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Abstract: Lower urinary tract dysfunction (LUTD) is prevalent in aging men. It is characterized by urinary symptoms 
such as weak stream and more frequent urination, and is linked to a variety of prostate and urethral pathologies. 
While the leading medical therapies for male LUTD aim to reduce the tone and volume of the prostate and urethra, 
no current therapies target two prominent emerging mechanisms of male LUTD: prostate inflammation and fibrosis. 
LUTD arises and progresses over decades of a man’s life, making it difficult to pinpoint disease mechanisms. Non-
human research models, including mice, have been useful for investigating slow-progressing diseases of aging. 
Research involving mouse models of lower urinary tract dysfunction is surging due to a growing suite of genetic, 
pharmacological and immune-based tools for manipulating mouse prostate histopathology, cell signaling and phe-
notyping mouse urinary voiding. Current research is focused on understanding how macrophages, fibrocytes, mast 
cells and other cells are recruited to the prostate and how these cells are activated to drive prostate inflammation 
and fibrosis. This review highlights recent mouse studies to investigate the cellular and molecular underpinnings 
of prostate inflammation and fibrosis, and the molecular mechanisms that have emerged from these studies as 
potential therapeutic targets
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Introduction

Male LUTD affects over 4 billion individuals 
worldwide [1] and is characterized by a disor-
ders of the bladder, urinary sphincter, urethra, 
and the prostate. LUTD can vary in severity and 
is often accompanied by lower urinary tract 
symptoms (LUTS) such as incomplete bladder 
emptying, hesitancy and intermittency, weak 
stream, and frequent urination, especially at 
night [2, 3]. Male LUTS becomes more frequent 
and severe with age [4-7]. The worldwide geriat-
ric population is expected to nearly double over 
the next three decades, increasing the medical 
burden for male LUTS and making the quest for 
new and more effective therapies urgent [8, 9].

Male LUTS can arise from a multitude of pathol-
ogies, making it difficult to pinpoint effective 
treatment options that extend across the popu-
lation. A historical cause and clinical predictor 
of male LUTS has been urethral obstruction 

due to benign prostatic hyperplasia (BPH). 
Steroid 5α-reductase inhibitors (5ARIs) are 
given to patients who have BPH, with the goal  
of shrinking the prostate by blocking the enzy-
matic conversion of testosterone into its more 
potent androgen receptor agonist, dihydrotes-
tosterone [10]. Smooth muscle dysfunction of 
the prostate and bladder neck are also contrib-
utors to LUTS development, usually through 
hypertonia [11]. Men with smaller prostate vol-
umes and LUTS are generally prescribed α- 
adrenergic receptor antagonists (α-blockers), 
which reduce smooth muscle tone in the pros-
tate and bladder neck [11]. 5ARIs and α-blo- 
ckers are more effective in combination than as 
monotherapies [11], but even in combination 
do not alleviate symptoms in all men [11, 12]. 
Recent developments in drug therapy have in- 
troduced several promising new options for 
treating LUTS, including beta-3 adrenoceptor 
agonists, which increase bladder capacity by 
relaxing smooth muscle [13]; phosphodiester-
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ase five inhibitors, whose exact mechanisms 
are still unknown but are believed to promote 
smooth muscle relaxation by increasing cyclic 
guanosine monophosphate [14]; and anticho-
linergic agents, which relax bladder smooth 
muscle by reducing the effects of acetylcholine 
[15]. Although medical therapies and surgery 
have been effective in improving symptoms in 
some men, some men do not experience im- 
provement from these treatments. In some cas- 
es, symptoms may persist, recur or worsen and 
can cause lasting and irreversible damage to 
bladder function [11, 16-19].

It is necessary to look beyond smooth muscle 
dysfunction and BPH to uncover additional me- 
chanisms that drive male LUTD. Understanding 
the additional drivers of LUTD is crucial in the 
development of new therapies that are effec-
tive across a broader cohort of men. Inflamma- 
tion-mediated prostate fibrosis is a prominent 
candidate in the mechanism for clinical pro-
gression of LUTS. Inflammation is caused by  
a multitude of factors, and involves the infil- 
tration of both pro- and anti-inflammatory cells 
that promote tissue repair through collagen 
synthesis [3]. Clear evidence links inflamma-
tion to prostatic collagen deposition and LUTS 
[2, 4, 5, 20-22]. Around 50% of men with chron-
ic prostatitis experience LUTS [23], which may 
be due to swelling and irritation of the prostate 
and urethra, thereby interupting urine flow, or to 
prolonged inflammation, which can cause col-
lagen accumulate in the prostate. Inflammation 
is a driver of collagen accumulation in the mo- 
use prostate [24]. Collagen deposition on the 
prostate leads to tissue stiffening, urethral con-
striction, and voiding dysfunction [20, 24-26]. 
Prostatic collagen content in men, particularly 
in the transition zone, positively correlates with 
LUTS severity [27]. A study comparing the pros-
tates of men with LUTS, who were being treated 
with both 5ARIs and α-blockers but without sig-
nificant symptom relief, with prostates of men 
without LUTS, found higher periurethral colla-
gen content in the prostates of men with LUTS 
[27]. Additionally, these studies provide eviden- 
ce that prostatic fibrosis contributes to LUTS 
development independently of BPH or smooth 
muscle dysfunction.

While connections between inflammation, pro- 
static collagen content, and voiding dysfunc-
tion have been established, further pre-clinical 
research is needed to identify key cell types, 

mediators, and mechanisms. This is crucial for 
the development of new targeted therapies for 
the treatment of prostate fibrosis.

Evaluating the role of mouse models in the 
study of male urinary voiding dysfunction

Non-malignant prostate pathologies that con-
tribute to LUTS arise and progress over de- 
cades, making it difficult to pinpoint disease 
mechanisms. Non-human research models off- 
er an opportunity to study disease progression 
in a more rapid timeline and under controlled 
conditions. Mouse models have been used to 
study non-malignant male urinary voiding dys-
function but not without controversy [28, 29]. 
One criticism is based on anatomical differenc-
es between human and mouse prostate. The 
human prostate features a thick fibromuscular 
capsule surrounding glandular tissue that was 
initially divided into zones based on where his-
tological diseases are most prevalent. Prostate 
cancer primarily affects the peripheral zone, 
while benign hyperplastic nodules typically 
occur in the transition and sometimes central 
zone [30, 31]. Interestingly, a recent single cell 
RNA sequencing analysis demonstrates that 
each human prostate zone is populated by  
a unique distribution of fibroblasts [32]. It has 
been proposed that the capsule surrounding 
the human prostate confines the prostate in a 
limited space and that the growth of benign 
prostatic nodules place increasing pressure on 
the urethra, impeding expansion of the urethra 
and bladder emptying [33, 34]. The concept is 
supported by the effectiveness of surgical pros-
tate enucleation procedures such as transure-
thral resection of the prostate, holmium laser 
enucleation, and others that improve voiding 
function [33]. It is important note that prostatic 
collagen is dense and expands with age in the 
periurethral region [35], the region enucleated 
by surgical procedures for treating LUTS.

Mouse prostate anatomy differs from that of 
humans in that it features four distinct lobes 
(anterior, dorsal, lateral, and ventral) that are 
not confined by a substantial fibromuscular cap- 
sule. While the distal tips of the mouse prostate 
(acini) are not confined, the proximal ductal 
segments are restrained in a space between 
the striated muscle rhabdosphincter and ure-
thral epithelium, and course parallel to the ure-
thral epithelium for some distance before drain-
ing into the urethral lumen. It was initially be- 
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lieved that only dogs and humans develop pros-
tate-related voiding dysfunction with age; How- 
ever, a recent study demonstrated that when 
male mouse urinary voiding patterns are moni-
tored across lifespan, aging male mice also de- 
velop urinary voiding dysfunction [21]. Clinically 
relevant urodynamic testing and validated mea-
surements of spontaneous urinary voiding ac- 
tivity in mice have revealed numerous similari-
ties between urinary voiding dysfunction in mo- 
use models with voiding dysfunction experien- 
ced by human men [36-45]. There are also his-
tological similarities among human, canine and 
mouse prostate cells that give rise to inflamma-
tory pathologies [35, 46, 47].

Several mouse models accumulate prostatic 
collagen (Table 1). Transurethral infection of 
male mice with uropathogenic Escherichia coli 
(E. coli) yields histological changes to the mo- 
use prostate that resemble, in part, histological 
changes to the inflamed human prostate [22, 
48]. E. coli induced prostatic inflammation and 
collagen accumulation also elicits urinary void-
ing dysfunction that resembles voiding dys-
function in humans with LUTS [22, 25, 48]. 
Mice exposed to exogenous testosterone and 
17β estradiol accumulate prostatic collagen 
and void more frequently over time [49]. The 
prostates of 24-month-old (aged) male mice 
feature a denser collagen network and more 
cellular proliferation than 2-month-old mice 
[21]. The prostates of male mice fed a high fat 
diet (HFD) or of mice with diabetes feature im- 
mune cell infiltration, increased collagen con-
tent and urinary voiding dysfunction [50, 51]. 
Autoimmune prostatitis has been linked to pro- 
state fibrosis in mice [52], along with increased 
abundance of prostatic interferon regulatory 
factor 7, enhanced prostatic cell glycolysis, and 
an increased density of M1 polarized macro-
phages [53]. A reduction in interferon regulato-
ry factor 7 reduced prostatic collagen content 

in this mouse model [53]. A genetic approa- 
ch to hyperactivate phosphoinositide 3-kinase 
(PI3K) signaling in prostatic epithelial cells of 
mice resulted in inflammation and prostate 
fibrosis starting at 4-months of age and pro-
gressing until at least 12-months of age [54]. 
Additionally, a model with E-cadherin deficiency 
promoted increase immune cell infiltration and 
inflammation in aged mice [55]. Mice exposed 
to common environmental contaminants (ciga-
rette smoke, bisphenol A, and cadmium) also 
develop prostate inflammation and fibrosis 
[56-58].

Despite the challenges of recapitulating human 
LUTS in mice, mice have contributed to our 
understanding of prostate fibrosis mechanisms 
and potential therapies.

Cytokines and chemokines linked to prostate 
inflammation and fibrosis

Transforming growth factor (TGFB)

TGFB is a pro- and anti-inflammatory cytokine, 
depending on environmental context and cellu-
lar landscape, that binds the TGFB receptor 
and drives phosphorylation of SMAD family 
members 2 & 3 (SMAD2/3) to initiate collagen 
transcription or to differentiate inflammatory 
cells [59]. TGFB is associated with, and in some 
cases required for fibrosis across many tissues 
[60-64]. The TGFB pathway has been pharma-
cologically targeted using small molecule inhib-
itors, and recent phase 1 clinical trials for the 
TGFB receptor kinase inhibitor, vactosertib, has 
been shown to be safe and effective [65]. Tar- 
geting TGFB function in animal models of renal 
and idiopathic pulmonary fibrosis is sufficient 
to alleviate fibrosis and associated symptoms 
[62, 66]. Few studies have focused on the role 
of TGFB in prostate inflammation, fibrosis, and 
LUTS. Since TGFB has been an effective target 

Table 1. Mouse models of prostatic inflammation which show accumulation of collagen
Mouse model of prostatic collagen accumulation References
Transurethral instillation of E. coli [22, 48, 138]
Sustained exposure to exogenous testosterone and 17β estradiol [49, 131]
Aged mice [21, 100]
High fat diet/Diabetes [50, 51]
Experimental autoimmune prostatitis [52, 53, 116]
Environmental contaminant exposure [56-58]
Genetic gain and loss of function [53-55]
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in alleviating collagen accumulation in fibrotic 
diseases, it most likely has a similar role in the 
inflamed prostate. Connective tissue growth 
factor (CTGF) is a downstream target of TGFB, 
and its activity has been targeted by the CTGF 
blocking antibody FG-3019 for treating idio-
pathic pulmonary fibrosis, which was generally 
well-tolerated with a safety profile like placebo, 
but did not meet the study endpoints in phase 
3 clinical trials [67]. Similarly, the CTGF block-
ing antibody RXI-109 for treating subretinal 
fibrosis also showed effectiveness with no sig-
nificant side effects of toxicity as of stage 2 
clinical trials [68].

Nuclear factor-kappaB (NF-κB) and related 
inflammatory cytokines

Several other inflammatory cytokines have 
been implicated in prostate inflammation, so- 
me of which are potential targets for new LUTS 
therapies [69, 70]. Interleukin 1B (IL1B) and 
tumor necrosis factor (TNF) are expressed in 
mouse models of prostate inflammation [26, 
71] and in human clinical specimens [72, 73] 
and can function in concert to promote NF-κB 
activation, driving cytokine/chemokine expres-
sion. Many males with LUTD and ranging from 
ages 50-80 years have elevated levels of TNF 
[74], and TNF blockade significantly decreases 
epithelial hyperplasia, macrophage-mediated 
inflammation, and BPH incidence [71]. IL1B is 
highly expressed both in the prostates of pa- 
tients with chronic prostatitis and patients with 
BPH [72, 75]. High fat diets induce urinary void-
ing dysfunction in mice, a phenotype linked  
to higher levels of oxidative stress/NADPH oxi-
dase deregulation, which elevate prostate in- 
flammatory cytokines via NF-κB activation [25, 
76-78].

Studies involving men with BPH [79] and ab- 
dominal obesity [80], connected elevated low-
density lipoprotein-cholesterol and HFDs with 
increased systemic inflammation/LUTS. NF-κB 
activation is likely to play a strong role in start-
ing or increasing the initial inflammation res- 
ponse via TNF and IL1B, especially in LUTD pa- 
thologies involving HFDs. NF-κB mediated in- 
flammation has also been linked to prostate 
cell proliferation [81, 82]. NF-κB regulates cy- 
clooxygenase-2 (COX2), which drives cell prolif-
eration and inflammation [83, 84]. COX2 is nec-
essary for ROS-dependent activation of NF-κB 
[85] and in vitro inhibition of NF-κB with an 

isoliquirtigenin, a licorice root extracted flavo-
noid with anti-inflammatory properties [86], de- 
creases COX2 expression and reduces inflam-
mation [87]. In the prostate, COX2 contribut- 
es to inflammation by converting arachidonic  
acid into pro-inflammatory prostaglandins [88]. 
COX2 activity is elevated in inflamed and en- 
larged prostates and is a target for nonsteroi-
dal anti-inflammatory drugs (NSAIDs) [88, 89]. 
NSAIDs have been evaluated for therapeutic 
use in patients with male LUTS, but do not 
clearly offer long-term benefits, despite some 
short-term benefits for patients with nocturia 
[89-91]. However, NSAIDs have provided better 
short-term benefits in combination with 5ARIs 
and α-blockers [92-94]. NSAIDs may be avali-
able as an adjuvant to 5ARIs, particularly in the 
early phase of 5ARI therapy, as 5ARIs take a 
few months to exert symptom improvement 
[95, 96].

Notably, in a recent study that examined  
prostates of human patients with and without 
BPH, and of mice, treatment with celecoxib 
and/or finasteride decreased the abundance of 
NADH: ubiquinone oxidoreductase core subunit 
S3 (NDUFS3) without significantly changing the 
density of inflammatory cells [97]. The authors 
also reported that BPH prostates had less 
NDUFS3 than prostates without BPH [97]. The 
authors concluded NSAIDs may have a poten-
tial negative drug interaction with mitochondri-
al complex I [97], interrupting ATP synthesis by 
uncoupling mitochondrial oxidative phosphory-
lation [98], a mechanism recently shown to ca- 
use hepatotoxicity in rats [99]. A recent study 
gives further support to the hypothesis that 
mitochondrial dysfunction is a mechanism of 
non-malignant prostate disease, as age-related 
decreases in C1 mitochondrial proteins were 
observed in BPH/LUTS patients [100], but this 
connection requires further investigation. Un- 
controlled NF-κB regulation of COX2 promotes 
BPH and prostate inflammation, and while in- 
hibitors of COX2 have shown some benefits, 
though further testing is needed to understand 
if there is a significant negative interaction with 
mitochondrial CI function.

The chemokine ligand C-C motif chemokine 
ligand 2 (CCL2) and its receptor C-C motif che-
mokine receptor 2 (CCR2)

CCL2/CCR2 has a key role in fibrosis by modu-
lating the recruitment of immune cells, includ-
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ing dendritic cells, monocytes, and T cells 
[101], but may also activate mast cells and 
basophils [102]. CCL2 can be secreted by sev-
eral cells including monocytes, macrophages, 
dendritic cells, endothelial cells, and fibro-
blasts, and is induced by TNF, TGFB, IL4, and 
IL1B [102]. CCL2/CCR2 signaling mediates ma- 
crophage involvement in testicular and colon 
fibrosis [103, 104] and fibrocyte recruitment in 
the kidney and prostate (discussed in more 
depth in fibrocyte section) [35, 105]. Functional 
blockades of CCL2/CCR2 partially alleviate fi- 
brosis of the liver, kidney, and lung [106-108]. 
In the prostate, CCL2/CCR2 plays a significant 
role in mediating inflammation and fibrosis. 
CCL2/CCR2 is elevated in prostatic fluid of  
men with chronic pelvic syndrome [109] and in 
urine specimens of BPH/LUTS patients [110], 
correlating with obesity and prostatic inflam-
mation [111]. CCR2+ monocytes and macro-
phages drive the prostate fibrotic response in 
mice implanted with slow-release implants of 
exogenous testosterone and estradiol [49]. 
Additionally, CCR2 is an essential mediator of 
autoimmune prostatitis in a mouse model of 
chronic pelvic pain [112]. Fibrosis was also 
shown to be mediated in part by CCL2/CCR2, 
as Ccr2 null mice infected with uropathogenic 
E. coli to induce prostate inflammation accu-
mulated significantly less collagen than infect-
ed wild type mice [35].

The stromal cell-derived factor-1 (CXCL12)/C-
X-C receptor 4 (CXCR4) axis

The CXCL12/CXCR4 axis promotes ECM chang-
es and fibroblast activation [50, 113, 114], and 
CXCR4 inhibitors are in development as anti-
inflammatory therapies [115]. CXCL12/CXCR4 
has pro-inflammatory properties and promote 
M1 macrophage polarization and cytokine pro-
duction [116, 117]. CXCL12/CXCR4 signaling 
promotes the activation and proliferation of 
CD4+ cells [118, 119], which are involved in 
BPH/LUTS disease progression (see Leukocyte 
section). CXCL12 drives fibrosis of several tis-
sues [120, 121], including the prostate [50, 
116]. These prostate studies identified CXCR4 
as a mediator of pro-inflammatory M1 macro-
phages; while blocking CXCR4 inhibits fibro-
blast activation in chronic prostatitis mouse 
models [116]. Additionally, inhibiting CXCR4 
activity leads to decreased fibrosis and voiding 
dysfunction in high fat diet mouse models of 
prostate inflammation [50]. CXCL12/CXCR4 sig- 

naling drives phenoconversion of prostate fi- 
broblasts into myofibroblasts in vitro [122], but 
more studies are needed to confirm a similar 
action in vivo.

The CX3C chemokine receptor type 1 and its 
ligand CX3CL1

CX3CF1 and CX3CL1 activate several signaling 
cascades, including PI3K [123], which in turn 
simulates NF-κB signaling, cytokine production, 
production of extracellular matrix components 
by intestinal epithelial cells [124], and fibrobl- 
asts [125]. CX3CR1 can also activate TNF, lead-
ing to signal transducer and activator of tran-
scription 3 (STAT3) pathway activation [123]. 
Genetic deletion of CX3CR1 in mice reduces 
collagen production by 50% in granulation tis-
sues injected with TGFB and CTGF [126] and 
reduces kidney fibrosis by halting expansion of 
pro-fibrotic macrophages [127]. CX3CR1 acti-
vation also drives M2 macrophage differentia-
tion [128], cells which are implicated as major 
drivers of prostate inflammation and urinary 
voiding dysfunction [129-132]. CX3CR1 has not 
been a target in preclinical studies of prostate 
related voiding dysfunction but has been relat-
ed to prostate cancer and metastasis [133, 
134].

Cells implicated in prostate inflammation, 
fibrosis and urinary voiding dysfunction (Sum-
marized in Figure 1)

Mast cells

Mast cells are histamine producing immune 
cells that derive from the yolk sac (YS) and seed 
tissues during embryogenesis or derive from 
bone marrow and seed tissues later in life [135, 
136]. Erythromyeloid progenitors populate adi-
pose, pleural cavity, and connective tissue, whi- 
le bone marrow derived mast cells populate 
mucosal tissues including the prostate and ure-
thra [136]. Mast cells have also been reported 
in endocrine glands and in perivascular tissues 
near nerve termini [137]. Definitive hematopoi-
etic stem cells have the potential to differenti-
ate into all blood lineage cells, while it is cur-
rently thought that the differentiation poten- 
tial for YS-derived mast cells is limited to ery- 
throcytes, megakaryocytes, and macrophag- 
es [135]. Definitive adult mast cells express 
CCR2/CCL2 and embryotic YS-derived mast 
cells selectively express CX3CR1 [135]. In the 
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prostate, mast cell can produce interleukin 6 
(IL6) to stimulate STAT3/Cyclin D1 signaling in 
epithelial cells, driving their proliferation [138]. 
This has been demonstrated in vitro by expos-
ing BPH-1 epithelial cells to IL6 [139]. Mast 
cells have been implicated in prostate inflam-
mation through secretion of pro-inflammatory 
cytokines like TNF, IL1B and interleukin 33 
[137]. Mast cell inhibition reduces CD3+/CD8+ 
T cells and CD11b+ macrophages, while allevi-
ating prostate fibrosis/LUTS in mice with bacte-
rial infections of the prostate [138]. Mast cells 
are also more numerous in inflamed prostate 
tissue resulting from exposure to exogenous 
testosterone and 17β estradiol [131]. Addition- 
ally, mast cells are observed in prostate tissues 
of men with chronic pelvic pain syndrome and 
LUTS [140-143] and abolishing mast cell activ-
ity in bladder autoimmune inflammation mod-
els alleviates bladder inflammation and LUTD 

[144]. Identifying additional characteristic roles 
for mast cells in prostate inflammation and fi- 
brosis mediation could reveal new mechanistic 
targets for LUTD treatments.

T lymphocytes

T lymphocytes are white blood cells that medi-
ate the acquired or antigen-specific immune 
response. Mast cells may play a role in activat-
ing T cells since inactivation of mast cells re- 
duces CD3+ and CD8+ T cells in the prostate of 
mice with bacterial infections [138]. Early stud-
ies involving T cells and their role in BPH/LUTS 
report conflicting roles of T cells. A 2009 study 
showed that prostate-localized CD8+ and CD4+ 
T cells were more frequent than other inflam-
matory cells in BPH biopsies of 282 men un- 
dergoing open prostatectomy or transurethral 
resection [145]. A different study conducted in 

Figure 1. Summary of cells reported in prostate inflammation, fibrosis, and voiding dysfunction.
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2011 did not support that T cells are reliable 
predictors of clinical progression of LUTS in 
BPH patients, implied through the lack of immu-
nostaining evidence in 96 BPH biopsy tissues 
[146]. However, a more recent study also cast 
doubt on the importance of CD8+ cells in pros-
tate inflammation but instead raised the hy- 
pothesis that CD4-Th1 cells drive autoimmune 
prostate inflammation [147]. Looking back at 
some supporting older studies, CD4+ cells 
were seen to make up 70% of the inflammatory 
infiltrate in transurethral prostate tissues from 
men with LUTS [148], while the CD4 subset, 
Type 2 (Th2) cells, were seen promoting inter-
leukin 4/interleukin 13 (IL4/IL13) axis signal-
ing in BPH tissue [149]. Increased Th2 cell den-
sities were observed in the periurethral region 
of BPH patients [150], an area known for in- 
creased collagen density and disease progres-
sion. Pro-fibrotic IL4/IL13 signaling [151] has 
been implicated in LUTS progression by pro-
moting T cell activation through STAT3 signaling 
and subsequent fibroblast activation [114]. 
Inhibition of STAT3 and the IL4/IL13 axis at- 
tenuated fibrosis in bacterial-inflamed mouse 
prostate [20]. CD4+ cells and specifically their 
Th2 subtype have been shown to be present 
and active in prostate inflammation, mediated 
through IL4/IL13 axis signaling [20, 114].

Macrophages

Macrophages have been associated with in- 
flammation and fibrosis, including inflamma-
tion-mediated prostatic collagen accumulation 
[48, 104, 116, 130, 132, 152-154]. Macroph- 
ages are derived from monocytes, recruited via 
CCR2/CCL2 or CX3CR1 [128] and differentiat-
ed through macrophage colony stimulating fac-
tor [155]. M1 or classically activated macroph- 
ages secrete pro-inflammatory factors like IL1B 
and TNF. M2, or alternatively activated macro-
phages, are better recognized for their roles in 
tissue wound healing, fibrosis and resolution  
of inflammation though secreting of growth  
factors like TGFB, fibroblast growth factor, and 
tissue inhibitor of matrix metalloproteinase 1 
[156-158]. In autoimmune prostatic inflamma-
tion, macrophages secrete TNF and stimulate 
fibroblast proliferation, leading to BPH and 
inflammation [71]. In bacterial models of pros-
tate inflammation, M1 macrophages can be 
activated by bacterial lipopolysaccharide and 
promote pro-inflammatory signaling through 
the NF-κB pathway [159, 160]. M2 macroph- 

ages secret TGFB, which promotes collagen 
production [160] and are abundant in the colla-
gen-dense periurethral region of men with BPH 
[129, 161, 162]. M1 and M2 macrophages are 
necessary for early prostate inflammation (M1 
macrophages) and fibrosis (M2 macrophages). 
Identifying the specific mechanisms by which 
macrophages contribute to prostate inflamma-
tion, fibrosis and LUTS is an invaluable focal 
point in developing targeted treatments.

Foam cells

Foam cells are a subset of macrophages deriv-
ing from activation of the CXCL12/CXCR4 axis, 
which promotes phagocytosis of low-density li- 
poprotein [163, 164]. Phagocytosis of low-den-
sity lipoproteins gives rise to lipid-laden cells 
with a M2 macrophage-like phenotype. Foam 
cells drive osteopontin (OPN) production [48, 
131] and production of cytokines such as TNF 
and chemokines like CCL2 [165]. A mouse 
model of urinary voiding dysfunction driven by 
slow-release implants of testosterone and 17β 
estradiol features periurethral accumulation of 
OPN+ foam cells, increased urinary frequency, 
increased prostatic collagen deposition, increa- 
sed densities of macrophages in the ventral 
lobe and mast cells in the dorsal lobe [131]. 
Genetic deletion of OPN prevented each of 
these testosterone and estradiol-dependent 
histological and physiological changes in mice 
[131]. In the same study, testosterone and es- 
tradiol increased the prostatic density of M1 
macrophages in an OPN-dependent fashion, 
while OPN deletion increased the density of M2 
macrophages [131]. The results suggest a role 
OPN+ foam cells in the regulation of M1/M2 
macrophage differentiation and fibrosis.

Myofibroblasts

Myofibroblasts are activated fibroblasts that 
co-express α-smooth muscle actin and the 
intracellular collagen marker proCOL1 [166]. 
Myofibroblasts contribute to the pathogenesis 
of fibrotic diseases in several organs, including 
the lungs, heart, skin, and kidney [151, 167-
169]. Myofibroblast activity in LUTS/BPH devel-
opment has been controversial and many stud-
ies have stated or implied their role in LUTD de- 
velopment without histological evidence, espe-
cially in vivo [2, 170, 171]. There is more evi-
dence of prostate fibroblasts to myofibroblasts 
phenocoversion in vitro, especially in response 
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to TGFB and/or CXC-type chemokines [120, 
130, 172, 173]. One study using single cell 
analysis of mouse and human prostate tissue 
shows an increase of myofibroblast popula-
tions in BPH, but the authors noted this was not 
evidence due to the phenotype potentially be- 
ing part of cell culture conditions [46]. It has 
been recently reported that many of the cells 
that populate and contribute to collagen depo-
sition in the prostates of mice, dogs, and hu- 
mans are not positive for α-smooth muscle 
actin [22, 35].

Additionally, it was recently shown that fibro-
blasts activated by IL4/IL13 expressed ECM 
proteins but do not differentiate completely 
into myofibroblasts, showing a lack of α-smooth 
muscle actin expression or contractile activity 
[114]. However, an ex vivo study suggests that 
TGFB-induced fibroblast to myofibroblast con-
version in the prostate is dependent on elevat-
ed IGF binding protein 3 mediated by cancer-
ous cells [174], while a different in vivo study 
using hormone-accelerated BPH tissue but ex- 
cluding any tissue with prostatitis or infection, 
made similar conclusions [175]. This could sug-
gest that myofibroblasts mediate fibrosis in 
some hyperplastic fibromuscular stroma, but 
the precise in vivo conditions for this phenom-
enon are unknown.

Fibrocytes

Fibrocytes have been described as mesenchy-
mal progenitors arising from myeloid precur-
sors [176]. Fibrocytes express markers as- 
sociated with hematopoietic cells (CD45 and 
LYZ) but possess characteristics typical of 
mesenchymal cells or fibroblasts (collagen pro-
duction, occasional spindle-shaped morpholo-
gy, S100A4 expression), making them difficult 
to track in vivo [35, 177-179]. Fibrocytes ex- 
press collagen and expand when faced with 
bacterial-induced prostate inflammation [35]. 
They are also implicated as a contributor to in- 
flammation in fibrotic conditions including cys-
tic, pulmonary, liver, corneal, and prostatic fi- 
brosis [35, 177, 180-183]. Fibrocytes can be 
activated by TGFB, promoting SMAD2/3 phos-
phorylation and collagen transcription [184]. 
Specifically in the prostate, Ccr2 null mice fa- 
ced with uropathogenic E. coli prostate infec-
tion had significant decreases in both overall 
collagen density and fibrocyte population, sug-
gesting a CCR2- dependent mechanism where 

fibrocytes synthesize the majority of collagen 
when faced with bacterial infection [35]. Addi- 
tionally, fibrocytes labeled with CD45 and vi- 
mentin are denser in the prostates of mice with 
type 1 diabetes and bacterial-induced inflam-
mation [24, 51]. Fibrocytes are promising as 
targets for LUTS therapy as they have both  
pro- and anti-inflammatory properties but ha- 
ve been difficult to work with. Most agree that 
additional specific fibrocyte markers are need-
ed to confirm and further investigate the role of 
these cells in inflammation-mediated prostatic 
collagen accumulation.

Discussion and conclusion

The connection between prostatic collagen 
accumulation and LUTS has prompted signifi-
cant efforts to identify key cellular mediators, 
underlying mechanisms, and potential thera-
peutic targets. While mouse models of human 
urinary dysfunction were once met with skepti-
cism, they have become indispensable tools for 
understanding the pathophysiology of LUTS. 
Using these models, recent studies have high-
lighted several mechanisms, cell types, cyto-
kines, and chemokines as central players in  
the development of prostate inflammation and 
collagen accumulation, with each contributing 
uniquely to disease progression. All of the cell 
types discussed in this review have a role to 
play in inflammation mediated prostatic colla-
gen accumulation and LUTD development, whi- 
ch warrants the need for further investigation. 
Some of these cells, including fibrocytes, mac-
rophages, and mast cells have been shown to 
have direct roles in inflammation and fibrosis, 
mainly through the release of mediating cyto-
kines, like TGFB, or direct transcription of pro-
collagen. The studies involving these cells high-
light their potential as new targets for ther- 
apeutic drugs [50, 114, 131, 138, 185]. Future 
research should focus on identifying specific 
markers for each respective cell type to improve 
in vivo tracking and exploring the potential 
interaction between other cell populations.

Moreover, the cytokines and chemokines dis-
cussed in this review each have a specific role 
in promoting prostate inflammation and fibro-
sis. Inhibition of TGFB has shown promise in 
other fibrotic disease treatments and investi-
gating the role TGFB has in LUTD development 
may be an optimal start for the development of 
targeted treatments. However, each one should 
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be considered for further investigations be- 
cause painting a more complete picture of each 
respective mechanism will improve our under-
standing of their specific interactions, which 
may lead to the information needed to develop 
new therapies.
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