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Abstract: Objective: Metabolites of volatile organic compounds (mVOCs) have attracted considerable attention in 
contemporary research. The urine flow rate (UFR) serves as an objective metric for a full evaluation of bladder func-
tion. This research aimed to investigate the correlation between mVOCs and UFR. Methods: We examined mVOCs 
and UFR data from the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2020. The 
mVOCs measurements were subjected to log transformation to achieve normal distribution. We used weighted mul-
tivariate linear regression models to evaluate the association between mVOCs andUFR. The relationship between 
mVOCs mixture and UFR was assessed using three different analytical models: Bayesian kernel machine regression 
(BKMR), weighted quantile sum (WQS), and quantile g-computation (Qgcomp). An analysis stratified by gender was 
also conducted. Results: The research had 3,370 participants, of whom 1,703 (51%) were male. Multivariate linear 
regression revealed a negative correlation between increased mVOCs and UFR across all research cohorts (all P 
< 0.001). The BKMR model displayed a notable negative correlation, identifying N-Acetyl-S-(3,4-dihydroxybutyl)-L-
cysteine (DHBMA) and Phenylglyoxylic acid (PGA) as possibly important chemicals. The WQS model exhibited a nega-
tive connection with UFR across the total cohort and its male and female subgroups, with all P values being less 
than 0.05. The findings of the Qgcomp model aligned with those of the WQS model. Conclusions: Our data indicate 
a substantial negative connection between exposure to urinary mVOCs and UFR among US adults, with no notable 
gender differences seen.

Keywords: Metabolites of volatile organic compounds, urine flow rate, NHANES, cross-sectional study, public 
health

Introduction

The typical process of urination is closely as- 
sociated with the urethral sphincter, bladder 
neck, and detrusor muscle. Voiding dysfunc-
tion, often classified into obstructive and un- 
deractive symptoms, is a common problem im- 
pacting the elderly in aging populations. The 
2023 Japan Community Health Survey (JaCS 
2023) indicates that males with lower urinary 
tract symptoms (LUTS) demonstrate inferior 
health status [1]. The urodynamic examination, 
regarded as the gold standard for diagnosing 
LUTS, encompasses the measurement of urine 
flow rate (UFR). This non-invasive technique 
evaluates the volume of urine expelled per unit 

time during natural urination, thereby reflecting 
detrusor muscle strength, bladder outlet resis-
tance, and indirectly, the health and functional-
ity of the bladder [2, 3].

Volatile organic compounds (VOCs) are carbon 
compounds characterized by low molecular 
weight, allowing them to easily vaporize at am- 
bient temperatures and pressures [4]. They are 
widespread in the atmosphere, with origins in 
both natural and anthropogenic activities, in- 
cluding industrial and vehicular emissions [5, 
6]. In contrast to other pollutants found in food 
or certain professional settings, VOCs predo- 
minantly occur in the atmosphere, rendering 
them more accessible to the general populace. 

http://www.ajceu.us
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The human body can inadvertently absorb 
VOCs via inhalation, ingestion, and dermal con-
tact. Prolonged exposure to low concentrations 
of VOCs may negatively impact the endocrine 
system [7], respiratory system [8], neurological 
system [9], and urinary system [10]. Although 
VOCs may be identified in biological specimens 
including blood, urine, breath, saliva, and sweat 
[11, 12], achieving accurate findings can be  
difficult. Multiple factors contribute to its com-
plexity. Biologically, VOCs in biological samples 
exist at very low concentrations, frequently in 
the parts-per-billion (ppb) or parts-per-trillion 
(ppt) range. Their identification and quantifica-
tion are exceedingly difficult, necessitating 
highly sensitive analytical methods. Further- 
more, biological samples are intricate matrices 
with a diverse assortment of components, 
including proteins, lipids, carbohydrates, and 
other metabolites. These coexisting compo- 
unds can disrupt the analysis of VOCs, resulting 
in false positives or negatives and hindering 
the precise identification and quantification of 
the target VOCs. Urinary metabolites of VOCs 
(mVOCs) exhibit a prolonged physiological half-
life relative to their blood counterparts, persist-
ing in the body for an extended period. The non-
invasive characteristics of urine sampling make 
mVOCs an especially significant biomarker for 
evaluating prolonged exposure to VOCs [13].

Despite the growing evidence connecting 
mVOCs to bladder cancer [14] and the risk of 
overactive bladder [15], the field lacks suffi-
cient studies on how mVOCs exposure affect 
UFR. Although Chiu et al. [16] revealed the 
association between muscle strength and UFR 
based on the National Health and Nutrition 
Examination Survey (NHANES) database, no 
studies have systematically evaluated the  
combined effects of mVOCs mixtures on UFR. 
Given that VOCs and their metabolites have 
been associated with neurotoxicity [23, 26] 
and systemic oxidative stress [30] - both of 
which can impair neurological control of the 
bladder and detrusor muscle function - we 
hypothesize that exposure to mVOCs may ne- 
gatively impact UFR. This study aims to fill this 
critical research gap by systematically evaluat-
ing the relationship between individual and 
mixed mVOCs exposure and UFR in a nationally 
representative population.

This study is the first to integrate multi-model 
analyses [Bayesian kernel machine regression 

(BKMR), weighted quantile sum (WQS), and 
quantile g-computation (Qgcomp)] aiming to 
uncover the dose-response relationship be- 
tween mVOCs exposure and UFR and identify 
key driver compounds, thereby addressing the 
research gap in this field. This cross-sectional 
study sought to investigate UFR relationships 
with particular mVOCs or their mixtures while 
identifying the most influential chemical com-
pounds through data from an American popula-
tion survey.

Methods and materials

Study population

We obtained data from five NHANES survey 
cycles (2011-2020), which initially included 
45,462 participants. The inclusion criteria for 
our analysis were: (1) adult participants (age ≥ 
20 years); (2) availability of valid UFR measure-
ment data; and (3) availability of urinary mVOCs 
measurement data. Participants were excluded 
if they had: (1) missing data on key covariates 
(e.g., age, gender, BMI, smoking status); (2) a 
history of urinary tract infection or surgery that 
could severely affect urination; or (3) extreme 
UFR values (defined as the top and bottom 1%) 
considered physiologically implausible or in- 
dicative of measurement error. After applying 
these criteria, 3,370 participants were includ-
ed in the final analysis. The participant selec-
tion flowchart is illustrated in Figure S1.

Measurements of mVOCs 

We examined urinary mVOCs by using ultra- 
performance liquid chromatography in con- 
junction with electrospray tandem mass spec-
trometry (UPLC-ESI/MSMS) [13]. The chroma- 
tographic separation was performed on an 
Acquity UPLC® HSS T3 (1.8 µm*2.1 mm*150 
mm, Waters Inc.) using a binary mobile phase 
system consisting of 15 mM ammonium ace-
tate and acetonitrile. Quantification of target 
analytes was achieved by establishing calibra-
tion curves through comparison of the relative 
response factors, calculated as the peak area 
ratio of native analytes to their correspond- 
ing stable isotope-labeled internal standards, 
against predefined concentration gradients of 
certified reference standards. As per NHANES 
guidelines, mVOCs concentrations were report-
ed in ng/mL, with values beneath the lower 
limit of detection (LLOD) being imputed as LLOD 
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divided by the square root of two. For detailed 
methodologies and additional information, one 
can consult the NHANES website.

Across the five NHANES survey cycles, 25 types 
of urinary mVOCs were identified. However, 11 
metabolites were removed from the analysis 
because their values exceeded detection limits 
in more than 10% of participants or contain- 
ed numerous censored measurements. Conse- 
quently, 14 mVOCs were included in the final 
analysis: 2MHA (2-Methylhippuric acid), 3,4-
MHA (3- and 4-Methylhippuric acid), AAMA 
(N-Acetyl-S-(2-carbamoylethyl)-L-cysteine), AM- 
CC (N-Acetyl-S-(N-methylcarbamoyl)-L-cystei- 
ne), ATCA (2-Aminothiazoline-4-carboxylic ac- 
id), SBMA (N-Acetyl-S-(benzyl)-L-cysteine), HM- 
PMA (N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-
cysteine), CEMA (N-Acetyl-S-(2-carboxyethyl)-L-
cysteine), DHBMA (N-Acetyl-S-(3,4-dihydroxy- 
butyl)-L-cysteine), 2HPMA (N-Acetyl-S-(2-hydro- 
xypropyl)-L-cysteine), 3HPMA (N-Acetyl-S-(3-hy- 
droxypropyl)-L-cysteine), MA (Mandelic acid), 
MHBMA3 (N-Acetyl-S-(4-hydroxy-2-butenyl)-L-
cysteine), and PGA (Phenylglyoxylic acid). Table 
S1 provides a summary of these 14 mVOCs and 
their corresponding parent VOCs.

Assessment of UFR

UFR was assessed following the standardiz- 
ed protocol detailed in the NHANES MEC 
Laboratory Procedures Manual. Participants 
were instructed to record the time of their last 
void before arriving at the Mobile Examination 
Center (MEC). Upon arrival, they were asked to 
provide a full urine sample. The time of this void 
was meticulously recorded. To ensure sufficient 
sample volume for various assays, participants 
could provide up to three voids during their 
MEC visit, with the volume and time of each 
void accurately documented. The total urine 
volume (sum of all voids) and the total time 
duration (from the last void before the MEC to 
the completion of the last void at the MEC) were 
used to calculate the UFR. The UFR (in mL/min) 
was calculated using the formula: UFR = Total 
Urine Volume (mL)/Total Time Duration (min). 
For detailed operation, please refer to the oper-
ation manual on the official website (https://
wwwn.cdc.gov/nchs/data/nhanes/public/ 
2019/manuals/2020-MEC-Laboratory-Proce-
dures-Manual-508.pdf).

Potential covariates

To limit the effect of confounding variables on 
our research findings, we ran covariate-adjust-
ed analyses. The demographic variables ac- 
counted for included gender, age, race/ethnici-
ty, education level, poverty-to-income ratio 
(PIR), body mass index (BMI), waist circumfer-
ence, smoking and drinking habits, as well as 
medical histories of diabetes mellitus (DM) and 
hypertension. These characteristics were rigor-
ously retrieved from the NHANES database to 
achieve a robust statistical correction.

Statistical analysis

Given the high skewness in the elemental 
mVOCs and UFR data, we conducted a log10 
(ln) treatment to normalize the distribution and 
limit the influence of outliers. We present con-
tinuous variables are as medians with inter-
quartile ranges (IQR), whereas categorical vari-
ables as frequencies with matching percen- 
tages. We applied Spearman’s correlation test 
for the evaluation of the links among mVOCs. 

We investigated the connection between urine 
mVOCs mixtures and UFR by use of multivaria- 
te linear regression alongside three advanced 
mixture analysis methodologies: Bayesian ker-
nel machine regression (BKMR), weighted qu- 
antile sum (WQS), and quantile g-computation 
(Qgcomp). These methodologies allow us to 
examine nonlinear exposure correlations and 
interactions, enabling a thorough assessment 
of how various urinary mVOCs collectively affect 
UFR. The BKMR model, ideal for strongly link- 
ed exposures, offers an adaptable method to 
estimate the multivariable exposure-response 
function [17, 18]. It used 25,000 iterations of 
the Markov chain Monte Carlo sampler for its 
execution. The WQS index was constructed 
based on the quartiles of urine mVOCs [19, 20]. 
The Qgcomp model, a novel method integrating 
WQS regression with fundamental g computa-
tion, was also utilized [21]. 

We performed a gender-stratified analysis 
across all models to investigate whether the 
connection between urinary mVOCs and UFR 
differed between male and female partici- 
pants. All statistical analyses were implement-
ed by use of R version 4.3.3 (R Foundation for 
Statistical Computing, Vienna, Austria), with a 
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Table 1. Basic characteristics of the participants included in this study

Characteristics Overall,  
N = 3370 (100%)

Gender
P ValueFemale,  

N = 1667 (49%)
Male,  

N = 1703 (51%)
Age group 0.4
    < 45 1504 (45%) 738 (44%) 766 (45%)
    45-60 798 (24%) 410 (25%) 388 (23%)
    ≥ 60 1068 (32%) 519 (31%) 549 (32%)
Race 0.13
    Mexican American 413 (12%) 207 (12%) 206 (12%)
    Non-Hispanic Black 783 (23%) 363 (22%) 420 (25%)
    Non-Hispanic White 1307 (39%) 655 (39%) 652 (38%)
    Other Hispanic 377 (11%) 202 (12%) 175 (10%)
    Other/multiracial 490 (15%) 240 (14%) 250 (15%)
BMI group < 0.001
    < 25 991 (29%) 501 (30%) 490 (29%)
    25-30 1094 (32%) 462 (28%) 632 (37%)
    ≥ 30 1285 (38%) 704 (42%) 581 (34%)
Drink group < 0.001
    No 873 (26%) 593 (36%) 280 (16%)
    Yes 2497 (74%) 1074 (64%) 1423 (84%)
Smoke group < 0.001
    Never 1897 (56%) 1091 (65%) 806 (47%)
    Past 803 (24%) 293 (18%) 510 (30%)
    Current 670 (20%) 283 (17%) 387 (23%)
Education 0.009
    9-11th Grade 404 (12%) 187 (11%) 217 (13%)
    College Graduate or above 918 (27%) 462 (28%) 456 (27%)
    High School Grad/GED 713 (21%) 325 (19%) 388 (23%)
    Less Than 9th Grade 296 (8.8%) 137 (8.2%) 159 (9.3%)
    Some College or AA degree 1038 (31%) 556 (33%) 482 (28%)
PIR group 0.4
    ≥ 1.3 2310 (69%) 1133 (68%) 1177 (69%)
    < 1.3 1060 (31%) 534 (32%) 526 (31%)
Marital Status < 0.001
    Divorced 357 (11%) 217 (13%) 140 (8.2%)
    Living with partner 307 (9.1%) 152 (9.1%) 155 (9.1%)
    Married 1686 (50%) 746 (45%) 940 (55%)
    Never married 701 (21%) 334 (20%) 367 (22%)
    Separated 94 (2.8%) 53 (3.2%) 41 (2.4%)
    Widowed 225 (6.7%) 165 (9.9%) 60 (3.5%)
Age (years) 48 (33, 63) 48 (33, 62) 48 (33, 63) > 0.9
BMI (kg/m2) 27.9 (24.3, 32.6) 28.4 (24.0, 33.7) 27.7 (24.5, 31.6) 0.016
PIR 2.11 (1.10, 4.20) 2.12 (1.08, 4.10) 2.10 (1.11, 4.26) 0.5
Waist circumference (cm) 98.2 (87.7, 109.3) 96.6 (85.4, 108.2) 100.0 (89.8, 110.0) < 0.001
UFR (mL/min) 0.82 (0.53, 1.33) 0.80 (0.50, 1.34) 0.84 (0.56, 1.32) 0.025
TC (mmol/L) 4.86 (4.19, 5.59) 4.97 (4.29, 5.64) 4.78 (4.09, 5.51) < 0.001
HDL-C (mmol/L) 1.32 (1.09, 1.60) 1.45 (1.19, 1.73) 1.19 (1.01, 1.42) < 0.001
ALT (IU/L) 21 (16, 28) 18 (15, 23) 24 (19, 32) < 0.001
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AST (IU/L) 23 (19, 28) 21 (18, 25) 25 (21, 29) < 0.001
ALB (g/L) 43 (41, 45) 42 (40, 44) 44 (42, 46) < 0.001
GGT (IU/L) 19 (14, 29) 16 (12, 24) 23 (16, 34) < 0.001
TP (g/L) 71 (69, 75) 71 (68, 74) 72 (69, 75) < 0.001
ALP (IU/L) 64 (52, 78) 64 (51, 79) 64 (52, 78) 0.7
HbA1c (%) 5.5 (5.2, 5.9) 5.5 (5.2, 5.9) 5.5 (5.3, 5.9) 0.028
UA (μmol/L) 321 (268, 381) 280 (238, 333) 357 (309, 405) < 0.001
SCr (μmol/L) 76 (63, 89) 65 (57, 75) 86 (76, 98) < 0.001
BUN (mmol/L) 4.64 (3.57, 5.71) 4.28 (3.21, 5.36) 4.64 (3.93, 5.71) < 0.001
Urinary albumin (mg/L) 7.6 (4.0, 16.7) 7.0 (3.7, 15.7) 8.0 (4.3, 18.1) < 0.001
Urinary creatinine (mg/dL) 104 (60, 162) 84 (48, 137) 126 (76, 181) < 0.001
Urinary ACR (mg/g) 7.10 (4.62, 13.28) 7.96 (5.40, 14.45) 6.11 (4.05, 12.01) < 0.001
DM 0.033
    No 2791 (83%) 1404 (84%) 1387 (81%)
    Yes 579 (17%) 263 (16%) 316 (19%)
Hypertension 0.6
    No 2184 (65%) 1088 (65%) 1096 (64%)
    Yes 1186 (35%) 579 (35%) 607 (36%)
Note: ACR, Albumin creatinine ratio; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate 
aminotransferase; BMI, body mass index; BUN, blood urea nitrogen; DM, diabetes mellitus; DBP, diastolic blood pressure; GGT, 
gamma-glutamyl transpeptidase; HbA1c, glycated hemoglobin; HDL-C, high density lipoprotein cholesterol; PIR, poverty-to-
income ratio; SCr, serum creatinine; TC, total cholesterol; TG, triglyceride; TP, total protein; UA, uric acid; UFR, urine flow rate.

two-tailed P < 0.05 being statistically signi- 
ficant.

Results

Population characteristics

Table 1 delineates the principal demographic 
and baseline attributes of the research cohort. 
The research examined participants whose 
median age reached 48 years, with 51% (n = 
1,703) being male, who likewise shared a me- 
dian age of 48 years. The predominant demo-
graphic of participants was Non-Hispanic Whi- 
te (39%), with 31% having completed some col-
lege or obtained an AA degree. Baseline com-
parisons showed that male participants exhib-
ited elevated levels of alcohol consumption, 
smoking, waist circumference, glycated hemo-
globin (HbA1c), aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), gam- 
ma-glutamyl transpeptidase (GGT), total pro-
tein (TP), uric acid (UA), serum creatinine (SCr), 
blood urea nitrogen (BUN), urinary albumin,  
urinary creatinine, and UFR.

Distribution and correlation of urinary mVOCs 

Table S2 presents descriptive information 
about the concentrations of the 14 urine 

mVOCs. HPMMA and DHBMA were detected in 
almost all subjects, with DHBMA exhibiting the 
greatest amounts and MHBMA3 the lowest 
among the mVOCs. Men had markedly elevated 
levels of almost all mVOCs compared to women, 
with the exception of ATCA.

We implemented a Spearman correlation anal-
ysis for investigating the links among the 14 
mVOCs, as seen in Figure 1. In addition to 
robust relationships among metabolites de- 
rived from the same chemical, the Spearman 
correlation coefficients ranged from 0.27 to 
0.87. Significantly, 3HPMA demonstrated posi-
tive associations with CEMA and HMPMA (r = 
0.81 and r = 0.84, respectively), while MHB- 
MA3 was positively correlated with 3HPMA and 
HMPMA (r = 0.82 and r = 0.87, respectively). 
Additionally, 2MHA exhibited a positive correla-
tion with 34MHA (r = 0.87), and MA showed a 
positive correlation with PGA (r = 0.82).

Association between mVOCs and UFR by linear 
regression

The weighted linear regression analyses, shown 
in Tables S3, S4, demonstrate that after con-
trolling for all variables, a substantial negative 
association exists between all urine mVOCs 
and UFR throughout the whole population  
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Figure 1. Spearman correlation analysis of urinary concentrations of 14 metabolites of volatile organic compounds.

and among male and female subgroups (all  
P < 0.001). Subsequent stratified analysis by 
mVOCs quartiles revealed that individuals in 
the higher quartiles (Q2-Q4) had a substantially 
lower UFR than those in the lowest quartile (Q1) 
for all mVOCs (all P < 0.001).

The single and overall effects of mVOCs on 
UFR by the BKMR model

Figure 2 depicts the overall correlation between 
the amalgamation of mVOCs and UFR over the 
whole study cohort, as well as within male and 
female subgroups. When all confounding vari-
ables received adjustment, a steady down- 
ward trend was noted between the combina-
tion of urinary mVOCs and UFR, especially be- 
tween the 25th and 75th percentiles, signifying 
a substantial negative connection.

Figure S2 illustrates the exposure-response 
connections between certain mVOCs and UFR 
while keeping other mVOCs as their median 
concentrations (50th percentile). Compounds 
like AAMA, AMCC, ATCA, SBMA, DHBMA, and 
34MHA had negative associations with UFR 
across all subjects, whereas 3HPMA and MH- 
BMA3 revealed favorable relationships. CEMA 
and 2HPMA had a negative link with UFR in 
both the general population and among men, 
whereas HMPMA showed negative associa-
tions in both the general population and among 
females. PGA had a negative connection with 
UFR exclusively in males.

Figure S3 analyzes the impacts of various 
mVOCs on UFR under single-exposure condi-
tions, while maintaining other mVOCs at the 
25th, 50th, and 75th percentiles. Marked neg-

ative correlations with UFR were seen for PGA 
(among all participants and female subgroups) 
and 34MHA (among all participants and male 
subgroups). DHBMA revealed inverse correla-
tions with UFR in both male and female sub-
groups, but not in the general population. Con- 
versely, a significant positive connection was 
discovered between 3HPMA and UFR when 
other mVOCs reached their 25th percentile, 
and between MHBMA3 and UFR when other 
mVOCs reached their 50th percentile, in all 
research groups. The posterior inclusion prob-
ability (PIP) study unveiled that ATCA, CEMA, 
DHBMA, 3HPMA, 34MHA, and PGA (all with PIP 
= 1.0) were the most influential in affecting 
UFR. In men, ATCA, DHBMA, and 34MHA (all 
with PIP = 1.0) contributed the most significant-
ly to UFR effects. In females, CEMA, DHBMA, 
and PGA, all exhibiting a high PIP of 1.0, were 
inversely correlated with UFR. Comprehensive 
PIP findings are given in Table S5.

WQS regression model and Qgcomp model

We initially concentrated our investigation on 
the adverse aspect of the connection. Upon 
adjusting for all possible confounders, the WQS 
score displayed a significant inverse connec-
tion with UFR across all study groups (all P < 
0.05). PGA exerted the most significant influ-
ence on total UFR at 16.12%, followed by ATCA 
at 15.70% and AAMA at 14.98%. DHBMA was 
the predominant chemical in both male and 
female categories, accounting for 25.97% and 
22.93%, respectively. Further study, limited to 
the negative correlation between mixed mVOCs 
and UFR, produced no meaningful results. Fur- 
ther information is displayed in Figure 3.
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Figure 2. Combined effects of the urinary mVOCs mixture on UFR estimated by the BKMR model. All the concentra-
tions of urinary mVOCs, ranging from the 25th to the 75th percentile in increments of 5, were contrasted with those 
at the 50th percentile. mVOCs, metabolites of volatile organic compounds; UFR, urine flow rate; BKMR, Bayesian 
kernel machine regression.

The Qgcomp model exhibited a pattern analo-
gous to that of the WQS model outputs. The 
Qgcomp index displayed a negative link to  
UFR across all research groups (all P < 0.05). 
Regarding individual mVOCs, urinary 3HPMA 
exhibited the most significant beneficial contri-
bution to the total impact at 64.80%, followed 
by MHBMA3 at 35.20%. Conversely, urinary 
DHBMA exhibited the highest negative weight 
at 20.68%, whereas PGA registered at 13.24%. 
In male and female subgroups, urinary 3HPMA 
exhibited the highest positive weight at 55.10% 
and the highest negative weight at 92.03%, 
whereas DHBMA showed weights of 22.54% 
and 24.25% for negative and positive associa-

tions, respectively. A thorough overview of 
these results is provided in Figure 4.

Discussion

This large population-based study analyzed 
3,370 adult participants in the United States 
from 2011 to 2020 to assess the potential  
correlation between exposure to mVOCs and 
UFR. Our research employed several statistical 
methods to clarify the link between mVOCs 
exposure and UFR. The multivariate linear re- 
gression model indicated that elevated urine 
levels of mVOCs were substantially and inver- 
sely correlated with UFR, a result consistent 
across genders. To evaluate the cumulative 
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Figure 3. Estimated WQS regression weights in the association of urinary mVOCs mixture with UFR. WQS, weighted quantile sum; mVOCs, metabolites of volatile 
organic compounds; UFR, urine flow rate.
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Figure 4. The weights of qgcomp model in the association of urinary mVOCs mixture with UFR. Qgcomp, quantile 
g-computation; mVOCs, metabolites of volatile organic compounds; UFR, urine flow rate.
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effects of mVOCs mixtures and tackle the intri-
cacies of non-linear and non-additive connec-
tions, along with possible interactions among 
mVOCs, we utilized BKMR, WQS, and Qgcomp 
models. The results repeatedly revealed a sub-
stantial negative connection between the com-
bination of mVOCs and UFR. DHBMA and PGA 
were the principal contributors to the observed 
results, yet DHBMA showed the most signifi-
cant negative weight. To our knowledge, this is 
the first study to report a significant negative 
association between mixed mVOCs exposure 
and UFR.

The human liver uses cytochrome P450 to 
metabolize VOCs into hydroxylated and ring-
opening metabolites, which are then eliminat- 
ed in urine after exposure. mVOCs, being more 
stable biomarkers than their parent chemicals, 
have reduced volatility and an extended biologi-
cal half-life in urine relative to blood, rendering 
them appropriate for assessing VOC exposure. 

The urine reflex is a multifaceted system gov-
erned by nerve transmission, detrusor activity, 
and the bladder outlet. 1,3-butadiene and eth-
ylbenzene serve as the precursor chemicals for 
DHBMA and PGA, respectively. Comprehensive 
investigations of multi-omics data regarding 
epigenetic alterations in individuals exposed  
to mVOCs [22], such as ethylbenzene, indicate 
that DNA hypermethylation downregulates ei- 
ght genes, potentially diminishing synapse den-
sity and dendritic complexity. A study includ- 
ing 310 individuals exposed to 1,3-butadiene 
[23] revealed that it qualifies as a neurotoxin, 
inducing temporary neurological hazards in the 
majority of patients, but around 6% (18 pa- 
tients) exhibited permanent neurotoxicity that 
requires further longitudinal investigation. Cli- 
nical and pathological research has associated 
chronic exposure to VOCs with numerous neu-
ropsychiatric disorders, such as distractibility, 
hallucinations, impaired impulse control, de- 
mentia, and respiratory complications [24-26], 
indicating that VOCs pass through the blood-
brain barrier (BBB) to cause detrimental effects 
on development and maintenance of the ner-
vous system. VOCs can cause direct neuroto- 
xicity in neuronal cells, potentially resulting in 
cellular damage or death, which may interfere 
with the nervous system’s control of the blad-
der and therefore affect UFR [27]. In vitro inves-
tigations have demonstrated that acute expo-

sure to whole VOCs in gasoline can diminish 
cell viability, compromise cell membrane integ-
rity, and trigger DNA damage in A549 cells [28]. 

The detrusor and pelvic floor form the key mus-
cle groups that control the process of urination. 
Chiu et al. [16] investigated the correlation 
between UFR and muscular strength utilizing 
the NHANES database, providing insights into 
the possible causes of decreased UFR con- 
cerning bladder contractility. Inflammation is a 
contributing component in several urinary dis-
orders, resulting in inadequate detrusor mus-
cle function [29]. A study in Wuhan, central 
China, investigated how urinary mVOCs related 
to oxidative stress biomarkers in the general 
population [30], concluding that 1,3-butadiene 
is a high-priority hazardous VOC for manage-
ment, while DHBMA and PGA exhibited signifi-
cant positive associations with oxidative stress 
biomarkers (8-OHdG and 8-OHG). Primavera et 
al. [31] observed that 42 workers exposed to 
1,3-butadiene at a petrochemical facility had  
a notable reduction in glutathione transferase 
enzymatic activity and a substantial elevation 
in glutathionylated hemoglobin inside red blood 
cells. Currently, evidence regarding the associ-
ation between mVOCs and smooth muscle fun- 
ction remains limited.; nonetheless, it may be 
hypothesized that mVOCs may indirectly influ-
ence detrusor function during urine storage 
and voiding, resulting in voiding symptoms or 
an underactive bladder.

Our findings gain further support from a previ-
ous investigation utilizing the NHANES data-
base. Chiu et al. [16] demonstrated a signifi-
cant positive association between handgrip 
strength and UFR, suggesting that systemic 
muscle strength may serve as a surrogate for 
detrusor muscle contractility, or that shared 
physiological factors like overall health status 
and neuromuscular integrity underpin both 
skeletal muscle strength and efficient bladder 
emptying. While Chiu et al. focused on a func-
tional outcome (muscle strength), our study 
identifies a potential environmental cause for 
the impairment of this very system. It is plausi-
ble that exposure to mVOCs, through the mech-
anisms of neurotoxicity [23, 26] and oxidative 
stress [30] as discussed above, contributes to 
a generalized decline in neuromuscular func-
tion. This could manifest as both reduced skel-
etal muscle strength (as might be reflected in 
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handgrip) and impaired detrusor muscle con-
tractility or neurological control of the micturi-
tion reflex, ultimately leading to a decreased 
UFR. Therefore, our results extend the obser- 
vation made by Chiu et al. by proposing that 
exposure to specific environmental toxicants, 
such as VOCs and their metabolites, could be 
an underlying factor contributing to the link 
between poorer physiological function and 
reduced UFR.

The predominant causes of bladder outlet 
blockage are bladder tumors and benign pros-
tatic hyperplasia (BPH) in males. Research indi-
cates that prolonged exposure to VOCs might 
markedly elevate the occurrence of bladder 
cancers [32]. Obstructed urination may arise 
when cancerous tissue detaches or when the 
tumor obstructs the internal bladder opening, 
or when cancer infiltrates the ureteral orifice. 
Evidence suggests that the cytotoxic effects  
of VOCs may result in cellular damage and 
alterations in tissue structure inside the pros-
tate [33]. VOCs may elevate oxidative stress, 
resulting in cellular and DNA damage, which 
might facilitate the aberrant growth of prostate 
cells [34].

In the examination of the nonlinear expo- 
sure-response connection between individual 
mVOCs and UFR inside the BKMR model, we 
discovered that 3HPMA and MHBMA3 dis-
played a positive connection with UFR. Com- 
parable results were noted in the Qgcomp mo- 
del, with positive weights of 0.648 and 0.352 
for 3HPMA and MHBMA3, respectively. In the 
multivariate regression analysis, all of these 
mVOCs, including 3HPMA and MHBMA3, exhib-
ited a negative correlation with UFR. Upon ex- 
amining our dataset and analytic code for inac-
curacies, we identified no discrepancies. The 
potential rationale is that multiple linear re- 
gression analysis presumes linear associations 
among variables, but BKMR is a nonparametric 
technique that identifies nonlinear correlations 
and interactions among variables. If the actual 
interactions among mVOCs are nonlinear, lin-
ear regression may fail to effectively represent 
these relationships, but BKMR may yield alter-
native insights. The negative correlation be- 
tween the overall impact of mVOCs and UFR 
may stem from the detrimental effects of cer-
tain mVOCs counterbalancing the beneficial 

effects of others, leading to an overall adverse 
association of the pollutants.

This study, to our knowledge, marks the initial 
thorough investigation into the relationship 
between urine mVOCs and the prevalence of 
UFR in a nationally representative population. 
This study emphasizes the need of examining 
the co-exposure impacts of several mVOCs on 
public health, acknowledging the simultaneous 
exposure of the population to various mVOCs. 
Recognizing the possible interactions among 
various mVOCs, we utilized a range of mixture 
analysis techniques, including weighted multi-
variate linear regression, BKMR, WQS regres-
sion, and Qgcomp models, to comprehensively 
evaluate the link between mVOCs mixtures and 
UFR.

This study possesses many drawbacks. First, 
this was cross-sectional research, reflecting 
only the individuals’ condition at the time of 
assessment, indicating that the research can-
not establish cause-effect relationships so 
additional prospective studies must validate 
the final results. Second, the utilization of urine 
mVOCs may not exclusively indicate environ-
mental exposures, and environmental expo-
sure assessment remained incomplete beca- 
use there were insufficient data on ambient 
VOCs. Future research may improve by includ-
ing extensive data to deepen the comprehen-
sion of exposure-transformation-effect rela-
tionships between mVOCs and UFR.

Conclusions

In conclusion, our cross-sectional study de- 
monstrated that exposure to both individual 
mVOCs and mVOC mixtures is associated with 
reduced UFR. DHBMA and PGA were the prima-
ry factors contributing to the reduced UFR. 
Future longitudinal studies are crucial to vali-
date these correlations and to devise methods 
for early intervention to avert reductions in 
UFR.
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Figure S1. The flowchart of the participants selected from the NHANES.

Table S1. mVOCs selected for investigation in this study

mVOCs Parent compounds Abbreviations Detection 
rate

LLOD 
(ng/ml)

N-Acetyl-S-(2-carbamoylethyl)-L-cysteine Acrylamide AAMA 99.64% 2.20
N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine N, N-Dimethylformamide AMCC 99.79% 6.26
2-Aminothiazoline-4-carboxylic acid Cyanide ATCA 95.42% 15.0
N-Acetyl-S-(benzyl)-L-cysteine Toluene SBMA 99.33% 0.50
N-Acetyl-S-(2-carboxyethyl)-L-cysteine Acrolein CEMA 99.21% 6.96
N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine 1,3-Butadiene DHBMA 99.95% 5.25
N-Acetyl-S-(3-hydroxypropyl)-L-cysteine Acrolein 3HPMA 99.86% 3.0
N-Acetyl-S-(2-hydroxypropyl)-L-cysteine Propylene oxide 2HPMA 94.70% 5.30
N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine Crotonaldehyde HMPMA 99.98% 1.70
Mandelic acid Styrene MA 98.57% 12.0
2-Methylhippuric acid Xylene 2MHA 93.37% 5.0
3- and 4-Methylhippuric acid Xylene 34MHA 99.64% 8.0
N-Acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine 1,3-Butadiene MHBMA3 97.04% 0.60
Phenylglyoxylic acid Ethylbenzene PGA 99.05% 12.0
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Table S3. Association between continuous urinary mVOCs and UFR

Characteristics
Overall Male Female

Exp 
(Beta) 95% CI P value Exp 

(Beta) 95% CI P value Exp 
(Beta) 95% CI P value

LogAAMA 0.37 0.33, 0.42 <0.001 0.41 0.37, 0.46 <0.001 0.33 0.29, 0.39 < 0.001
LogAMCC 0.36 0.32, 0.41 <0.001 0.39 0.34, 0.44 <0.001 0.34 0.29, 0.40 < 0.001
LogATCA 0.73 0.70, 0.77 <0.001 0.77 0.74, 0.81 <0.001 0.69 0.65, 0.74 < 0.001
LnSBMA 0.72 0.70, 0.75 < 0.001 0.73 0.70, 0.76 < 0.001 0.72 0.68, 0.75 < 0.001
LogCEMA 0.37 0.33, 0.41 < 0.001 0.40 0.35, 0.44 < 0.001 0.34 0.29, 0.40 < 0.001
LogDHBMA 0.21 0.18, 0.25 < 0.001 0.23 0.20, 0.27 < 0.001 0.20 0.16, 0.25 < 0.001
Log3HPMA 0.47 0.42, 0.51 < 0.001 0.48 0.43, 0.53 < 0.001 0.46 0.40, 0.52 < 0.001
Ln2HPMA 0.51 0.48, 0.55 < 0.001 0.53 0.48, 0.58 < 0.001 0.50 0.45, 0.56 < 0.001
LnHMPMA 0.67 0.64, 0.71 < 0.001 0.69 0.66, 0.73 < 0.001 0.66 0.61, 0.71 < 0.001
LogMA 0.31 0.27, 0.35 < 0.001 0.36 0.31, 0.41 < 0.001 0.27 0.23, 0.32 < 0.001
Ln2MHA 0.77 0.74, 0.79 < 0.001 0.78 0.74, 0.81 < 0.001 0.75 0.71, 0.79 < 0.001
Log34MHA 0.48 0.44, 0.53 < 0.001 0.51 0.46, 0.56 < 0.001 0.46 0.40, 0.53 < 0.001
LnMHBMA3 0.72 0.68, 0.75 < 0.001 0.75 0.72, 0.78 < 0.001 0.69 0.64, 0.74 < 0.001
LogPGA 0.29 0.25, 0.34 < 0.001 0.34 0.30, 0.39 < 0.001 0.25 0.20, 0.31 < 0.001
Note: mVOCs, metabolites of volatile organic compounds; UFR, urine flow rate; AAMA, N-acetyl-S-(2-carbamoylethyl)-L-
cysteine; AMCC, N-acetyl-S-(N-methylcarbamoyl)-L-cysteine; ATCA, 2-aminothiazoline-4-carboxylic acid; SBMA, N-acetyl-S-
(benzyl)-L-cysteine; CEMA, N-acetyl-S-(2-carboxyethyl)-L-cysteine; DHBMA, N-acetyl-S-(3:4-dihydroxybutyl)-L-cysteine; 3HPMA, 
N-acetyl-S-(3-hydroxypropyl)-L-cysteine; 2HPMA, N-acetyl-S-(2-hydroxypropyl)-L-cysteine; HMPMA, N-acetyl-S-(3-hydroxypropyl-
1-methyl)-L-cysteine; MA, mandelic acid; 2MHA, 2-methylhippuric acid; 34MHA, 3-and 4-methylhippuric acid; MHBMA3, N-
acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine; PGA, phenylglyoxylic acid; CI: confidence interval.

Table S2. Distribution of mVOCs in urine

Characteristics Overall, N = 3370 
(100%)

Gender
P Value

Female, N = 1667 (49%) Male, N = 1703 (51%)
AAMA (ng/mL) 50.1 (26.1, 99.9) 42.0 (21.8, 84.4) 58.6 (31.1, 115.0) < 0.001
AMCC (ng/mL) 149.0 (74.9, 303.0) 138.0 (66.6, 289.0) 161.5 (83.7, 314.0) < 0.001
ATCA (ng/mL) 112.0 (53.3, 220.5) 147.0 (72.1, 282.0) 84.6 (42.5, 170.3) < 0.001
SBMA (ng/mL) 6.74 (3.58, 13.20) 6.53 (3.32, 13.20) 6.93 (3.88, 13.10) 0.041
CEMA (ng/mL) 103.0 (53.0, 191.0) 84.2 (43.3, 166.0) 119.0 (66.0, 209.0) < 0.001
DHBMA (ng/mL) 309.0 (178.0, 493.5) 272.0 (152.8, 454.3) 357.5 (211.0, 522.0) < 0.001
3HPMA (ng/mL) 252.0 (129.0, 509.0) 195.0 (96.1, 431.5) 303.0 (170.8, 587.5) < 0.001
2HPMA (ng/mL) 31.10 (16.20, 59.50) 26.50 (13.90, 55.83) 34.90 (19.50, 62.40) < 0.001
HMPMA (ng/mL) 254.0 (136.5, 498.0) 218.0 (109.0, 435.0) 284.5 (163.0, 557.0) < 0.001
MA (ng/mL) 137.0 (78.2, 235.0) 120.0 (68.2, 211.0) 155.0 (90.7, 256.0) < 0.001
2MHA (ng/mL) 31.2 (13.8, 77.2) 26.0 (11.7, 66.4) 37.1 (16.3, 85.2) < 0.001
34MHA (ng/mL) 210.0 (89.8, 547.0) 179.0 (72.6, 496.0) 248.0 (108.0, 588.3) < 0.001
MHBMA3 (ng/mL) 5.37 (2.71, 11.45) 4.36 (2.22, 9.44) 6.26 (3.52, 13.33) < 0.001
PGA (ng/mL) 206.0 (113.5, 353.0) 178.5 (100.0, 314.3) 234.0 (137.0, 383.3) < 0.001
Note: mVOCs, metabolites of volatile organic compounds; AAMA, N-acetyl-S-(2-carbamoylethyl)-L-cysteine; AMCC, N-acetyl-S-(N-
methylcarbamoyl)-L-cysteine; ATCA, 2-aminothiazoline-4-carboxylic acid; SBMA, N-acetyl-S-(benzyl)-L-cysteine; CEMA, N-acetyl-
S-(2-carboxyethyl)-L-cysteine; DHBMA, N-acetyl-S-(3:4-dihydroxybutyl)-L-cysteine; 3HPMA, N-acetyl-S-(3-hydroxypropyl)-L-cysteine; 
2HPMA, N-acetyl-S-(2-hydroxypropyl)-L-cysteine; HMPMA, N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine; MA, mandelic acid; 
2MHA, 2-methylhippuric acid; 34MHA, 3-and 4-methylhippuric acid; MHBMA3, N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine; PGA, 
phenylglyoxylic acid.
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Table S4. Association between quartered urinary mVOCs and UFR

Characteristics
Overall Male Female

Exp 
(Beta) 95% CI P 

value
Exp 

(Beta) 95% CI P 
value

Exp 
(Beta) 95% CI P value

LogAAMA Quantile
    Q1 Reference Reference Reference
    Q2 0.54 0.50, 0.59 < 0.001 0.56 0.50, 0.63 < 0.001 0.48 0.42, 0.56 < 0.001
    Q3 0.46 0.41, 0.51 < 0.001 0.46 0.41, 0.51 < 0.001 0.38 0.33, 0.44 < 0.001
    Q4 0.37 0.33, 0.42 < 0.001 0.38 0.33, 0.43 < 0.001 0.30 0.26, 0.35 < 0.001
LogAMCC Quantile
    Q1 Reference Reference Reference
    Q2 0.58 0.53, 0.63 < 0.001 0.66 0.58, 0.74 < 0.001 0.51 0.43, 0.60 < 0.001
    Q3 0.47 0.42, 0.52 < 0.001 0.51 0.45, 0.56 < 0.001 0.41 0.34, 0.49 < 0.001
    Q4 0.37 0.32, 0.42 <0.001 0.39 0.34, 0.46 < 0.001 0.31 0.26, 0.37 < 0.001
LogATCA Quantile
    Q1 Reference Reference Reference
    Q2 0.69 0.61, 0.78 < 0.001 0.67 0.60, 0.76 < 0.001 0.66 0.57, 0.76 < 0.001
    Q3 0.56 0.49, 0.63 < 0.001 0.56 0.50, 0.63 < 0.001 0.49 0.42, 0.57 < 0.001
    Q4 0.44 0.38, 0.50 < 0.001 0.52 0.45, 0.59 < 0.001 0.39 0.34, 0.46 < 0.001
LnSBMA Quantile
    Q1 Reference Reference Reference
    Q2 0.61 0.56, 0.67 < 0.001 0.62 0.54, 0.70 < 0.001 0.59 0.52, 0.68 < 0.001
    Q3 0.50 0.46, 0.54 < 0.001 0.50 0.45, 0.54 < 0.001 0.46 0.40, 0.53 < 0.001
    Q4 0.43 0.40, 0.46 < 0.001 0.43 0.39, 0.47 < 0.001 0.40 0.35, 0.45 < 0.001
LogCEMA Quantile
    Q1 Reference Reference Reference
    Q2 0.57 0.52, 0.62 < 0.001 0.58 0.51, 0.65 < 0.001 0.47 0.40, 0.54 < 0.001
    Q3 0.49 0.46, 0.53 < 0.001 0.48 0.43, 0.53 < 0.001 0.42 0.36, 0.49 < 0.001
    Q4 0.41 0.37, 0.44 < 0.001 0.40 0.35, 0.45 < 0.001 0.33 0.29, 0.38 < 0.001
LogDHBMA Quantile
    Q1 Reference Reference Reference
    Q2 0.51 0.47, 0.54 < 0.001 0.53 0.48, 0.58 < 0.001 0.43 0.37, 0.50 < 0.001
    Q3 0.39 0.36, 0.43 < 0.001 0.40 0.36, 0.45 < 0.001 0.33 0.28, 0.38 < 0.001
    Q4 0.33 0.30, 0.36 < 0.001 0.33 0.30, 0.37 < 0.001 0.26 0.23, 0.30 < 0.001
Log3HPMA Quantile
    Q1 Reference Reference Reference
    Q2 0.63 0.58, 0.69 < 0.001 0.63 0.56, 0.71 < 0.001 0.54 0.48, 0.61 < 0.001
    Q3 0.56 0.51, 0.60 < 0.001 0.54 0.49, 0.60 < 0.001 0.46 0.40, 0.52 < 0.001
    Q4 0.52 0.47, 0.57 < 0.001 0.49 0.44, 0.55 < 0.001 0.43 0.38, 0.48 < 0.001
Ln2HPMA Quantile
    Q1 Reference Reference Reference
    Q2 0.59 0.55, 0.65 < 0.001 0.61 0.55, 0.68 < 0.001 0.55 0.48, 0.63 < 0.001
    Q3 0.52 0.47, 0.58 < 0.001 0.53 0.47, 0.60 < 0.001 0.44 0.39, 0.51 < 0.001
    Q4 0.47 0.43, 0.51 < 0.001 0.47 0.42, 0.52 < 0.001 0.40 0.35, 0.46 < 0.001
LnHMPMA Quantile
    Q1 Reference Reference Reference
    Q2 0.55 0.50, 0.59 < 0.001 0.56 0.50, 0.62 < 0.001 0.47 0.41, 0.55 < 0.001
    Q3 0.48 0.44, 0.52 < 0.001 0.47 0.42, 0.52 < 0.001 0.38 0.34, 0.44 < 0.001
    Q4 0.45 0.40, 0.50 < 0.001 0.44 0.39, 0.50 < 0.001 0.38 0.33, 0.44 < 0.001
LogMA Quantile
    Q1 Reference Reference Reference
    Q2 0.55 0.49, 0.61 < 0.001 0.59 0.52, 0.66 < 0.001 0.48 0.42, 0.57 < 0.001
    Q3 0.43 0.38, 0.48 < 0.001 0.44 0.39, 0.50 < 0.001 0.37 0.32, 0.44 < 0.001
    Q4 0.36 0.32, 0.40 < 0.001 0.38 0.34, 0.43 < 0.001 0.30 0.26, 0.35 < 0.001
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Ln2MHA Quantile
    Q1 Reference Reference Reference
    Q2 0.65 0.60, 0.70 < 0.001 0.70 0.62, 0.78 < 0.001 0.61 0.53, 0.70 < 0.001
    Q3 0.58 0.53, 0.64 < 0.001 0.58 0.51, 0.65 < 0.001 0.54 0.46, 0.63 < 0.001
    Q4 0.45 0.40, 0.51 < 0.001 0.47 0.41, 0.53 < 0.001 0.44 0.37, 0.52 < 0.001
Log34MHA Quantile
    Q1 Reference Reference Reference
    Q2 0.59 0.54, 0.64 < 0.001 0.60 0.53, 0.67 < 0.001 0.50 0.43, 0.58 < 0.001
    Q3 0.56 0.51, 0.62 < 0.001 0.56 0.50, 0.62 < 0.001 0.48 0.40, 0.57 < 0.001
    Q4 0.41 0.36, 0.46 < 0.001 0.41 0.36, 0.47 < 0.001 0.35 0.30, 0.42 < 0.001
LnMHBMA3 Quantile
    Q1 Reference Reference Reference
    Q2 0.60 0.54, 0.66 < 0.001 0.62 0.55, 0.70 < 0.001 0.48 0.41, 0.56 < 0.001
    Q3 0.52 0.48, 0.57 < 0.001 0.53 0.48, 0.60 < 0.001 0.41 0.36, 0.48 < 0.001
    Q4 0.50 0.44, 0.57 < 0.001 0.49 0.43, 0.56 < 0.001 0.38 0.31, 0.45 < 0.001
LogPGA Quantile
    Q1 Reference Reference Reference
    Q2 0.54 0.48, 0.60 < 0.001 0.60 0.53, 0.68 < 0.001 0.48 0.41, 0.56 < 0.001
    Q3 0.41 0.37, 0.46 < 0.001 0.45 0.40, 0.50 < 0.001 0.35 0.30, 0.41 < 0.001
    Q4 0.34 0.31, 0.38 < 0.001 0.36 0.32, 0.40 < 0.001 0.28 0.24, 0.33 < 0.001
Note: mVOCs, metabolites of volatile organic compounds; UFR, urine flow rate; AAMA, N-acetyl-S-(2-carbamoylethyl)-L-cysteine; AMCC, N-
acetyl-S-(N-methylcarbamoyl)-L-cysteine; ATCA, 2-aminothiazoline-4-carboxylic acid; SBMA, N-acetyl-S-(benzyl)-L-cysteine; CEMA, N-acetyl-S-(2-
carboxyethyl)-L-cysteine; DHBMA, N-acetyl-S-(3:4-dihydroxybutyl)-L-cysteine; 3HPMA, N-acetyl-S-(3-hydroxypropyl)-L-cysteine; 2HPMA, N-acetyl-S-(2-
hydroxypropyl)-L-cysteine; HMPMA, N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine; MA, mandelic acid; 2MHA, 2-methylhippuric acid; 34MHA, 
3-and 4-methylhippuric acid; MHBMA3, N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine; PGA, phenylglyoxylic acid; CI: confidence interval.
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Figure S2. Univariate nonlinear exposure-response relationship between single mVOCs and UFR estimated by the BKMR model.
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Figure S3. Effect of single mVOCs on UFR at the 25%, 50%, and 75% quartiles (estimates and 95% confidence intervals).
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Table S5. Detailed PIP results for the BKMR model

mVOCs
PIP

Overall Male Female
AAMA 0.3320 0.1613 8.00E-05
AMCC 0.1250 0.0654 0.088
ATCA 1.0 1.0 0.3963
SBMA 0.0064 0.8148 4.00E-04
CEMA 1.0 0.7497 1.0
DHBMA 1.0 1.0 1.0
3HPMA 1.0 0.9261 0.9503
2HPMA 0.1199 0.1378 0.0039
HMPMA 0.5350 0.6271 0.0844
MA 0.0066 0.0650 0.0022
2MHA 0 0.1454 0.004
34MHA 1.0 1.0 0.9761
MHBMA3 0.6290 0.8239 0.9974
PGA 1.0 0.3712 1.0
Note: PIP, posterior inclusion probability; mVOCs, metabolites of volatile organic compounds; AAMA, N-acetyl-S-(2-
carbamoylethyl)-L-cysteine; AMCC, N-acetyl-S-(N-methylcarbamoyl)-L-cysteine; ATCA, 2-aminothiazoline-4-carboxylic acid; SBMA, 
N-acetyl-S-(benzyl)-L-cysteine; CEMA, N-acetyl-S-(2-carboxyethyl)-L-cysteine; DHBMA, N-acetyl-S-(3:4-dihydroxybutyl)-L-cysteine; 
3HPMA, N-acetyl-S-(3-hydroxypropyl)-L-cysteine; 2HPMA, N-acetyl-S-(2-hydroxypropyl)-L-cysteine; HMPMA, N-acetyl-S-(3-hydroxy-
propyl-1-methyl)-L-cysteine; MA, mandelic acid; 2MHA, 2-methylhippuric acid; 34MHA, 3-and 4-methylhippuric acid; MHBMA3, 
N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine; PGA, phenylglyoxylic acid.


