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Abstract: Two decades following the discovery that α1-adrenoceptor antagonists suppress prostate tumor growth at 
the molecular and cellular level, the impact of α-blockade as re-purposed treatment strategy in the medical man-
agement of prostate cancer is gradually being recognized. Prostate cancer is the second most common cause of 
cancer deaths among males in the United States, yet the disease maintains inconsistent recommendations for pre-
vention and screening. The functional relationship between α-adrenergic signaling and smooth muscle cells in the 
stroma of the prostate gland and the bladder neck empowered the use of α-adrenoceptor antagonists for the relief 
of urethral obstruction and clinical symptoms associated with benign prostatic hyperplasia (BPH). Adrenoceptors 
are G-protein-coupled receptors (GCPRs) that are functionally bound by catecholamines: epinephrine (ER) and nor-
epinephrine (NE). The α1A adrenoceptor subtype is primarily responsible for smooth muscle contraction in the 
bladder neck and prostate gland. α1-adrenoceptor antagonists are clinically indicated as first-line therapies for the 
relief of BPH, hypertension, and post-traumatic stress disorder (PTSD). Compelling evidence from cellular and pre-
clinical models have identified additional effects of α1-adrenoceptor antagonists regarding their ability to induce 
apoptosis-mediated suppression of prostate tumor growth and metastasis. Additionally, early epidemiologic data 
suggest that they may serve as a safe treatment to reduce the risk of prostate cancer. Optimization of quinazoline 
based compounds (doxazosin) to exploit pharmacologic targeting of tumor growth and vascularization revealed high 
efficacy of the lead novel compound DZ-50 against prostate tumors. This review discusses the experimental and 
pre-clinical evidence on the impact of α-blockade on prostate cancer.  
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Introduction

The clinical burden of prostate cancer and be-
nign prostatic hyperplasia (BPH)

Prostate cancer is the most frequently diag-
nosed cancer in males and the second leading 
cause of cancer deaths in males with an esti-
mated 29,430 deaths in the United States for 
2018, following only respiratory malignancies 
for mortality [1]. There is an estimated inci-
dence of 164,690 new cases of prostate can-
cer in the United States for 2018 [1]. These 
cases account for approximately 19.2% of all 
estimated new cases of cancer in males in the 
United States. The five-year survival for patients 
with non-metastatic prostate cancer is 98.9% 
(measured between 2005 and 2011) but pa- 
tients with metastatic prostate cancer on initial 

diagnosis (4% of prostate cancer patients) had 
only a 28.2% five-year survival [1]. The mor- 
bidity and mortality associated with advanced 
prostate cancer calls for preventive tools that 
reduce the likelihood of developing prostate 
cancer and impairing growth, metastases, and 
progression to therapeutic resistance. Despite 
the high morbidity of prostate cancer in the 
United States there are currently no drugs indi-
cated for the prevention of prostate cancer in 
at-risk individuals. Recurrent prostate cancer 
progresses to resistance to androgen depriva-
tion therapy (ADT) and/or taxane-based chemo-
therapeutic drugs [2]. The stromal microenvi-
ronment plays a major role in the progression of 
prostate cancer to ADT resistance by conferr- 
ing a process called epithelial-to-mesenchymal 
transition (EMT) [2].
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BPH is a benign proliferative pathology of the 
prostate glandular epithelium, connective tis-
sue, and smooth muscle that affects males ol- 
der than 30 years of age [3]. Histopathological 
evaluations demonstrate that 68% of men over 
the age of 50 show cellular changes associat- 
ed with BPH [4]. Evidence derived from a popu-
lation-based study has shown that 75% of men 
over the age of 70 describe at least one lower 
urinary tract symptom associated with BPH [5]. 
A contributor to the etiology of BPH is the rever-
sion of the normal cellular environment to an 
embryologic growth phase where new epithelial 
gland formation and stromal cell inductive 
potential is aberrantly restarted from stem cell 
progenitors [6, 7], and deregulated cell survival 
signaling [8]. The relationship between adren-
ergic signaling and smooth muscle cells of the 
stroma introduced the use of adrenoceptor an- 
tagonists for the relief of urethral obstruction in 
BPH [9]. The clinical utility of α1-adenoceptor 
antagonists has long been established as first-
line therapy to relieve lower urinary tract symp-
toms (LUTS) secondary to BPH (BPH-LUTS) in 
aging men [10].

The economic impact of treatment of BPH, 
including direct costs (drugs, procedures, imag-
ing, office visits), indirect costs (lost earnings), 
and intangible costs (pain and suffering) is 
approximately $4 billion in the United States 
alone [11]. Evaluation of claims data demon-
strate BPH associated costs begin to rise as 
early as men in the 4th decade of life, with 4.7% 
of men between the ages of 45-54 seeking 
treatment, and 14.3% of men between 55-64 
seeking care for this condition [12]. The rela-
tively rapid onset of the BPH effects in aging 
males is indicated by the prostate growth dou-
bling time of only 4.5 years between the ages of 
31-50 and 10 years between ages 50-70 [3]. 
The estimated prevalence of BPH for males 
over the age of 30 in the United States for  
2015 was 38,000,000 [4], with 12 million 
seeking active treatment. Of those actively ma- 
naged, 54.8% choose drug management, pri-
marily with α1-blockade [13]. The medical man-
agement of patients with BPH demonstrates an 
estimated 23% of all visits to urologic practices 
in the US, second only to urinary tract infec-
tions (UTIs) [13]. The impact of this prostatic 
condition at both the clinical and economical 
level is expected to grow as the population of 

the United States ages. By 2030, 20% of the 
male population in the United States is expect-
ed to be 65 years of age or older, with the 85 
and older subset being the fastest growing por-
tion of the population [14]. 

In this review we discuss the pre-clinical and 
epidemiological evidence (spanning 20 years) 
on the impact of α-blockade (in clinical use for 
the treatment of BPH) on the cellular landscape 
and clinical outcomes in prostate cancer pro-
gression to advanced disease.

The origins of the prostate gland

The prostate gland is a walnut-sized glandular 
organ found inferior to the urinary bladder and 
surrounds the proximal urethra that is found in 
human males [15]. Histologically the structure 
of the prostate gland is organized by two differ-
ent schemas: “zones” or “lobes”. For this review 
we will be using the zone classification schema 
to better illustrate the localization of cell popu-
lations and their impact on BPH and prostate 
cancer. The four major zones of the prostate 
include the peripheral zone which makes up 
most of the glandular organ, the central zone 
that surrounds the ejaculatory ducts, the tran-
sition zone that surrounds the proximal urethra, 
and the anterior fibromuscular zone [16]. The 
function of the healthy prostate is the emission 
of prostatic fluid into the seminal fluid for the 
survival and function of spermatozoa in male 
ejaculate [17]. Prostatic fluid contains many 
proteins, including various enzymes that pro-
long the survival of spermatozoa in the ejacu-
late, prostate specific antigen (PSA), and highly 
concentrated zinc [17]. Despite the small size 
of the prostate, the gland is the site of major 
contributors to morbidity and mortality from 
diseases such as BPH and prostate cancer 
[17].

Embryologically the prostate gland arises from 
the primitive endoderm or ‘gut tube’. The hind-
gut region of the primitive endoderm swells into 
a larger hollow structure called the cloaca. The 
cloaca is separated into the ventral and dorsal 
outlets by the urorectal septum which give rise 
to the urogenital and anorectal structures, 
respectively. The ventral outlet is termed the 
primitive urogenital sinus. The urogenital sinus 
gives rise to the urinary bladder at the cranial 
end and the urethra caudally [17]. During the 
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10th week of human gestation, the prostate 
forms caudal to the bladder neck by an inter-
play of early epithelial and mesenchymal cells 
which both arise from the urogenital sinus. In 
an androgen independent process (occurs in 
both male and female embryos), the urogenital 
sinus gives rise to loose connective tissue  
composed of mesenchymal cells into distinct 
regions that will determine the lobes of the 
prostate [18]. The release of mesenchymal ce- 
lls into these distinct regions is called “mesen-
chymal condensation” [18]. The mesenchymal 
cells ultimately differentiate into the prostate 
stromal cells, the supporting cells of the fi- 
bromuscular tissue within the prostate micro-
environment [18]. In male embryos, the urogen-
ital sinus-derived epithelial buds are stimulated 
in an androgen dependent process by mesen-

pathetic muscarinic and sympathetic adrener-
gic nerve plexuses from the pelvic nerve and 
hypogastric nerve, respectively. The glands of 
the prostate in the peripheral and central zon- 
es are innervated by muscarinic autonomic 
nerve plexuses, with high association between 
cholinergic signaling receptors and the epithe-
lial lining, which drives secretions by the pros-
tate [22]. While the stromal areas of the pros-
tate gland also contain muscarinic autonomic 
neurons, the smooth muscle cells are predomi-
nantly autonomically innervated by adrenergic 
signaling [23]. Smooth muscle cells are primar-
ily in the anterior fibromuscular portion of the 
prostate, and throughout the peripheral and 
central glandular zones of the organ [18]. 
Adrenergic innervation mediates the contrac-
tion of prostatic smooth muscle via norepi-
nephrine [24].

Figure 1. Embryologic order of development for prostate cells. Urogenital 
sinus gives rise to the epithelial and mesenchymal cells of the prostate. 
The epithelial bud differentiates into luminal, basal, and intermediate (not 
pictured) epithelium. The mesenchymal condensation gives rise to smooth 
muscle cells, fibroblasts, and endothelial cells that inhabit the extracellular 
matrix.

chymal-secreted fibroblast gr- 
owth factors (FGFs), transcrip-
tion factors, and transforming 
growth factor-β (TGF-β) to in- 
vade the mesenchymal con-
densations and grow into the 
early prostate epithelium [18, 
19]. The invading urogenital 
sinus epithelium differentiat- 
es into distinct epithelial cell 
populations of the prostate in- 
cluding the basal, intermedi-
ate, and luminal layers (Figure 
1) [20]. The basal epithelial 
layer consists of non-secreto-
ry cells adjacent to the stro-
ma, the luminal layer makes 
up the secretory columnar epi-
thelium, and the intermediate la- 
yer is a population of epithelial 
cells with shared basal and 
luminal characteristics [20, 
21]. These epithelial cells ma- 
ke up the functioning lumin- 
al structure (prostate glands). 
The mesenchyme gives rise to 
distinct cell populations that 
occupy the prostate gland mi- 
croenvironment: smooth mus-
cle cells, fibroblasts, and en- 
dothelial cells (Figure 1).

Neurologically, the prostate is 
innervated by both parasym-
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Clinical recommendations for prostate cancer

Diagnosis

After the widespread implementation of PSA 
screening began in the 1990s, the rate of diag-
nosis of prostate cancer remains nearly twice 
the rate prior to the pre-PSA era, while the rate 
of mortality has slowly decreased since 1991, 
which suggests many of the cases diagnosed 
would otherwise be indolent and have no cli- 
nical significance [25]. While advanced stage 
prostate cancer carries significant mortality, 
there is growing evidence over the past decade 
that many low-grade diseases are best man-
aged by observation [26]. 

Current recommendations by the American 
Urologic Association (AUA) advocate screening 
for prostate cancer by means of annual PSA 
and digital rectal exam in select groups of pa- 
tients. This recommendation is not shared by 
all professional groups, as until recently the 
United States Preventive Services Task Force 
(USPSTF) provided a D rating (recommends 
against) for PSA-based screening for prostate 
cancer. This was recently updated in May 2018 
to more closely mirror the AUA’s current recom-
mendation, and the USPTF now recommends 
shared discussion with men between the ages 
of 55-69 to discuss the risks and benefits of 
PSA screening for prostate cancer. The overall 
benefit of prostate cancer screening is also a 
debated topic. Two large population-based ran-
domized trials have been conducted with con-
flicting results. The European Randomized Stu- 
dy of Screening for Prostate Cancer (ERPSC) 
and the United States Prostate, Lung, Colore- 
ctal, and Ovarian (PLCO) are the two most cited 
studies. The ERPSC demonstrated a 21 per-
cent prostate cancer mortality improvement in 
men obtaining routine PSA screening vs the 
unscreened control, however, the PLCO trial 
showed no survival benefit [27, 28]. The contro-
versy surrounding these trials is beyond the 
scope of this article. Prostate cancer diagnosis 
is confirmed with ultrasound-guided needle 
biopsy after an abnormal digital rectal exam 
and/or elevated PSA is noted [26]. Staging of 
prostate cancer is based on the American Joint 
Committee on Cancer Tumor/Node/Metastas- 
es (TNM) system that combines tumor size, 
lymph node involvement, metastases, PSA at 
time of diagnosis, T1-T4 stage, and Gleason 
score [29].

Prevention

Androgens are the major contributor to the 
development of malignancy in the prostate gl- 
and [30]. Several clinical trials have determin- 
ed the relationship between 5α-reductase in- 
hibitors and prostate cancer development, the 
most prominent being the PCPT and the RE- 
DUCE trials [31, 32]. Reduced overall incidence 
of low grade prostate tumors (Gleason 5 or 6) 
was found in both trials; however there was no 
significant change in the mortality, and the 
rates of high grade prostate cancer (≥ Gleason 
grade 7) were unaffected and possibly incre- 
ased, resulting in a black-box warning for 5α- 
reductase inhibitors by the FDA [33]. A recent 
case-control study supported this association, 
citing that use of finasteride, a common 5α- 
reductase inhibitor used to treat BPH, was 
associated with increasing the risk of develop-
ing high-grade (Gleason scores ≥8) prostate 
cancer and lower risk of developing low-grade 
(Gleason scores <8) prostate cancer, fueling 
the controversy on the use of 5α-reductase 
inhibitors as therapeutic strategy in high risk 
patients for prostate cancer [34]. 

A number of other agents have been evaluated 
for prevention of prostate cancer with limited 
evidence including metformin, statins, Sele- 
nium, Vitamin C, D, and E, Retinoids, and 
dietary phytoestrogen. For men already diag-
nosed with low grade disease (Gleason scores 
5-6), the REDEEM (reduction by dutasteride of 
clinical progression events in expectant man-
agement) trial demonstrated dutasteride re- 
duced the progression of low risk prostate can-
cer (HR 0.62, P=0.009) [35]. To date, no profes-
sional medical organization currently recom-
mends chemoprevention for prostate cancer 
and all therapies studied to date are ineffec- 
tive or experimental. While not associated with 
overall increased risk of prostate cancer, obe-
sity is associated with higher-grade prostate 
tumors at diagnosis [36, 37]. These effects are 
potentially mediated by recruitment of adipose 
stromal cells from areas of white fatty tissue to 
the tumor site where they induce the EMT phe-
notype [36]. This is a burgeoning area of pros-
tate cancer research in the growing body of evi-
dence that targeting EMT may prevent progres-
sion to therapeutic resistance. 

Treatment

Treatment recommendations for localized pros-
tate cancer are based on a risk stratification 
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scheme that integrates serum PSA, Gleason 
score (grade), and clinical stage [26]. The rec-
ommendation for very low risk disease is active 
surveillance including routine PSA surveillance 
and ultrasound or MRI-guided imaging [26]. 
Options for low-risk disease include active  
surveillance or interventions including radical 
prostatectomy or radiotherapy [26]. With pro-
gression from low-risk localized to intermedi-
ate- or high-risk localized disease radical pros-
tatectomy or radiation with ADT are recom-
mended therapy options [26]. ADT is consid-
ered first line therapy for metastatic and some 
stages of biochemically (PSA) recurrent pros-
tate cancer. ADT includes bilateral orchiectomy 
or drugs to eliminate testosterone production 
by manipulation of the hypothalamic, pituitary, 
and gonadal axis in combination with androgen 
receptor (AR) antagonists [26]. Prostate can- 
cer patients may ultimately progress to castra-
tion resistant prostate cancer (CRPC) disease, 
defined as rising PSA in the setting of castrate 
levels of testosterone [2]. With emergence of 
CRPC, the treatment recommendation is con-
tinued ADT until progression to radiographic or 
symptomatic metastasis [38]; there has been 
no treatment, however, to increase cancer spe-
cific survival in CRPC. The PROSPER trial dem-
onstrated patients treated with enzalutamide 
had a 71% lower risk of progression to meta-
static CRPC (mCRPC) or death, while the SPA- 
RTAN trial demonstrated patients treated with 
apalutamide had an increased metastatic free 
survival and time to symptomatic progression 
when compared to placebo. With mCRPC the 
treatment recommendation is second genera-
tion antiandrogen (abiraterone) with predni-
sone or taxane chemotherapy with immuno-
therapy (docetaxel with sipuleucel-T) [38, 39].  

Adrenoceptor signaling and prostatic disease

Mechanism of α-adrenoceptor antagonism 

The prostate gland is innervated by the auto-
nomic nervous system, with the glandular epi-
thelium largely muscarinic-innervated, and the 
stroma associated with adrenergic-innervation 
(responsive to adrenoceptor stimulation) [22, 
23]. Adrenoceptors are a class of G-protein 
coupled receptors (GCPRs) distributed through-
out the body and constructed of seven trans-
membrane domains that are physiologically 
responsible for mediating responses to endog-

enous catecholamines, namely epinephrine 
and norepinephrine [40-42]. The adrenocep-
tors are found throughout the body in neuronal 
and non-neuronal tissues, serving as regula-
tors of many autonomic nervous functions [40]. 
Adrenoceptors are divided into α (alpha) and  
β (beta) groups, where α-adrenoceptors me- 
diate predominantly excitatory functions like 
smooth muscle contraction and vasoconstric-
tion and β-adrenoceptors mediate predomi-
nantly muscular inhibitory functions like vasodi-
lation, smooth muscle relaxation, and broncho-
dilation, as well as excitatory cardiac function 
[40]. The α-adrenoceptors are divided into α1 
and α2, where the α1 group was originally char-
acterized as a separate group by binding affini-
ty to the quinazoline-based α-antagonist prazo-
sin, which had a minimal effect when adminis-
tered to the α2 group [40]. The α1-adrenocep- 
tors can be further sub-classified into α1A, 
α1B, and α1D based on binding and functional 
studies [40]. Of interest, the α1A subtype is 
localized to the prostate, vas deferens, and ure-
thra in humans providing a localized drug target 
for patients suffering urinary symptoms [23, 
40, 43, 44]. Compared to the normal adult 
prostate, α1-adrenoceptor mRNA and α1-adre- 
noceptors increase throughout in the aging 
gland and with BPH manifestation [45-48]. 
With aging, the topological distribution of the 
α1-adrenoceptors in the prostate surrounding 
the prostatic urethra, contributes to BPH-LUTS 
development [49]. Early pathophysiologic stud-
ies demonstrated prostatic tissue contraction 
when exposed to nonselective α-blocker inhibi-
tion [50], due to the abundance of α1A adreno-
receptors localized to the prostatic stroma [51]. 
Significantly, functional studies have demon-
strated α1-adrenoceptor antagonists also re- 
lieve LUTS via mechanisms independent of 
prostatic muscle contraction [52]. 

α1-adrenoreceptor antagonists have long been 
used clinically as first-line therapy to relieve 
BPH-LUTS [10]. BPH is characterized by non-
malignant proliferation of prostatic glandular 
epithelium and stroma (connective tissues, 
smooth muscle) resulting in obstruction of the 
prostatic urethra and bladder outlet. This ob- 
struction causes LUTS that may be worsened 
by an increase in prostate smooth muscle tone 
[10, 53]. α1-adrenoreceptor antagonists act to 
relieve BPH-LUTS by antagonizing the smooth 
muscle contractility induced by the catechol-
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amine binding to α1A-adrenoreceptors in the 
prostate and bladder neck, providing relief of 
urinary obstruction by competitive inhibition 
[53]. Second-generation α-blockers (doxazosin, 
prazosin, and terazosin) are considered ‘non-
uroselective’ where third-generation α-blockers 
(alfuzosin, tamsulosin, and silodosin) are con-
sidered ‘uroselective’ [54]. While both genera-
tions of α-adrenoceptor antagonists are indi-
cated for first line treatment of BPH, second-
generation α-blockers are highly associated 
with orthostatic hypotension, dizziness, tired-
ness, and ejaculatory problems due to less 
regionally selective α1-adrenoceptors antago-
nism [54, 55]. The function of α1-adrenoceptors 
as regulators of basal vascular tone, smooth 
muscle contraction, and arterial blood pres-
sure provides the basis for the α1-antagonists 
use as hypertension treatment. Current guide-
lines from the American College of Cardiology 
and American Heart Association recommend 
the second generation α1-adrenoceptor an- 
tagonists as second-line agents for the treat-
ment of hypertension, especially in the setting 
of male patients with concurrent LUTS [56, 57]. 
A review of the ALLHAT trial notes that patients 
with low risk for heart failure or young patients 
with hypertension with concomitant LUTS may 
benefit from monotherapy for both disease pro-
cesses with a single agent [57].

Impact of α-adrenergic blockade on prostate 
cancer

The link between sympathetic nervous signal-
ing and cancer neovascularization, metastasis, 

The in vivo silencing of β2 and β3 adrenocep-
tors in the prostate resulted in inhibition of 
angiogenic switch, mediated by pro-angiogenic 
factors, like vascular endothelial growth factor 
(VEGF) [60, 61]. 

Novel anti-tumor action by quinazoline-based 
α1-antagonists

Quinazoline-based α1-adrenoceptor antagon- 
ists, doxazosin, prazosin, terazosin, and alfuzo-
sin, are structural competitive antagonists to 
epinephrine and norepinephrine, the predomi-
nant ligands of α-adrenoceptors (Figure 2). The 
structures of α1-adrenoceptor antagonists con-
fer the ability to selectively antagonize adre- 
noceptors via post-synaptic blockade, inhibit-
ing smooth muscle contraction, an effect that 
spares central action on blood pressure and 
neuronal adrenergic function, resulting in an 
effective drug class with few adverse or severe 
side-effects [41, 62, 63]. Subsequent work in 
the 1990s identified additional non-target qu- 
inazoline derivative mechanisms of action by 
impacting tumor vascularity and growth dynam-
ics. Our group pioneered evidence on the apop-
totic action of doxazosin mediated by TGF-β 
signaling disruption against benign prostate 
epithelial and stromal cells in pre-clinical mod-
els as well as in clinical specimens [64, 65]. 
Stimulation of α1-adrenoceptors with catechol-
amine ligands in prostate cancer epithelium 
promotes proliferation [66]. This response is 
mediated by induction of store-dependent Ca2+ 
entry resulting in activation of nuclear factor  
of activated T-cells (NFAT) [66]. Furthermore, 

Figure 2. Structures of quinazoline-based α1-adrenoceptor antagonists 
doxazosin (A) and prazosin (B), and endogenous adrenergic agonists epi-
nephrine (C) and norepinephrine (D).

and survival has been well 
established in β-adrenergic si- 
gnaling knockout models as 
well as epidemiologic cohort 
studies of β-blockade in pa- 
tients [58]. The use of pro-
pranolol in vitro decreased vi- 
ability and increased caspase 
activation in both hemangio-
blastoma and HeLa cell lines 
[59]. Treatment with propra- 
nolol decreased the hypoxia 
inducible factor (HIF) downst- 
ream transcription products, 
involved in angiogenesis, and 
extracellular matrix (ECM) de- 
gradation in HeLa cells, point-
ing to a mechanism underlying 
the anti-angiogenic effects of 
β-adrenergic blockade [59]. 
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there is a correlation between α1-adrenoceptor 
activation and expression of VEGF and HIF-1α 
expression (inducers of angiogenesis and tu- 
mor invasion) [67]. Binding of the α1-adreno- 
ceptors induces a second-messenger pathway 
via cAMP resulting in downstream PKA/PI3K/
Akt/p70S6K pathway activation, driving HIF-1/
VEGF-mediated angiogenesis in prostate can-
cer [67]. However, some pro-apoptotic mecha-
nisms of action of quinazoline derivatives like 
doxazosin and terazosin are independent of the 
α1-adrenoceptor antagonism action [68]. Pro- 
state cancer cells lacking α1-adrenoceptor un- 
dergo apoptosis in response to quinazolines, 
evidence supporting the α1-adrenoceptor-in- 
dependent action of apoptosis induction [69]. 
Moreover, the sulfonamide-based third gene- 
ration α1-adrenoceptor antagonist tamsulosin 
(Figure 3), had no effect on prostate cancer cell 
apoptosis [70]. Besides prostate cancer cells, 
breast and urothelial cancer cells, bladder sm- 
ooth muscle cells, cardiac myocytes, pituitary 
adenoma cells, vascular endothelial cells, and 
HeLa cells undergo apoptosis in response to 
doxazosin [71-78]. The results of the ALLHAT 
trial that quinazoline-derived doxazosin dou-
bled the risk of congestive heart failure result-
ed in investigation of the adrenoceptor block-
ade-independent mechanism of action for the 
pro-apoptotic activity in cardiac myocytes by 
these drugs [57, 73, 79]. Quinazoline-derived 
α1-adrenoceptor antagonist doxazosin induced 
apoptotic gene expression profiles in murine 
cardiac myocytes [73]. Specifically, doxazosin 
increased transcriptional activation of gadd- 
153, C/epbβ, and DOC-1 genes, a profile asso-
ciated with the ER stress apoptotic response. 
Downstream effects include the phosphoryla-
tion of p38 MAPK, GADD153 nuclear translo- 
cation, and phosphorylation of focal adhesion 
kinase (FAK) [73]. 

The process of EMT has been implicated as a 
contributor to the emergence of therapeutic 
resistance in advanced prostate cancer; how-
ever the current understanding of the impact of 
exposure to α1 blockade on EMT phenotypic 
landscape is limited. Anoikis is an apoptotic 
phenomenon that occurs when cells lose suffi-
cient cell-cell or cell-matrix interactions [80, 
81]. Circumventing anoikis is a common loss  
of apoptotic control in therapeutically resistant 
prostate cancer that confers an aggressive me- 
tastatic phenotype, particularly among epithe-
lial cancers that consequentially undergo EMT 
[2]. Quinazoline-based α1-adrenoceptor antag-
onists, doxazosin and terazosin, enhance pros-
tate cancer cell and endothelial susceptibility 
to anoikis, resulting in decreased cell mobility, 
thus impairing neovascularization and metas-
tasis [82, 83]. Doxazosin induces apoptosis of 
prostate tumor cells via activation of the can- 
onical TGF-β signaling, and caspase-mediated 
cell cleavage in vitro [84, 85]. Prazosin was 
also found to exhibit a significant pro-apoptotic 
activity by induction of cell-cycle arrest [86]. 
Prazosin induces DNA strand breaks that result 
in cyclin-dependent kinase (CDK) phosphoryla-
tion, ultimately causing CDK1 inactivation lead-
ing to G2 checkpoint arrest [86]. Additionally, 
prazosin triggered caspase-mediated apopto-
sis in prostate cancer cell lines in vitro [86]. 
Oral administration of prazosin significantly re- 
duced tumor mass in xenograft mice models 
[86]. Tamsulosin lacks the pro-apoptotic effect 
and demonstrates no induction of caspase-
mediated cell death, unlike the quinazoline-
based α1-adrenoceptor antagonists, suggest-
ing the importance of structure in apoptotic 
induction [70, 84]. All α1-adrenoceptor antago-
nists have been shown on a large-scale meta-
analysis to have similar efficiency in the reduc-
tion of urinary symptoms and improvement in 
flow rates, with differences relating to the spe-
cific side effect profile [87-89]. 

Optimization of quinazoline compounds into 
directed anti-tumor therapies

DZ-50 is a quinazoline-derived α1-adrenoceptor 
antagonist (Figure 4A) synthesized by repla- 
cing the 2,3-dihydro-benzo[1,4]dioxane-car-
bonyl moiety of doxazosin with a biphenyl aryl 
sulfonyl substituent, and the methoxy side 
chains replaced with isopropyl propxy functions 
[91]. These structural changes in the quinazo-

Figure 3. Structure of sulfonamide-based α1-adr- 
enoceptor antagonist tamsulosin.
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line provide a cellular basis for targeting vascu-
larity of pre-malignant or malignant prostate 
microenvironment with novel quinazoline deriv-
atives [91]. DZ-50 significantly suppressed an- 
giogenesis without increasing the apoptotic 
index in vivo [91], and exerted a metastasis 
impairing effect in prostate cancer pre-clinical 
models [91].

More recent studies from our lab have demon-
strated the ability of DZ-50 to mediate the mes-
enchymal-to-epithelial transition (MET) pheno-
typic change that reverts de-differentiated EMT 
phenotype of prostate cancer cells into the dif-
ferentiated epithelial phenotype [92]. The ch- 
anges in cell-cell junction by DZ-50 are medi- 
ated by disruption of TGF-β1 and insulin-like 
growth factor (IGF) signaling axis, specifically 
IGF binding protein 3 (IGFBP3) [92]. The TGF-β1 
and IGF signaling axes have been linked to can-
cer progression to metastatic, treatment resis-
tant disease by altering the microenvironment 
via differentiation of fibroblasts into cancer-
associated fibroblasts (CAFs), facilitating tumor 
survival, growth, and neovascularization, con-
sequential to a dedifferentiated phenotype 
[93-96]. The IGF-I axis is responsible for upreg-
ulation of zinc finger E-box-binding protein 1 
(ZEB1), a protein that transcriptionally repress-
es E-cadherin [96]. Treatment of prostate can-
cer cells in vitro with DZ-50 results in drug 
sequestration of IGFBP3, the serum carrier of 
IGF ligand and promoter of IGF action; this 
leads to EMT reversal (MET) and ultimately 
anoikis [92, 96, 97]. The in vitro evidence so far 
provides a basis for advancing DZ-50 to a clini-
cal trial for patients with metastatic CRPC [2]. 

Quinazoline structural optimization led to po- 
tent pro-apoptotic effects in prostate cancer 
cells, via piperazine ring substitution to the pra-
zosin quinazoline nucleus [98, 99]. The most 
promising of the novel compounds from a re- 

enantiomer, compound 9, exhibits less binding 
affinity for the α1-adrenoceptor subtypes and 
lower apoptotic action, implicating the stereo-
chemistry in the anti-cancer actions of the 
novel compounds [99]. 

Translational significance of cellular events

Based on the observed pro-apoptotic and anti-
neovascularization actions of quinazoline-bas- 
ed α1-adrenoceptor antagonists summarized 
in Figure 5, investigators have completed retro-
spective risk analyses to elucidate the early 
translational evidence of these drugs as pre-
ventive tools. A 2018 meta-analysis by Cao et 
al. found non-significant association between 
the use of anti-adrenergic drugs and the risk of 
prostate cancer across 3 case-control studies 
(RR 1.22; 95% CI 0.76-1.96), and a significant 
decrease in risk across 2 cohort studies (RR 
0.71; 95% CI 0.57-0.90) [100]. A case-control 
study by another team used the Finnish Cancer 
Registry and the national prescription data-
base to observe the odds of developing pros-
tate cancer for patients using α1-adrenoceptor 
antagonists for the treatment of LUTS (OR 1.79; 
95% CI 1.67-1.91) [101]. However the exposed 
group of cases and controls were almost entire-
ly users of sulfonamide-based α1-adrenocep- 
tor antagonist tamsulosin (N=6,352) and only  
a small proportion represented quinazoline-
based α1-antagonist alfuzosin (N=596) [101]. 
This is in accord with the pre-clinical evidence 
that only quinazoline-based antagonists confer 
the pro-apoptotic effect against prostate tu- 
mors, while the sulfonamide-derived α-adre- 
noceptor antagonist, tamsulosin, failed to exert 
such an effect [70]. 

More than a decade ago a retrospective study 
conducted by Harris et al. provided the first 
observational evidence that patients treated 

Figure 4. Structure of quinazoline-based modified prazosin derivative DZ-50 
(A) and structure of quinazoline-based modified prazosin derivative Com-
pound 10 (B).

cent study of quinazoline mod-
ification are compound 9 and 
compound 10 (Figure 4B), bo- 
th demonstrated anti-prolifer-
ative effects in prostate can-
cer cells at a magnitude high-
er than doxazosin [99]. Compo- 
und 10, the S enantiomer of a 
prazosin quinazoline-quinone, 
was synthesized by substitut-
ing the piperazine side chain 
of prazosin with a 1,4-naptho-
quinone moiety [99]. The R 



α-adrenoceptor antagonists and prostate cancer risk

54	 Am J Clin Exp Urol 2019;7(1):46-60

Figure 5. Summary of in vitro evidence demonstrating quinazoline-derived α1-adrenoceptor antagonist or modified 
quinazoline anti-cancer actions. Prostate epithelial-derived cancers and the microenvironment are influenced by 
α1-adrenoceptor antagonists. Blockade by α1-adrenoceptor antagonists at the smooth muscle cells in the pros-
tate stroma mediate the anti-contractility benefits of the drugs when used for BPH-LUTS. Quinazoline derived α1-
adrenoceptor antagonist doxazosin disrupts the proliferation axis induced by α1-adrenoceptor activation in a non-
α1-adrenoceptor antagonism action ([84]). Quinazoline derived α1-adrenoceptor antagonists doxazosin, terazosin, 
and prazosin have demonstrated the ability to induce apoptosis in prostate cancer cells ([64, 65, 68, 69] and [69], 
respectively). Novel quinazoline-derived compound titled ‘Compound 10’ demonstrates anti-cancer activity with pro-
oxidant DNA fragmentation in prostate cancer cell lines ([99]). Novel quinazoline-derived compound titled ‘DZ-50’ 
demonstrates multiple anti-cancer actions including induction of MET (reversal of EMT), inhibition of TGF-β-induced 
microenvironment fibroblast changes, and the inhibition of angiogenesis ([91-92], [92], and [91], respectively).

Table 1. Clinical evidence on impact of quinazoline α1-antagonists on prostate cancer
Study Risk Ratio Odds Ratio Drug (s) Drug Class Source
Harris et al. 0.683 (95% CI 0.532-0.8776) N/A Doxazosin, prazosin, terazosin Quinazolines [102]

Van Rompay et al. 0.89 (95% CI 0.81-0.97) N/A Alfuzosin, doxazosin, prazosin, 
terazosin, or tamsulosin

Quinazolines (4), 
Sulfonamide (1)

[103]

Friedman et al. N/A 1.17, 1.22 (95% CI 1.11-1.24, 
1.16-1.29)

Prazosin, terazosin Quinazolines [104]

Epidemiological studies observing the relative odds or risk of developing prostate cancer amongst individuals treated with different α1-adrenoceptor antagonists.

for hypertension or BPH with quinazoline-de- 
rived α1-adrenoceptor antagonists doxazosin, 
prazosin, and terazosin [102], exhibited a re- 
duced risk ratio of 0.683 for developing pros-
tate cancer [102]. This study revealed no effect 
on the overall survival in men with prostate 
cancer who were exposed to quinazoline-based 

α1-adrenoceptor antagonists [102]. Potentially 
limited by the population age with group medi-
an exposure age of 68-yrs (Table 1). A more 
recent case-control study by Van Rompay et al. 
examined the overall risk of prostate cancer 
among patients taking the α1-antagonists alfu-
zosin, doxazosin, prazosin, terazosin, or tamsu-
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losin, and found a protective risk ratio of 0.89 
(Table 1) [103]. The average age at prescription 
of α1-antagonists in this study was 66.7, with a 
mean follow-up time of 6.3 years (exposure to 
α1-antagonists) [103].

A direct assessment of the link between norepi-
nephrine signaling and cancer risk, by Friedman 
and colleagues, revealed both quinazoline-
derived α1-adrenoceptor antagonists prazosin 
and terazosin increased the odds of developing 
prostate cancer (OR 1.17, 1.22; 95% CI 1.11-
1.24, 1.16-1.29) [104]. These findings are chal-
lenged by evidence that terazosin showed sta-
tistically significantly reduction in the odds of 
developing colon and lung cancer with odds 
ratios of 0.86 and 0.89, respectively [104] 
(shown on Table 1). Users of naphthalene-
based α1-adrenoceptor antagonist naftopidil 
had a risk ratio of 0.46 for developing prostate 
cancer when compared to users of sulfon-
amide-derived tamsulosin [105]. These find-
ings drive the pursuit for further structural opti-
mization of α1-adrenoceptor antagonists to 
mechanistically exploit the pathways causing 
prostate apoptosis towards the development of 
agents for prostate cancer prevention [2, 91, 
92].

Conclusion

The epidemiologic data surrounding the use  
of quinazoline based α1-adrenoceptor antago-
nists as chemopreventive agents in prostate 
cancer is mixed and very limited. In order to fur-
ther assess the role of these drugs as prostate 
cancer preventive agents requires a large-scale 
cohort of individuals exposed to quinazoline-
derived antagonists for a more prolonged peri-
od than the existing studies. Given that the 
majority of studies investigating this relation-
ship have a mean exposure age of more than 
65 years old, the cohort should concern indi-
viduals treated at a younger age with α-anta- 
gonists for familial hypertension or BPH. As 
α-adrenoceptor antagonists are low risk drugs 
and widely available, a randomized controlled 
trial with a long-term cohort of young partici-
pants could provide the strongest evidence. 
The available in vitro and in vivo data provide 
an initial basis for quinazoline derivatives as 
cancer preventive agents. There is an immedi-
ate need for low risk and inexpensive chemo-
preventative agents for prostate cancer, a 
major contributor of morbidity and mortality. 

The existing data support the design of pro-
spective studies using quinazoline derivatives, 
like doxazosin (in clinical use) and novel drugs 
like DZ-50, as prostate cancer chemopreven-
tion drugs. 
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