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Review Article 
The dysfunctional lipids in prostate cancer
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Abstract: Prostate cancer (PCa) is well-recognized as a lipid-enriched tumor. Lipids represent a diverse array of mol-
ecules essential to the cellular structure, defense, energy, and communication. Lipid metabolism can often become 
dysregulated during tumor development. The increasing body of knowledge on the biological actions of steroid hor-
mone-androgens in PCa has led to the development of several targeted therapies that still represent the standard 
of care for cancer patients to this day. Sequencing technologies for functional analyses of androgen receptors (ARs) 
have revealed that AR is also a master regulator of cellular energy metabolism such as fatty acid ß-oxidation, and 
de novo lipid synthesis. In addition, bioactive lipids are also used as physiological signaling molecules, which have 
been shown to be involved in PCa progression. This review discusses the potent player(s) in altered lipid metabolism 
of PCa and describes how lipids and their interactions with proteins can be used for therapeutic advantage. We 
also discuss the possibility that the altered bioactive lipid mediators affect intracellular signaling pathway and the 
related transcriptional regulation be of therapeutic interest.
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Introduction 

A key player in prostate cancer (PCa) develop-
ment and progression is the androgen receptor 
(AR). Pathologically, PCa is known as a lipid-rich 
tumor [1]. Indeed, several genes encoding lipo-
genic enzymes can be regulated by androgen 
[2-7]; increased synthesis of fatty acids and 
cholesterol is governed by androgens through 
stimulation of the expression of whole sets of 
lipogenic enzymes, covering the entire path-
ways of fatty acid (FA) pathway. The resulting 
increase in lipogenesis helps synthesise the 
synthesis of key membrane components (phos-
pholipids, cholesterol) and is a major hallmark 
of cancer cells. In addition, an increase in total 
cholesterol and in triglycerides duration of an- 
drogen deprivation therapy (ADT) that ranges 
from 24 weeks to 12 months [8-12]. While 
increased lipogenesis is initially androgen-re- 
sponsive it persists or re-emerges with the 
development of castration resistant PCa (CR- 
PC), indicating that lipid metabolism is a funda-
mental aspect of PCa cell biology. In this review, 
we discuss the lipid landscape and the possible 
underlying mechanisms mediating PCa devel-
opment and progression. 

Lipogenesis in prostate carcinogenesis

Cancer cells usually exhibit the ability of rapid 
proliferation. In order to deal with this altered 
growth rate, changes in the cellular metabolic 
pathways are always displayed [13, 14]. Since 
1950s, researchers have noticed the metabolic 
dysregulation in cancer cells and it has been 
widely studied. Some of the most well-known 
alterations include Warburg effect [15] and 
increased glutamine metabolism [16]. Recently, 
lipid metabolism emerges as a more and more 
important role in cancer. Since lipids supply 
energy, provide signaling molecules and syn-
thesize the cellular membrane [16-18], highly 
proliferative cancer cells often have a higher 
demand for lipids and exhibit an abnormally 
active lipogenesis [19]. Unlike most normal 
somatic cells, which mainly utilize the exoge-
nous lipids, studies have shown that many can-
cer cells mainly use de novo FA synthesis to 
increase total FA [8], regardless of abundant 
extracellular lipid content [20-22]. Fatty acid 
synthase (FASN) is the key enzyme in fatty acid 
synthesis. Since the identification of onco-anti-
gen OA-519 as a FASN in breast cancer 20 
years ago, it has now become a well-estab-
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lished oncogene in numerous types of cancer, 
including prostate, ovary, colon, endometrium, 
lung, bladder, stomach, esophagus and pan-
creas [23, 24]. Higher FASN expression is asso-
ciated with poor survival and disease recur-
rence in PCa patients [25-27]. Even in some 
pre-invasive lesions, elevated FASN can be 
detected [27]. Consistent with the clinical obs- 
ervation, immortalized prostate epithelial cells 
with overexpressing FASN exhibit increased 
invasion ability [28]. In addition, ATP citrate 
lyase (ACLY) is the first enzyme of the reaction 
chain and serves as an important bridge be- 
tween glycolysis and lipogenesis by catalyzing 
coenzyme A (CoA) and citrate that is a product 
of glycolysis [29, 30]. Clinically, increased ACLY 
represents an unfavorable biomarker for PCa 
and several other cancer types including bl- 
adder, renal, non-small cell lung, colorectal, 
breast, liver and gastric cancers [31, 32]. 

Although lipogenesis is considered to be the 
major source of FA in cancer cell, it is reported 
that some cancers may also adopt lipolysis as 
an additional method to acquire FA [33]. During 
certain metabolic stresses, cancer cells may 
switch from de novo FA synthesis to scavenging 
extracellular lipids [34]. Lipoprotein lipase (LPL) 
is the key enzyme for extracellular lipolysis, 
which hydrolyzes the triglycerides (TGs) in ch- 
ylomicrons or very low-density lipoproteins (VL- 
DL), and the FA produced from hydrolysis are 
then taken up by the cancer cells through the 
transmembrane channel CD36 [35, 36]. Inde- 
ed, both LPL and CD36 are ubiquitously expr- 
essed in PCa tissues [33, 36], suggesting lipol-
ysis may also contribute to PCa development. 

Bioactive lipid mediators in PCa progression

Phosphoinositides (PIs) are major second mes-
sengers, which transmit signals from activated 
growth factor receptors on the cellular surface 
to the interior of the cells. Saturated and unsat-
urated fatty acids combine with glycerol-3-ph- 
osphate in glycerolipid biosynthesis which is 
highly dependent on glycerol-3-phosphate acyl-
transferase (GPAT) to produce PIs and phos-
phoglycerides [37]. One of the most prominent 
lipids of this class is phosphatidylinositol 
(3,4,5)-trisphosphate [PtdIns (3,4,5) P3; PIP3], 
which is produced by PI3K in response to 
growth factor signaling and mediates the 
recruitment and activation of Akt [38]. In con-

trast, PTEN (phosphatase and tensin homolog 
deleted on chromosome ten) is a PIP3 phos-
phatase and commonly downregulated in PCa 
[39]. Other lipid second messengers, such as 
lysophosphatidic acid (LPA), phosphatidic acid 
(PA) and diacylglycerol (DAG), which are pro-
duced by the different phospholipases [40]. 
LPA can be produced by the extracellular lyso-
phospholipase or autotaxin, which can activate 
cell proliferation, migration and survival via 
binding to G-protein-coupled receptors [41]. PA 
can bind to the mTOR polybasic domain, which 
is essential for its activation. The phos-
phoinositide-specific phospholipases C (PLC) 
can transform phosphatidylinositol 4,5-bispho-
sphate [PtdIns (4,5) P2] into the DAG and inosi-
tol 1,4,5-trisphosphate. Several studies dem-
onstrated that PLCγ1 plays an important role in 
PCa metastasis [42, 43]. 

Ceramide as the central molecule in the sph- 
ingolipid metabolism. The balance between the 
levels of sphingosine-1-phosphate (S1P) and its 
metabolic precursors ceramide and sphingo-
sine has been regarded as a rheostat that 
could determine cell fate [44, 45]. For example, 
ceramide mediates numerous cell-stress resp- 
onses such as induction of apoptosis and cell 
senescence, whereas S1P plays a pivotal role 
in cell survival, migration, and inflammation. 
Ceramide production was correlated with en- 
hanced apoptosis in LNCaP cells treated with 
TNF-α and irradiation. Ceramide treatment can 
specifically kill PCa cells but not normal pros-
tate epithelial cells by decreasing c-myc expres-
sion [46].

Accumulating evidence links S1P produced by 
Sphingosine kinase 1 (Sphk1) with PCa; Sphk1 
is elevated in primary PCa lesion compared to 
adjacent benign tissue [47, 48]. Using PCa cell 
culture models, elevated Sphk1 can promote 
PCa invasion, which is mediated by Sphungo- 
sine-1-phosphate receptor 4 (S1PR4)-Matripta- 
se activation [49]. Also, upregulation of the 
SphK1-S1P pathway is associated with chemo-
resistance in PCa cells [50]. A selective SphK1 
inhibitor (such as FTY720) can trigger apopto-
sis of a variety of PCa cells including androgen-
responsive LNCaP, androgen variant-express-
ing 22RV1 and castration resistant PC3 cell 
[51-53]. Furthermore, hypoxia can activate 
Sphk1 enzyme activity leading to the stabiliza-
tion of HIF-1α levels, which could lead to radio-
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resistant PCa [54]. These results indicate the 
critical role of Sphk1 in PCa survival.

Regulators of lipid metabolism in PCa

Sterol regulatory element-binding proteins (SR- 
EBPs) are transcription factors that can medi-
ate the homeostasis of cholesterol and fatty 
acids [55]. SREBP-1 mainly regulates genes in 
FA synthesis and is highly elevated in PCa [56]. 
SREBP-2 is responsible for cholesterol synthe-
sis. Upregulated of SREBP-2 has been found in 
PCa patient tumor tissues [57]. Several lines of 
evidence indicate that androgens activate the 
SREBP pathway (1) Androgens stimulate the 
nuclear accumulation of mature SREBP [2]. (2) 
Androgen stimulation of key lipogenic genes 
(fatty acid synthase, HMG-CoA synthase) is 
abolished when the SREBP binding sites in the 
proximal promoter are deleted or mutated 
[2-5]. (3) Introduction of a dominant-negative 
SREBP strongly suppresses the lipogenic eff- 
ects of androgens [2-5]. In several instances, 
the lipogenic effects of androgens are more 
pronounced than estimated from the changes 
in mRNA levels of lipogenic genes, suggesting 
that also translational and/or post-translational 
mechanisms are involved [3]. Moreover, PI3K/
Akt/mTOR can upregulate the SREBPs expres-
sion and stabilize the nuclear form of SREBP-1 
nuclear form, and then promote its target gene 
expression via decrease in the expression of 
Fwb-7 in mediating fatty acid synthesis and 
cholesterol uptake. SREBPs can be activated 
by SREBP-cleavage-activating protein (SCAP) to 
drive expression of enzymes needed for lipid 
syntheses, such as fatty acid synthase (FAS), 
3-hydroxy-3-methylglutaryl coenzyme A reduc-
tase (HMG CoA-R) and low-density lipoprotein 
receptor (LDLR) [58]. SREBP-1 can upregulate 
the expression of ATP citrate lyase (ACL), ace-
tyl-CoA carboxylase (ACC) and FAS to promote 
fatty acid synthesis and enhance cholesterol 
uptake via upregulation of LDLR, thereby pro-
moting the cancer tumor growth [59, 60]. Plk1 
can induce activation of the PI3K/AKT/mTOR/
GSK3β and AR pathways and increase of lipid 
biosynthesis [58]. Fatostatin suppresses Plk1/
SREBP, which leads to the inhibition of cell pro-
liferation, invasion, and migration, and to arrest 
cancer cells at the G2/M checkpoint in both of 
androgen-responsive LNCaP and androgen-in- 
sensitive C4-2B PCa cells [61]. The PI3K/Akt/
mTOR/SREBP signaling pathway has a positive 

feedback regulatory loop, which can boost Akt 
expression in cell migration, tumor growth, and 
metastasis [62]. 

Peroxisome proliferator-activated receptor ga- 
mma (PPARγ) is, a ligand-dependent transcrip-
tion factor belonging to the nuclear hormone 
receptor superfamily, considered a master reg-
ulator for the genes involved in FA synthesis 
and lipogenesis. PPARγ protein level is found 
significantly elevated in advanced PCa when 
compared to localized PCa or benign prostatic 
hyperplasia [63, 64]. Higher protein expression 
of PPARγ is also associated with shorter patient 
survival duration [65]. In prostate-specific Pten-
/- mouse model, over-expression of the PPARγ 
protein is associated with significantly decreas- 
ed survival and increased metastases to the 
lungs and lymph nodes compared to littermate 
controls [66]. The PPARγ inhibitor (antagonist 
GW9662) also decreases the growth of human 
PCa cells in culture [66]. Furthermore, there is 
a reciprocal regulation between PPARγ and 
androgen receptor (AR) activity; DHT treatment 
decreased PPARγ mRNA and protein levels in 
LNCaP C4-2 and VCaP cell lines [67]. Noticeably, 
PPARγ plays a key role in IL-6-elicited neuroen-
docrine differentiation of PCa (NEPC) [68]. 
Altogether, these data support the develop-
ment of PPARγ inhibition as a new strategy of 
PCa treatment. 

The family of PPARγ coactivator 1-alpha coacti-
vators (PGC1) have two isoforms, PGC1 α and 
β, that are transcriptional coactivators and can 
regulate the mitochondrial biogenesis and 
functions including FA and lipid metabolism. 
PGC1α plays a major role in the rapid metaboli-
cally active tissues such as liver, cardiac, skel-
etal muscle, kidneys, and adipose tissue [69, 
70] in energy-demanding situations. The PG- 
C1α protein is associated with PPARγ (the role 
in adipogenesis, thermogenesis, and mitobio-
genesis), nuclear respiratory factor 1-2 (Nrf1-2), 
Forkhead box O3 (FoxO3a), cyclic-AMP (cAMP) 
response element-binding protein (CREB) and 
estrogen-related receptor-α (ERRα) [69-71]. 
Androgens signaling can increase the expres-
sion of PGC1α in PCa cells [72]. Clinically, in 
PCa patient specimens, a significant correla-
tion between PGC1α with tumor proliferation 
was reported [72]. 

Mammalian silent information regulator 1 
(SIRT1) is a nicotinamide adenine dinucleotide 



The landscape of lipids in prostate cancer

276 Am J Clin Exp Urol 2019;7(4):273-280

(NAD)-dependent histone deacetylase, which 
plays a major role in multiple physiological pro-
cesses such as stress responses, metabolism, 
apoptosis, and calorie restriction, etc [73-77]. 
SIRT1 has been demonstrated to be an onco-
gene in mouse PCa model with PTEN deficiency 
[78]. Several studies indicated that SIRT1 was 
associated with the class III deacetylases and 
its targets, such as p53, PPARγ, PGC1α, Beclin 
1 and β-catenin [79-82]. SIRT1 overexpression 
induces epithelial-to-mesenchymal transition 
(EMT) in epithelial prostate cells and increases 
PCa cell migration in vitro and metastasis in 
vivo. In contrast, inhibiting the expression of 
SIRT1 in PCa cells restores cell-cell adhesion 
and reverses EMT. Thus, SIRT1 can regulate the 
expression of the E-cadherin epithelial markers 
and γ-catenin, and the mesenchymal markers 
fibronectin and N-cadherin [83].

AMP-activated protein kinase (AMPK) is a ser-
ine/threonine protein kinase consisting of a 
catalytic subunit (α) and two regulatory sub-
units (β and γ) [84, 85]. Once the activation of 
AMPK redirects lipid metabolism towards incr- 
eased catabolic fatty acid oxidation and decr- 
eased anabolic lipid synthesis via the phos-
phorylation of acetyl-CoA carboxylases (ACCs) 
phosphorylation. ACCs represents the first step 
in de novo lipid synthesis, which responsible for 
the carboxylation of acetyl-CoA to form malo-
nyl-CoA [86]. Several studies showed that 
knockout of one of the catalytic subunits of 
AMPK, which support a tumor suppressive role 
for AMPK in PCa [87-89]. Elevation of both acti-
vated AMPK (Threonine 172 phosphorylation) 
and acetyl-CoA carboxylase (Serine 80 phos-
phorylation) were detected in PCa clinical sam-
ples compared to surrounding benign tissues. 
AMPK was also associated with the progres-
sion of PCa with higher Gleason grades and 
advanced stages [72, 88, 89]. Collectively, 
these studies support the clinical relevance of 
AMPK in PCa development.

Conclusion

Increased lipogenesis is an important hallmark 
in PCa development and androgen plays a criti-
cal role to stimulate lipogenesis. The resulting 
increase in the coordinate expression of multi-
ple regulators or enzymes involved in the gene 
transcription, metabolism and transport of FAs 
and cholesterol mainly results in the synthesis 

of phospholipids partitioning in various malig-
nant activities. While increased lipogenesis is 
initially androgen-responsive it persists or re-
emerges with the development of CRPC or 
NEPC, indicating that lipogenesis is a funda-
mental aspect of PCa cell biology and is a 
potential target for anti-neoplastic therapy in 
advanced PCa. 
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