenotype. *Blood Adv* 2020; 4: 5460-5472.

[156] Han C, Deng Y, Xu W, Liu Z, Wang T, Wang S, Liu J and Liu X. The roles of tumor-associated macrophages in prostate cancer. *J Oncol* 2022; 8580043.

[157] Horibe K, Hara M and Nakamura H. M2-like macrophage infiltration and transforming growth factor- β secretion during socket healing process in mice. *Arch Oral Biol* 2021; 123: 105042.

[158] Liou GY, Fleming Martinez AK, Döppler HR, Bastea LI and Storz P. Inflammatory and alternatively activated macrophages independently induce metaplasia but cooperatively drive pancreatic precancerous lesion growth. *iScience* 2023; 26: 106820.

[159] Jin L, Chen J, Fu J, Lou J, Guo Y, Liu X, Xu X, Fu H and Shou Q. PARP1 exacerbates prostatitis by promoting M1 macrophages polarization through NF- κ B pathway. *Inflammation* 2025; Online ahead of print.

[160] Xia T, Fu S, Yang R, Yang K, Lei W, Yang Y, Zhang Q, Zhao Y, Yu J, Yu L and Zhang T. Advances in the study of macrophage polarization in inflammatory immune skin diseases. *J Inflamm (Lond)* 2023; 20: 33.

[161] Moin ASM, Sathyapalan T, Atkin SL and Butler AE. Pro-fibrotic M2 macrophage markers may increase the risk for COVID19 in type 2 diabetes with obesity. *Metabolism* 2020; 112: 154374.

[162] Song G, Tong J, Wang Y, Li Y, Liao Z, Fan D and Fan X. Nrf2-mediated macrophage function in benign prostatic hyperplasia: novel molecular insights and implications. *Biomed Pharmacother* 2023; 167: 115566.

[163] Chatterjee M, von Ungern-Sternberg SN, Seizer P, Schlegel F, Büttcher M, Sindhu NA, Müller S, Mack A and Gawaz M. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. *Cell Death Dis* 2015; 6: e1989.

[164] Murad HAS, Rafeeq MM and Alqurashi TMA. Role and implications of the CXCL12/CXCR4/CXCR7 axis in atherosclerosis: still a debate. *Ann Med* 2021; 5: 1598-1612.

Mechanisms of prostatic inflammation-mediated LUTS

[165] Moore KJ, Sheedy FJ and Fisher EA. Macrophages in atherosclerosis: a dynamic balance. *Nat Rev Immunol* 2013; 13: 709-721.

[166] Eyden B. The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. *J Cell Mol Med* 2008; 12: 22-37.

[167] Phan SH. Genesis of the myofibroblast in lung injury and fibrosis. *Proc Am Thorac Soc* 2012; 9: 148-152.

[168] Peysier R, MacDonnell S, Gao Y, Cheng L, Kim Y, Kaplan T, Ruan Q, Wei Y, Ni M, Adler C, Zhang W, Devalaraja-Narashimha K, Grindley J, Halasz G and Morton L. Defining the activated fibroblast population in lung fibrosis using single-cell sequencing. *Am J Respir Cell Mol Biol* 2019; 61: 74-85.

[169] Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De Wever O, Mareel M and Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. *Am J Pathol* 2012; 180: 1340-1355.

[170] Wei B, Ruan J, Liang J, Mi Y, Zhang J, Wang Z and Hu Q. Devazepide, a nonpeptide antagonist of CCK receptor, induces cell apoptosis and inhibits contraction in human prostatic stromal myofibroblasts. *Int J Clin Exp Med* 2017; 10: 6323-6332.

[171] Begley LA, Kasina S, MacDonald J and Macoska JA. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. *Cytokine* 2008; 43: 194-199.

[172] Gharaei-Kermani M, Kasina S, Moore BB, Thomas D, Mehra R and Macoska JA. CXC-type chemokines promote myofibroblast phenoconversion and prostatic fibrosis. *PLoS One* 2012; 7: e49278.

[173] Li T, Zhang Y, Zhou Z, Guan L, Zhang Y, Zhou Z, Wang W, Zhou X, Cui D, Jiang C and Ruan Y. Phosphodiesterase type 5 inhibitor tadalafil reduces prostatic fibrosis via MiR-3126-3p/FGF9 axis in benign prostatic hyperplasia. *Biol Direct* 2024; 19: 61.

[174] Sampson N, Zenzmaier C, Heitz M, Hermann M, Plas E, Schäfer G, Klocker H and Berger P. Stromal insulin-like growth factor binding protein 3 (IGFBP3) is elevated in the diseased human prostate and promotes ex vivo fibroblast-to-myofibroblast differentiation. *Endocrinol* 2013; 154: 2586-2599.

[175] Yang Y, Sheng J, Hu S, Cui Y, Xiao J, Yu W, Peng J, Han W, He Q, Fan Y, Niu Y, Lin J, Tian Y, Chang C, Yeh S and Jin J. Estrogen and G protein-coupled estrogen receptor accelerate the progression of benign prostatic hyperplasia by inducing prostatic fibrosis. *Cell Death Dis* 2022; 13: 533.

[176] Reilkoff RA, Bucala R and Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation. *Nat Rev Immunol* 2011; 11: 427-435.

[177] de Oliveira RC and Wilson SE. Fibrocytes, wound healing, and corneal fibrosis. *Invest Ophthalmol Vis Sci* 2020; 61: 28.

[178] Suga H, Rennert RC, Rodrigues M, Sorkin M, Glotzbach JP, Januszyk M, Fujiwara T, Longaker MT and Gurtner GC. Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing. *Stem Cells* 2014; 32: 1347-1360.

[179] Ruetten H, Cole C, Wehber M, Wegner KA, Girardi NM, Peterson NT, Scharpf BR, Romero MF, Wood MW, Colopy SA, BJORLING DE and Vezina CM. An immunohistochemical prostate cell identification key indicates that aging shifts procollagen 1A1 production from myofibroblasts to fibroblasts in dogs prone to prostate-related urinary dysfunction. *PLoS One* 2020; 15: e0232564.

[180] Xu J, Cong M, Park TJ, Scholten D, Brenner DA and Kisseleva T. Contribution of bone marrow-derived fibrocytes to liver fibrosis. *Hepatobiliary Surg Nutr* 2015; 4: 34-47.

[181] Kasam RK, Gajjala PR, Jegga AG, Courtney JA, Randell SH, Kramer EL, Clancy JP and Madala SK. Fibrocyte accumulation in the lungs of cystic fibrosis patients. *J Cyst Fibros* 2020; 19: 815-822.

[182] Andersson-Sjöland A, de Alba CG, Nihlberg K, Becerril C, Ramírez R, Pardo A, Westergren-Thorsson G and Selman M. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. *Int J Biochem Cell Biol* 2008; 40: 2129-2140.

[183] Heukels P, van Hulst JAC, van Nimwegen M, Boorsma CE, Melgert BN, van den Toorn LM, Boomars KAT, Wijzenbeek MS, Hoogsteden H, von der Thüsen JH, Hendriks RW, Kool M and van den Blink B. Fibrocytes are increased in lung and peripheral blood of patients with idiopathic pulmonary fibrosis. *Respir Res* 2018; 19: 90.

[184] Sun Y, Peng Y, Su Z, So KKH, Lu Q, Lyu M, Zuo J, Huang Y, Guan Z, Cheung KMC, Zheng Z, Zhang X and Leung VYL. Fibrocyte enrichment and myofibroblastic adaptation causes nucleus pulposus fibrosis and associates with disc degeneration severity. *Bone Res* 2025; 13: 10.

[185] Liu J, Zhang J, Fu X, Yang S, Li Y, Liu J, DiSanto ME, Chen P and Zhang X. The emerging role of cell adhesion molecules on benign prostatic hyperplasia. *Int J Mol Sci* 2023; 24: 2870.