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Original Article
Phase IIa, randomized placebo-controlled trial of  
single high dose cholecalciferol (vitamin D3) and daily 
Genistein (G-2535) versus double placebo in men with 
early stage prostate cancer undergoing prostatectomy
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Abstract: Introduction and objectives: Prostate cancer (PCa) represents an important target for chemoprevention 
given its prolonged natural history and high prevalence. Epidemiologic and laboratory data suggest that vitamin 
D and genistein (soy isoflavone) may decrease PCa progression. The effect of vitamin D on prostate epithelial cell 
proliferation and differentiation is well documented and genistein may augment this affect through inhibition of the 
CYP24 enzyme, which is responsible for intracellular vitamin D metabolism. In addition, both genistein and vitamin 
D inhibit the intraprostatic synthesis of prostaglandin E2, an important mediator of inflammation. The objectives of 
this prospective multicenter trial were to compare prostate tissue calcitriol levels and down-stream related biomark-
ers in men with localized prostate cancer randomized to receive cholecalciferol and genistein versus placebo cho-
lecalciferol and placebo genistein during the pre-prostatectomy period. Methods: Men undergoing radical prosta-
tectomy were randomly assigned to one of two treatment groups: (1) cholecalciferol (vitamin D3) 200,000 IU as one 
dose at study entry plus genistein (G-2535), 600 mg daily or (2) placebo cholecalciferol day 1 and placebo genistein 
PO daily for 21-28 days prior to radical prostatectomy. Serum and tissue analyses were performed and side-effects 
recorded. Results: A total of 15 patients were enrolled, 8 in the placebo arm and 7 in the vitamin D3 + genistein (VD 
+ G) arm. All patients were compliant and completed the study. No significant differences in side effect profiles were 
noted. Utilization of the VD + G trended toward increased calcitriol serum concentrations when compared to pla-
cebo (0.104 ± 0.2 vs. 0.0013 ± 0.08; p=0.08); however, prostate tissue levels did not increase. Calcidiol levels did 
not change (p=0.5). Immunohistochemistry for marker analyses using VECTRA automated quantitation revealed a 
increase in AR expression (p=0.04) and a trend toward increased TUNEL staining (p=0.1) in prostate cancer tissues 
in men randomized to receive VD + G compared to placebo. Conclusions: In this first study testing the combination 
of a single, large dose of cholecalciferol and daily genistein, the agents were well tolerated. While an increase in AR 
expression suggesting differentiation was observed, it is difficult to draw firm conclusions regarding the bioactivity 
of the combination given the sample size.
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Introduction

Prostate cancer is the most common malig- 
nancy and the second leading cause of can- 
cer-related death [1]. Due to its long natural  
history and the low proportion of deaths to  
cancer prevalence, prostate cancer represents 

an excellent target for chemoprevention [2, 3]. 
While a number of chemopreventive agents  
are under investigation [4], only 5α-reductase 
inhibitors such as finasteride or dutasteride 
have shown a significant benefit [5, 6]. Multi- 
ple studies have shown that vitamin D has 
activity in prostate cancer both in vitro and in 
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vivo [7]. Upon ingestion, cholecalciferol (vita- 
min D3) is eventually metabolized to calcitriol 
(1,25-dihydroxyvitamin D3), which binds to the 
intracellular vitamin D receptor (VDR), heterodi-
merizes with the retinoid X receptor, and binds 
DNA [8, 9]. The resulting protein transcription 
results in net increase in circulating calcium 
and phosphorus by increasing intestinal ab- 
sorption and mobilization from bone, and de- 
creasing urinary excretion [9, 10]. Other tissues 
(including prostate epithelial cells) contain  
vitamin D receptors (VDRs), providing a mecha-
nistic basis for its potential chemopreventive 
activity [11]. Epidemiological evidence has  
suggested chronic sunlight exposure reduces 
risk of prostate cancer, but a clear association 
between serum vitamin D3 levels and reduced  
risk is less clear suggesting other factors play  
a role [12, 13]. Furthermore, specific VDR poly-
morphisms are associated with increased risks 
of prostate cancer [14]. 

Cholecalciferol plays an important role in  
the development and differentiation of normal 
epithelia, including prostate [15]. Human pro- 
state epithelial cells metabolize cholecalci- 
ferol to calcitriol particularly in the peripheral 
zone of the prostate, which is where 70% of 
prostate cancers originate [7, 15]. Calcitriol  
has been shown to inhibit in vivo growth and 
invasion, and induce differentiation in pros- 
tate cancer cells [16-20]. In addition, it has 
been shown to inhibit proliferation (Ki67) [21] 
and induce apoptosis (TUNEL, increased cas-
pase 3) [22, 23]. Furthermore, calcitriol modu-
lates expression of p21 [24], prostaglandin-E2 
(PGE2) [25], cyclooxygenase-2 (COX-2) [26], and 
the insulin growth factors axis [25, 26].

Several trials with vitamin D2 and vitamin D3  
in hormone-resistant prostate cancer have re- 
sulted in some decreases in prostate specific 
antigen (PSA) levels and lengthening of me- 
dian survival with the addition of calcitriol to 
docetaxel chemotherapy in men with advan- 
ced prostate cancer [27-30]. However, investi-
gations of calcitriol as a cancer therapy have 
been limited by toxicity [29]. Treatment with 
cholecalciferol is safer since it can be convert-
ed to calcitriol by prostate cells without gener-
ating systemic hypercalcemia [2]. In fact, a 
100,000 IU dose of cholecalciferol in 30 adults 
increased blood levels from a mean of 27.1 ± 
7.7 ng/ml at baseline to a mean of 42 ± 9.2 ng/
ml after four months, and was found to be safe 
[30]. Another strategy to reduce the risk for 

hypercalcemia caused by vitamin D is to use 
low doses in combination with other cancer 
prevention agents. This was investigated previ-
ously in an NCI, DCP-sponsored phase IIa trial 
comparing cholecalciferol with and without cal-
cium carbonate, and calcitriol alone in subjects 
with previous colorectal adenomas. However, 
no effects on various biomarkers were found 
after six months.

Genistein is one of the main isoflavone glyco-
side conjugates found in soybeans [31]. Epi- 
demiological studies have suggested that con-
sumption of soybean-based products are link- 
ed to reduced risk for developing prostate  
and other cancers [32]. The efficacy of soy and 
genistein in the setting of prostate cancer che-
moprevention clinical trials has been mixed 
[33-35]. Genistein-induced morphologic chang-
es in prostate carcinoma cell lines have been 
linked to in vitro genistein-induced cell at- 
tachment to the substratum [36]. Genistein is 
known to modulate a number of proteins im- 
plicated in prostate carcinogenesis and vita- 
min D metabolism including expression of CY- 
P24 and CYP27B1 [35, 36], COX-2 activity [24, 
37], PGE2 [38] and PGF2a receptor [39], his-
tone deacetylase (HDAC) [40], heat shock  
protein (Hsp) [41], and Hsp90 chaperone activ-
ity [42].

A recent study combining calcitriol and genis-
tein showed synergistic activity against pros-
tate cancer cells in vitro [43]. Genistein ap- 
pears to enhance calcitriol activity in PC3 cells 
due to inhibition of COX-2, CYP24 and CYP- 
27B1 enzymes, which are important in calci- 
triol degradation [44]. The addition of ge- 
nistein to cholecalciferol may thus extend the 
half-life of calcitriol, increase calcitriol tissue 
levels and potentiate inhibition of the pro- 
staglandin pathway. In the current study, we 
assessed the effect on vitamin D prostate tis-
sue levels of calcitriol and downstream vita- 
min D-related biomarkers, of adding daily ge- 
nistein to a single, large dose of cholecalci- 
ferol in patients awaiting radical prostatecto- 
my for localized prostate cancer. 

Material and methods

Trial design

The trial was performed utilizing the Univer- 
sity of Wisconsin chemoprevention consortium 
(UWCCC CO10805/UWI09-14-01) and consist-
ed of 4 sites: The Universities of Wisconsin-
Madison, Minnesota, and Alabama-Birmingham 
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accrued patients as well as Urology of San 
Antonio Clinics. The study plan included men 
with a histologic diagnosis of prostate cancer 
who were scheduled for radical prostatectomy. 
Participants were randomly assigned to one  
of two treatment groups: (1) cholecalciferol, 

200,000 IU p.o. on day 1 plus genistein, 600 
mg p.o. daily or (2) Placebo cholecalciferol on 
day one and placebo genistein daily for 21-28 
days prior to radical prostatectomy (Figure 1). 
Patients returned to the clinic after 2 weeks  
for evaluation of adverse events, safety labs 

Figure 1. Study schema.



Vitamin D and genistein prostate chemoprevention

20 Am J Clin Exp Urol 2016;4(2):17-27

and biomarker analyses. The evening before 
surgery the patient took the final dose of study 
drug and on the morning before their pros- 
tatectomy, (approximately twelve hours after 
the last dose of study drug) adverse events  
and biomarker evaluations were performed 
and remaining study drug/placebo collected. 
The primary objective of the study was to deter-
mine the change (day 0 to day end of study) in 
serum 25-OH-vitamin D (calcidiol) and tissue 
1,25-OH-vitamin D (calcitriol). Secondary ob- 
jectives included serum levels of calcitriol, cal-
cium, parathyroid hormone, IGF-1, IGF-2, IGF- 
BP-3 and PSA. Others included tissue expres-
sion of VDR, androgen receptor, prostate spe-
cific membrane antigen (PSMA); COX-2, TUNEL 
staining (apoptosis), caspase 3 (apoptosis), 
Ki-67 (proliferation), PGE2, Akt, phosphorylated 
Akt, p21, IGF-1 and IGF-2. 

Serum/plasma biomarkers

Serum or plasma levels of calcium, parathy- 
roid hormone, IGF-1, IGF-2 and IGFBP-3, 1,25 
(OH)2D (calcitriol) and 25-OH-D (calcidiol) were 

assessed at baseline, and the day of prosta- 
tectomy (prior to surgery). Calcidiol and calci- 
triol were measured with enzyme immunoas-
says using commercial kits (Immunodiagnos- 
tic Systems and MD Biosciences) as previous- 
ly described [45]. The lower limit of quanti- 
zation is 0.28 ng/mL for calcitriol, and 4.0 ng/
mL for calcidiol, with intra- and inter-day vari-
ability of less than 15%. IGF-1, IGF-2, IGFBP-3, 
PSA levels were measured by a commercially 
available sandwich immunoassay (Quantikine 
human, R&D Systems, Minneapolis, MN, Genis- 
tein and diadezein concentrations were ana-
lyzed in plasma as previously described by  
King et al. [46]. Briefly, samples were analyz- 
ed by a validated reversed phase HPLC assay. 
The lower limit of quantization is 3.9 ng/mL  
for genistein, and 3.1 ng/mL for daidzein, with 
intra- and inter-day variability of less than 15%.

Tissue biomarkers and immunohistochemical 
VECTRA analysis

Frozen tissue was collected and stored at 
-80°C, then eventually thawed at room temper-

Table 1. Baseline characteristics of placebo and vitamin D3 + genistein cohorts
Characteristic Placebo (n=8) Vitamin D3 + genistein (n=7) All (n=15)
Age (yrs) 60.8 ± 4.5 62.1 ± 4.3 61.4 ± 4.3
Age at surgery (yrs) 61.4 ± 4.1 62.1 ± 4.3 61.7 ± 4.0
BMI, kg/m2 31.6 ± 5.61 29.3 ± 2.56 30.5 ± 4.47
ECOG status
    0 8 (100) 6 (86) 14 (93)
    1 0 (0) 1 (14) 1 (7)
PSA (ng/ml) 8.7 ± 7.3 6.3 ± 1.7 7.6 ± 5.4
Tumor stage at baseline
    T1 8 (100) 4 (57) 12 (80)
    T2 0 (0) 3 (43) 3 (20)
Final pathologic stage
    T2 3 (38) 5 (71) 8 (53)
    T3 1 (12) 2 (29) 3 (20)
Tumor grade at baseline
    6 4 (50) 1 (14) 5 (33)
    7 2 (25) 6 (86) 8 (53)
    8 1 (12) 0 (0) 1 (7)
    9 1 (12) 0 (0) 1 (7)
Final grade
    6 2 (25) 1 (14) 3 (20)
    7 4 (50) 6 (86) 10 (67)
    8 1 (12) 0 (0) 1 (7)
Biopsy tumor involvement (maximum) 25.8 ± 31.8 47.9 ± 24.8 36.1 ± 30.0
Prostate tumor involvement (maximum) 8.71 ± 6.9 10.8 ± 6.8 9.58 ± 6.6
Data are expressed as mean ± SD or number of patients (%).
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ature. Tissue was weighed and then placed in  
a sample tube with 0.5 mL normal saline and 
homogenized mechanically at 20,000 RPM 
prior to analysis. Homogenate was stored at 
-20°C for no more than 1 day prior to assay. 
After being thawed at room temperature, sam-
ples were analyzed as recommended by the 
manufacturer (DLD Diagnostika GMBH 25-OH- 
Vitamin-D ELISA EA300/96 and MyBiosource 
Human 1,25 Hydroxy Vitamin D3 [1,25OHVD3] 
Elisa Kit MBS724145 for calcidiol and calci- 
triol respectively) as previously described [47]. 
Fresh Frozen Parrafin-embedded (FFPE) tis-
sues were utilized for immunohistochemistry. 
Slide preparation and antigen retrieval were 
conducted as previously described [48]. Briefly, 
the slides were taken through routine depa- 
raffinization and rehydration. Two triple stains 
were performed on sections using antibodies 
to VDR; androgen receptor; prostate speci- 
fic membrane antigen (PSMA, R&D Systems); 
TUNEL staining (apoptosis, Trevigen Inc); Cas- 
pase 3 (apoptosis, Cell Signaling Technology 
Inc.); Ki-67 (proliferation); Akt (404D, Cell sig-
naling Technology Inc); p21 (EA10, Abcam Inc); 
IGF-1 (7973, Abcam Inc) and IGF-2 (9574, Ab- 
cam Inc). E-cadherin antibodies (Cell Signaling 
Technology, Beverly, MA) were used to define 
the epithelial compartment for better tissue 
segmentation. Cores with <5% epithelial com-
ponent or loss of tissue were excluded from  
the analysis. Per-cell protein target signals  
were quantitated for individual cores using the 
VECTRATM imaging system according to manu-
facturer’s protocols (Caliper Life Sciences, Hop- 
kinton, MA). The inForm 1.2TM software was 
used to segment tissue subcellular compart-
ments (nucleus vs. cytoplasm) and tissue com-
partments (epithelium vs. stroma).

calcitriol was 0.28 ng/mL; samples below this 
levels were recorded as 0. Secondary end-
points were summarized by treatment arm with 
descriptive statistics and analyzed using two-
sample Wilcoxon rank-sum tests. P-values < 
0.05 were considered statistically significant 
without adjustment for multiple tests.

Sample size justification

Sample size was estimated based on a two-
sample t-test to detect calcitriol tissue con- 
centration differences at a two-sided signifi-
cance level of 0.05 between active and place-
bo. The goal was to recruit 50 participants, or 
25 participants in each treatment arm; after 
dropout (which, in our experience with compa-
rable studies has been less than 7%) we ex- 
pected to have an effective sample size of 23 
participants in each treatment arm, or 46 par-
ticipants. With an effective sample size of 46, 
the trial would have had a power between 0.77 
and 0.92 to detect an effect size between 0.8 
to 1.

Results

Men with a histologic diagnosis of prostate can-
cer scheduled for radical prostatectomy were 
eligible for this study and clinicopathologic data 
is detailed in Table 1. Subjects were randomly 
assigned to one of two treatment groups: (1) 
cholecalciferol, 200,000 IU p.o. as one dose on 
day 1 plus genistein, 600 mg p.o. daily or (2) 
placebo cholecalciferol day one and placebo 
genistein daily for 21-28 days prior to radical 
prostatectomy. The study design is detailed in 
Figure 1. We have found in prior studies that 
the perception of delayed surgery is a signifi-
cant disincentive to enrollment and therefore 
offered the 21-28 day treatment option. 

Table 2. Adverse events
Placebo (n=8) Vitamin D3 + genistein (n=7)

All (%) 1 2 3 All (%) 1 2 3
Hypertension 1 (13) 0 1 0 2 (29) 1 1 0
Abdominal pain 0 (0) 0 0 0 2 (29) 1 1 0
Diarrhea 0 (0) 0 0 0 2 (29) 2 0 0
Blood bilirubin increased 1 (13) 0 1 0 0 (0) 0 0 0
Hypophosphatemia 1 (13) 0 0 1 0 (0) 0 0 0
Sinus pain 0 (0) 0 0 0 1 (14) 0 1 0
Sinusitis 0 (0) 0 0 0 1 (14) 0 1 0
Data are number of patients (%). Adverse events shown here have a frequency of 
15% or higher in either treatment arm or are graded as moderate (CTCAE grade 2) 
or severe (CTCAE grade 3).

Statistical methods

The primary analysis was a 
comparison of tissue levels  
of calcitriol between the pla-
cebo group and the cholecal-
ciferol/genistein group using 
Student t-test. If the normality 
assumption was tenuous, an 
appropriate transformation of 
the data such as logarithm 
was considered or a nonpara-
metric test such as Wilcoxon 
rank-sum test was used for 
comparison. The lower limit of 
detection (LLOD) for tissue 
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A total of 15 patients were enrolled, 8 in the 
placebo arm and 7 in the vitamin D + genistein 
(VD + G) arm. All patients were compliant and 
completed the study, however missed doses 
occurred in 1 (12%) and 2 (28%) of the placebo 
and VD + G groups respectively. Adverse events 
occurred in 4 patients in the placebo group and 
5 from the VD + G group (Table 2). One patient 
in the placebo arm developed severe hypo-

phosphatemia that was deemed possibly relat-
ed to the study drug.

Serum and tissue biomarkers and chemistries 
were performed. Analysis of the primary study 
endpoint, prostate tissue calcitriol levels, did 
not significantly differ between the two groups 
(p=0.92). Tissue calcitriol was detectable in 
only 1/7 patients on VD + G compared to 1/8 

Table 3. Calcitriol levels in tissue and serum
Characteristic* Placebo (n=8) Vitamin D3 + genistein (n=7) p-value All (n=15)
Tissue calcitriol (ng/mL)† 0 (0-0.358) 0 (0-0.396) 0.92 0 (0-0.396)
Serum calcitriol, baseline (ng/mL) 0.517 ± 0.124 0.531 ± 0.201 0.60 0.523 ± 0.158
EOS (ng/mL) 0.518 ± 0.143 0.654 ± 0.355 0.22 0.576 ± 0.254
Change (ng/mL) 0.0013 ± 0.076 0.104 ± 0.149 0.08 0.0454 ± 0.120
Serum calcidiol, baseline (ng/mL) 20.5 ± 5.50 24.5 ± 9.3 0.60 22.4 ± 7.5
EOS (ng/mL) 19.2 ± 5.10 27.3 ± 10.0 0.14 22.7 ± 8.4
Change (ng/mL) -1.40 ± 5.30 0.8 ± 12.6 0.56 -0.4 ± 8.8
*Presented as number (percentage) or mean ± SD; †Only one nonmissing observation in each arm; presented as median and 
range.

Figure 2. Absolute changes in serum calcitriol and serum calcidiol at the end of study. Participants were randomly 
assigned to cholecalciferol, 200,000 IU p.o. on day 1 plus genistein, 600 mg p.o. daily or Placebo cholecalciferol on 
day one and placebo genistein daily for 21-28 days prior to radical prostatectomy. Serum was drawn the morning of 
surgery and analyzed as described in methods. (A) Serum Calcitriol levels (p=0.08) and (B) serum Calcidiol levels 
(p=0.56) in the drug versus control groups. 
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on placebo. Participants receiving active VD + 
G showed a trend toward increased serum cal-
citriol (p=0.08, Table 3, Figure 2) but the com-
pounds did not significantly effect serum cal-
cidiol (e.g. 25-OH-vitamin D; p=0.5) the most 
standard measure of vitamin D status, when 
compared to placebo. Serum TSH did show a 
trend toward decreasing in the VD + G group 
from baseline to a greater extent than placebo 
(p=0.055), but levels between the groups did 
not differ. Serum T4 was not altered. 

Immunostaining for tissue biomarkers includ-
ing the apoptosis markers Caspase 3, PSMA, 
IGF-1, IGF-2, Akt, p21, PGE2 and others was 
performed as described and included all sam-
ples. Vectra™ automated quantitative analysis 
was performed which permits tissue segmen-

tation focusing on the epithelial component 
and quantitation of the nuclear-cytoplasmic 
portion. Given the small patient numbers, lim-
ited conclusions were able to be drawn when 
comparing the placebo and VD + G groups. A 
trend toward greater TUNEL staining in the 
nucleus was found in the VD + G arm in the 
prostate cancer tissue samples (p=0.16) 
(Figure 3). Interestingly, AR expression in the 
nucleus was greater in the VD + G group rela-
tive to placebo in prostate cancer samples 
(p=0.041) but not in benign tissues (p=0.4). 

Discussion

In this consortium study, the primary objective 
of this study was to determine differences in 
prostate tissue steady state concentrations of 

Figure 3. Analysis of TUNEL and androgen receptor expression. Prostate tissues were collected at the time of radical 
prostatectomy and paraffin embedded samples were subjected to immunohistochemistry as described. Vectra™, 
an automated quantitative system was utilized for analysis. Androgen Receptor (AR) in benign (A) and cancer (B) 
tissues. TUNEL expression, a marker of apoptosis, is demonstrated in benign (C) and cancer tissues (D). P values 
are documented.
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calcitriol in participants treated with a single 
dose cholecalciferol (200,000 IU) and G-2535 
(which provides 600 mg of genistein) versus 
those receiving placebo. Only one patient on 
each study arm had measurable levels of  
calcitriol in prostate tissue indicating that  
the active form of the vitamin did not readily 
accumulate in the prostate with these doses. 
However, significant differences in serum cal-
cidiol levels were not observed on the two study 
arms (p=0.5), suggesting that we may not have 
adequately tested the primary study hypothe-
sis. Preliminary data has observed genistein 
inhibiting the expression of CYP24 (24-hydroxy-
lase) with resultant greater growth inhibitory 
effects of calcitriol in prostate tissue [44]. The 
combination of high dose vitamin D plus genis-
tein was therefore postulated to result in great-
er prostate tissue concentrations of calcitriol 
than with vitamin D alone. The number of pa- 
tients enrolled in the trial adversely impact- 
ed the statistical analyses making a definitive 
conclusion difficult.  

A secondary objective of this study was to as- 
sess the effect of adding genistein to patients 
receiving a single dose of cholecalciferol on  
the modulation of vitamin D-related biomar- 
kers in patients undergoing radical prostatec-
tomy for localized prostate cancer. Several 
interesting observations were made potentially 
due to genistein intake. Both cholecalciferol 
and genistein have been shown to inhibit the 
growth of prostate cancer in vitro and in vivo 
and to induce apoptosis with caspase activa-
tion. In addition, genistein has been shown to 
prolong the bioavailability of cholecalciferol. 
Ki-67 as a marker of proliferation did not differ 
between groups. TUNEL staining and caspase 
3 expression was measured to determine if 
combination therapy with both agents induces 
apoptosis in human prostate tissue. A trend 
toward increased apoptosis was noted in VD + 
G tumor samples (p=0.16) for TUNEL in the 
nucleus. 

Cholecalciferol can modulate serum expres-
sion of PTH, IGF-1/-2, and IGFBP-3 and tissue 
expression of VDR, androgen receptor, expres-
sion of PSMA, prostaglandin, p21, and IGF-1/-
2. Genistein can also inhibit vitamin D hydro- 
xylases CYP24 and CYP27B1. Each of these 
parameters was assessed in this study and  
no differences noted.

AR signaling plays a pivotal role in prostate  
cell growth, differentiation and function and  

is a major focus of interventions in prostate 
cancer treatment. Quantitative immunohisto- 
chemistry demonstrated greater AR express- 
ion in PCa treated with VD + Gen relative to  
placebo (p=0.041) (Figure 2). This was not 
seen in benign prostate tissues. Previous work 
has demonstrated that genistein activates AR- 
driven gene transcription in prostate cancer 
cells at low concentrations by activating the 
Raf-MEK-ERK kinase pathway [49], an effect 
that is reversed at high genestein doses in  
the rat prostate [50]. The effects of genistein 
may also depend on the mutational status of 
the AR [51]. 

Conclusions

In this feasibility study testing the combination 
of cholecalciferol and genistein, a trend for 
increased calcitriol levels was noted in the 
serum, but not tissue. While an increase in 
apoptosis and AR expression was observed, it 
is difficult to draw firm conclusions regarding 
the bioactivity of the combination given the 
small sample size and multiple comparisons 
performed. The finding of no increase in calcidi-
ol levels suggests a sufficient dose of cholecal-
ciferol may not have been applied to test the 
hypothesis that genistein would augment its 
effect at the tissue level.
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