
Am J Clin Exp Urol 2020;8(1):1-8
www.ajceu.us /ISSN:2330-1910/AJCEU0109398

Review Article 
Protein tyrosine kinase 6 signaling in prostate cancer
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Abstract: More than 25 years have passed since the discovery of protein tyrosine kinase 6 (PTK6), a non-receptor 
tyrosine kinase distantly related to SRC family kinases. Since then, a variety of data suggest that PTK6 promotes 
oncogenic signaling and tumorigenesis, generally dependent on its kinase activity. Increased PTK6 expression, 
activation at the plasma membrane and altered intracellular localization have been discovered in prostate cancers. 
While PTK6 is localized to nuclei of epithelial cells in normal prostate, it is relocalized and activated at the plasma 
membrane in prostate tumors. Active PTK6 interacts with and directly phosphorylates AKT, FAK and BCAR1 to pro-
mote oncogenic signaling. Furthermore, PTK6 can enhance the epithelial mesenchymal transition by inhibiting E-
cadherin expression and inducing expression of the mesenchymal markers vimentin, SLUG and ZEB1. Several lines 
of evidence suggest that PTK6 plays a role in Pten null prostate tumors. PTEN targets activating phosphorylation of 
PTK6 and loss of PTEN subsequently leads to PTK6 activation. Different studies provide compelling evidence as to 
why PTK6 is a potential therapeutic target in prostate cancer. Here, we briefly review the advances and significance 
of PTK6 in prostate cancer.
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Introduction

Prostate cancer is the second leading cause of 
cancer related deaths among men in The 
United States, with an estimated 191,930 new 
cases and 33,330 related deaths in 2020 
according to the American Cancer Society [1]. It 
is also estimated that by 2030, the burden of 
the disease will approach 1.7 million new cases 
and 499,000 deaths worldwide. While the  
mortality rate of prostate cancer is considered 
low, with nearly 100% 5-year survival rate in 
localized tumors, the risk of metastasis related 
deaths is high leading to a decrease in the 
5-year survival of patients to 31% [1]. Molecular 
mechanisms underlying prostate cancer initia-
tion and progression include NKX3.1 downreg-
ulation, MYC-upregulation, persistent androgen 
receptor activity, TMPRSS2-ERG translocation, 
PTEN deletion, activation of PI3K and MAPK 
signaling, upregulation of Ezh2, miRNAs, and 
oncogenic activation of both membrane and 
intracellular tyrosine kinases [2, 3]. Castration 
resistant prostate cancer (CRPC) which has 
developed resistance to anti-androgen thera-
pies is a major cause of lethality.

Tyrosine kinases, including receptors and intra-
cellular kinases, play major roles in prostate 
cancer signal transduction. They regulate cell 
differentiation, cell cycle progression, adhesion 
and metastasis. The protein tyrosine kinase 6 
(PTK6) family of non-receptor tyrosine kinases, 
including PTK6, FRK and SRMS, is distantly 
related to SRC family of kinases. SRC family 
kinases contain four domains essential for  
their function, including the SRC homology (SH) 
4 domain that is required for lipid modification 
and membrane localization, and the SH3 and 
SH2 domains that mediate protein-protein 
interactions and kinase autoregulation. PTK6 
family kinases do not contain SH4 domains 
required for lipid modification and are not  
targeted to any specific cellular compartment 
(reviewed in [4]). Members of the PTK6 family 
share a distinct gene structure that is different 
from other intracellular tyrosine kinases [5, 6]. 
PTK6 (also known as BRK; Breast Tumor 
Kinase), represents the most extensively stud-
ied member of the PTK6 family.

It should be noted that expression levels  
of PTK6 do not necessarily correspond with  
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In well differentiated tumors PTK6 maintained 
some nuclear localization, while in poorly differ-
entiated tumors, complete loss of nuclear PTK6 
was observed [10]. In cancer cells, the active 
pool of PTK6 is at the plasma membrane and 
this can be detected by examining phosphory-
lation of PTK6 tyrosine residue 342 with phos-
pho-specific antibodies [11-13]. Targeting PTK6 
to the nucleus in prostate cancer cells reduced 
growth [14], while targeting active PTK6 to the 
plasma membrane is oncogenic and was suffi-
cient to transform mouse embryonic fibroblasts 
lacking SRC-family kinases SRC, YES, and FYN 
[15]. Although it is clear that PTK6 shuttles out 
of the nucleus in prostate tumors, further study 
is required to understand how it is relocalized 
and activated at the plasma membrane in pros-
tate disease [16]. 

Analysis of publicly available datasets shows 
an increase in PTK6 gene expression in ad- 
vanced prostate cancers (Figure 1). Alter- 
ations in the PTK6 gene are also found in pros-
tate cancer and are summarized in Figure 2 

Figure 1. PTK6 expression correlates with prostate cancer progression. Analysis of public datasets from NCBI hu-
man genome microarray (GEO) website reveals an increase in PTK6 mRNA expression in multiple datasets. A. 
Primary (N=65) and metastatic prostate tumors (N=25) exhibit higher PTK6 mRNA compared with normal (N=25) 
and normal adjacent tumor prostate (N=56) (dataset GDS2545 [57], also described in [11]). B. Analysis of dataset 
GDS4109 [58] indicates that Recurrent (N=40) tumors express higher PTK6 mRNA than non-recurrent prostate 
tumors (N=39). C. By analyzing dataset GDS1390 [59], we found that patients with androgen independent tumors 
(N=10) have higher PTK6 mRNA levels than patients with androgen dependent tumors (N=10), suggesting that 
PTK6 mRNA levels positively correlates with androgen independence. (*) represents P<0.01; (***) represents 
P<0.001. 

its kinase activity. PTK6 has both signaling  
and adaptor functions that are mediated 
through protein-protein interactions involving 
its SH3 and SH2 domains. Like SRC-family 
kinases, PTK6 family kinases are regulated  
by phosphorylation. PTK6 is activated when 
phosphorylated at tyrosine residue 342, while 
it is negatively regulated by phosphorylation  
at tyrosine residue 447 [7], which could be 
mediated by the PTK6 family member SRMS 
[8]. 

PTK6 expression and activation in prostate 
cancer

PTK6 is primarily expressed in epithelial linings, 
with highest levels in the intestine and skin [5, 
9]. It is also expressed in the prostate, and 
undergoes intracellular relocalization in pros-
tate cancer compared with normal epithelia 
[10]. Derry et al. demonstrated that PTK6 is 
localized to nuclei of luminal epithelial cells in 
the normal prostate. However, loss of PTK6 
nuclear localization occurs in prostate cancer. 
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and Table 1. In addition, a variant of PTK6 is 
encoded by an alternatively spliced PTK6 tran-
script [17] that has been characterized in pros-
tate cancer cells [18]. The alternative trans- 
cript encodes a 134 amino acid protein, ALT-
PTK6, that shares the first 77 amino acids  
of the full length PTK6, including the SH3 
domain. ALT-PTK6 can interact with other pro-
teins through its SH3 domain and competes 
with full length PTK6 for SH3 binding sites. It 
may also be capable of binding SH3 domains  
of other proteins through its proline rich 
C-terminus. Overexpression of ALT-PTK6 pro-
moted nuclear translocation of full length wild 
type PTK6, leading to inhibition of beta-catenin 
and Sam68 [18]. ALT-PTK6 also blocked phos-
phorylation of the PTK6 substrate p27 (Kip1) 
and inhibited its ability to act as an assembly 
factor for CDK/Cyclin complexes [19]. 

Increased PTK6 expression may occur due to 
gene amplification. In 202 breast cancers  
tested, PTK6 was amplified in 57 samples, and 
co-amplified with ERBB2 in 28 samples [20]. 
Irie and colleagues discovered amplification  
of PTK6 in 15 out of 93 breast cancer patient 
samples [21]. Several public datasets indicate 
that amplification of the PTK6 gene also occurs 
in prostate tumors (Figure 2). Genomic copy 
number alterations have been correlated with 
prostate cancer relapse [22]. Regulation of 
PTK6 transcription in the prostate is not well 
understood. The ribosomal S6 kinase RSK was 
shown to upregulate PTK6 RNA expression in 
prostate cancer cells [23].

Several miRNAs have been discovered to regu-
late PTK6 in cancer, including miR-93, miR187, 
miR-17 and miRNA-214 [24-27]. Overexpression 
of miRNA-214 in prostate cancer cell lines  
hindered tumor cells growth, colony forming 
ability, invasion and migration. The effect of 
miR-214 on tumorigenesis was attenuated by 
overexpression of PTK6. Furthermore, miR-214 
was discovered to target the 3’UTR-region of 
PTK6 and subsequently regulates PTK6 expres-
sion. Further experiments showed that miR-
214 cooperates with ibrutinib to further inhibit 
PTK6 activity and trigger prostate cancer cell 
death [25]. 

PTK6 activity is negatively regulated by phos-
phatases, including Protein Tyrosine Phosph- 
atase 1B (PTP1B) [28] and the Phosphatase 
and Tensin Homologue (PTEN) tumor suppres-
sor protein [13]. Both of these phosphatases 
dephosphorylate PTK6 at tyrosine residue 342, 
thereby inhibiting its activity. Introduction of 
PTEN into PTEN null prostate cancer cells led  
to decreased PTK6 activity coupled with 
reduced activation of its substrates FAK, 
BCAR1 (p130CAS) and AKT [13]. 

PTK6 contributions to oncogenic signaling in 
prostate cancer

PTK6 is activated by receptor tyrosine kinases 
including EGFR [29], IGF1R [21], and MET  
[30], all of which play roles in advanced pros-
tate cancer [31-33]. In turn, PTK6 activates 
several downstream oncogenic pathways. It 
phosphorylates the scaffolding protein BCAR1, 
leading to enhanced cell migration [11]. PTK6 
also directly phosphorylates FAK, both at  
the activation site (Y576/577) and at the  
GRB2 binding site (Y925) [15]. PTK6 also  

Figure 2. Alterations in the PTK6 gene in prostate 
cancer. Analysis of the cBioPortal database (https://
www.cbioportal.org/) indicates that gene alterations 
in PTK6 occur in prostate cancer. These include both 
copy number alterations (CNA) and mutations. These 
datasets correspond to those in Table 1 but differ in 
number because they represent the percentage of 
total samples, while Table 1 expresses percentages 
over total patient number queried for PTK6 gene al-
terations. Mutations identified include a missense 
mutation within the kinase domain V315M, and a 
truncating deletion mutant.
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phosphorylates EGFR at Y845, stimulating its 
activity and inhibiting its turnover [34]. 

PTK6 plays critical roles in regulating cell sur-
vival [15, 21, 23, 35-37]. Though not essential, 
PTK6-mediated activation of FAK promotes 
survival signaling and protects cells from anoi-
kis [15]. PTK6 directly phosphorylates AKT on 
tyrosine residues 315 and 326 and promotes 
its activation by EGF in prostate cells [38]. 
Survival signaling induced by PTK6 is depen-
dent on AKT, suggesting that AKT is a critical 
player downstream of PTK6 [15]. 

PTK6 was targeted to the plasma membrane by 
the addition of a palmitoylation/myristoylation 
signal at the amino terminus of the kinase. This 
led to a dramatic change in cell morphology, 
formation of peripheral adhesion complexes 
and migration, dependent on BCAR1. PTK6 
phosphorylates BCAR1 and subsequently acti-
vates ERK5, suggesting that PTK6 activation at 
the membrane is indispensable for ERK5 and 
BCAR1 activity [11]. 

Activation of PTK6 at the plasma membrane 
was subsequently shown to promote the epi-
thelial mesenchymal transition (EMT) [12]. The 
EMT program is associated with characteristics 
of metastatic cancer, cancer stem cells, che-
motherapy resistance, and immune evasion 
[39, 40]. Ectopic expression of membrane  
targeted PTK6 in PC-3 and BPH-1 prostate  
cells induced a mesenchymal like phenotypic 
change, which was coupled with a decrease in 
E-cadherin protein levels and increased ex- 
pression of the EMT markers vimentin, ZEB1 
and SLUG. These cells were more tumorigenic 
and metastatic in immunocompromised mice. 
Correspondingly, PC3 cells with knockdown of 

PTK6 exhibited reduced survival and metasta-
sis in a xenograft model [12].

The therapeutic potential of PTK6 in prostate 
cancer 

Targeting PTK6 has shown potential for treating 
prostate cancer in animal models. Disruption of 
the mouse Ptk6 gene in mice with conditional 
disruption of Pten in the prostate impaired 
prostate tumorigenesis [13]. PTEN loss is com-
mon in castration resistant prostate cancer 
[41], and there was a significant correlation 
between PTK6 activation at the plasma mem-
brane and loss of PTEN expression in human 
prostate tumor tissue microarrays [13].

Although PTK6 is not currently targeted in pros-
tate cancer patients, progress has been made 
in identifying compounds that target PTK6 
activity [42-44]. Vemurafenib or PLX4032, is an 
inhibitor of mutant BRAFV600E in metastatic mel-
anoma, but it can also target PTK6 kinase activ-
ity with surprising specificity. Treatment of pros-
tate cancer cells with vemurafenib reduced 
EGFR, FAK, AKT and ERK1/2 activation promot-
ed by PTK6. In preclinical studies, administra-
tion of the vemurafenib ortholog used in mice 
PLX4720, decreased growth of xenograft pros-
tate tumors compared with untreated controls 
[42]. 

Since PTK6 activity is negatively regulated by 
the tumor suppressor PTEN, PTK6 inhibitors 
may have particular efficacy in PTEN null pros-
tate cancers. PTEN is mutated or deleted in 
about 25% of primary prostate tumors [45], and 
loss of PTEN or activation of PI3K is observed 
in up to 70% of advanced human prostate can-
cers [46]. PTEN loss has been shown to accel-

Table 1. PTK6 gene alterations and mRNA expression

Prostate Cancer Dataset #  
Patients

% PTK6 Gene 
Alterations

% High  
PTK6 mRNA

PTEN Deletion/
Mutation

TP53 Deletion/
Mutation Reference

MICH, 2012 59 3/59 (5%) NA 51% 51% [50]
SU2C, 2019 429 30/429 (7%) 11/429 (3%) 34% 41% [51]
SU2C, 2015 150 5/150 (3%) 6/118 5% 39% 51% [52]
FHCRC, 2016 54 9/54 (17%) 6/63 (10%) 44% 33% [53]
Eur Urol, 2017 65 9/65 (14%) NA 11% 6% [54]
TCGA, 2015 333 7/333 (2%) 21/290 7% 17% 8% [55]
MSKCC/DFCI, 2018 1013 2/1013 (<0.2%) NA 16% 21% [56]
Publicly available datasets from cBioPortal (https://www.cbioportal.org/) were examined for PTK6 gene alterations and expres-
sion levels. Percentages of PTK6 gene alterations, high mRNA expression, as well as PTEN and TP53 deletions and mutations 
were determined based on the total number of patients queried in each dataset.
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erate prostate tumorigenesis in vivo [47], and is 
associated with CRPC and lethal disease [48, 
49]. Advances in understanding the roles of 
PTK6 in tumorigenesis and oncogenic signaling 
suggest that it may be a promising therapeutic 
target. 

Conclusions 

Although most studies have focused on the  
role of PTK6 in breast cancer, an indispensable 
role has been identified for PTK6 in prostate 
cancer signaling (reviewed here and in [16]). 
PTK6 has been shown to be important for  
prostate tumor growth, invasion and metasta-
sis in animal models [12, 13, 42]. Activation of 
an EMT program downstream of PTK6 may  
represent a mechanism leading to resistance 
to monotherapies and increased cancer cell 
survival. Targeting PTK6 may have particular 
value in prostate cancers that have lost PTEN 
and subsequently have increased PTK6 activi-
ty. Several PTK6 associated kinases may be 
valuable therapeutic targets in prostate cancer 
including EGFR/EBB2, MET, IGF1R, and PI3K, 
and combinatorial therapies targeting them 
and PTK6 may have unique therapeutic 
advantages. 
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