
Am J Clin Exp Urol 2020;8(5):152-162
www.ajceu.us /ISSN:2330-1910/AJCEU0113024

Review Article 
A review of current advancements and limitations of  
artificial intelligence in genitourinary cancers

Raghav K Pai1*, Derek J Van Booven2*, Madhumita Parmar1, Soum D Lokeshwar1, Khushi Shah1, Ranjith 
Ramasamy1, Himanshu Arora1,3

1Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; 2John P Hussman 
Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; 3The 
Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA. *Equal 
contributors. 

Received April 1, 2020; Accepted July 26, 2020; Epub October 15, 2020; Published October 30, 2020

Abstract: Advances in deep learning and neural networking have allowed clinicians to understand the impact that 
artificial intelligence (AI) could have on improving clinical outcomes and resources expenditures. In the realm of 
genitourinary (GU) cancers, AI has had particular success in improving the diagnosis and treatment of prostate, 
renal, and bladder cancers. Numerous studies have developed methods to utilize neural networks to automate 
prognosis prediction, treatment plan optimization, and patient education. Furthermore, many groups have explored 
other techniques, including digital pathology and expert 3D modeling systems. Compared to established methods, 
nearly all the studies showed some level of improvement and there is evidence that AI pipelines can reduce the 
subjectivity in the diagnosis and management of GU malignancies. However, despite the many potential benefits of 
utilizing AI in urologic oncology, there are some notable limitations of AI when combating real-world data sets. Thus, 
it is vital that more prospective studies be conducted that will allow for a better understanding of the benefits of AI 
to both cancer patients and urologists.

Keywords: Artificial Intelligence, prostate cancer, renal cancer, bladder cancer, clinical trials, androgen deprivation 
therapy

Introduction

Incidences of cancer have been on the rise 
globally [1]. Of these, genitourinary (GU) can-
cers are projected to lead to over 33,000 
deaths [2]. With the increasing frequency of GU 
cancers, efforts have been undertaken to 
increase the efficacy of diagnosis and treat-
ment. However, these efforts require further 
optimization and innovation as the costs of 
diagnosis and management are increasing con-
comitantly [3]. The field of urology has histori-
cally been at the forefront of innovation, such 
as with the early introduction of Robotic Surgery 
in the treatment of GU cancers [4]. Robotic sur-
gery is among the technological advancement 
that incorporates Artificial Intelligence (AI). 

AI is a subfield of computer science that 
attempts to develop a computer’s intelligence 
to mimic humans in the way they work and 
think. Machine learning is an integral part of AI 

which applies statistical models to machines 
and allows them to act independently in an 
intelligent way without a set of explicit com-
mands [5, 6]. Deep learning is a subclass of 
machine learning that makes use of artificial 
neural networks (ANN) which are meant to 
resemble the way biological nervous systems 
are structured and how they process informa-
tion [7]. ANNs can have multi-layered collec-
tions of artificial nodes that act as neurons, 
which accept input, process data, and finally 
pass it along to other neurons. AI is a rapidly 
growing field that has been investigated for uti-
lization in the diagnosis and management of GU 
diseases [8]. 

Within other fields of medicine, AI has been 
investigated as an aid in information manage-
ment, diagnostics, and physician decision mak-
ing [9-11]. According to the recent NIH Road- 
map for Foundational Research on Artificial 
Intelligence in medical imaging, AI based algo-
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rithms will have a significant impact on the 
practice of clinical medical imaging within the 
next decade [12]. Furthermore, in diagnostics, 
machine learning has been successfully used 
to provide automatic interpretations of physio-
logical function to help in diagnosis of diseas-
es. For example, machine learning has been 
used to evaluate pulmonary function tests to 
determine diagnoses of obstructive lung dis-
ease [13]. AI has also been used to diagnose 
fractures by analyzing skeletal radiographs with 
an accuracy comparable to that of senior level 
orthopedic surgeons [14]. AI is also under 
investigation as a tool in treatment decision 
making for cardiovascular diseases by optimiz-
ing treatment algorithms [15]. In light of these 
advancements in other fields, AI has strong 
potential for diagnostic and treatment optimi-
zation within urologic oncology. Figure 1 sum-
marizes the current applications of AI in GU 
cancers. 

As the true power of AI has only recently been 
coming to light, we can predict that its use is 
likely to increase in GU cancer diagnosis and 
management. Although there are numerous 
examples of AI being used in the diagnosis and 
treatment of prostate, bladder, and renal can-
cer, it is only recent that AI was also used to 
predict the prognosis of testicular cancer [16]. 
Furthermore, there is limited data on the use 
and subsequent limitations of AI in the man-
agement and treatment of other less common 
urologic malignancies, including penile, ure-
thral, and ureteral cancers. As more studies 
come to light, there will be more sources of pro-

Medline® database by searching the terms 
“prostate cancer”, “renal cell carcinoma”, “renal 
cancer”, “bladder cancer”, “artificial intelligen- 
ce”, “deep learning”, “machine learning”, and 
“neural network” in any combination. Relevant 
articles written in the English language, with an 
emphasis on original research articles written 
within the last five years, were included in the 
literature review. 

Literature review

Prostate cancer - diagnosis

The diagnosis and management of GU cancers 
involves parsing through a large amount of  
clinical data. This involves histological images, 
MRI imaging, biomarker screening, and more. 
Among the challenges in employing AI in the 
diagnosis of prostate cancer is developing a 
consistent methodology to link qualitative data 
from many sources to create a quantitative 
metric for decision making [17]. Even more 
challenging is the task of using AI to create a 
method that empowers patients to make their 
own decisions. Nevertheless, Auffenberg et al. 
recently devised a method to overcome both  
of these challenges. In a new model, clinical 
registry data was taken from over 7,500 men 
with prostate cancer across 45 different uro-
logical practices in the state of Michigan. This 
data included patient age at biopsy, pre-diag-
nosis prostate specific antigen (PSA) levels, 
Gleason scores, and more. With this, a machine 
learning algorithm was trained to predict pri-
mary treatment outcomes according to what 

Figure 1. Summarizes 
the current applications 
of AI in GU cancers.

spective validation and incre- 
ases in the size of the data-
bases that will cumulatively 
improve overall the accuracy 
of AI pipelines. The current 
review focuses on highlighting 
the recent advancements and 
limitations of AI in urologic 
oncology.

Inclusion criteria

A literature search was per-
formed to review recent ad-
vancements in AI in the diag-
nosis and management of GU 
cancers. Publications for the 
literature review were identi-
fied from the PubMed®/
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other patients in similar situations had received 
[18]. This tool, which is now available via web 
and smartphone application, allows patients to 
easily leverage a large amount of relevant clini-
cal data to take charge of their care. However, a 
disadvantage of the random forest model used 
in this algorithm is that it is often less interpre-
table than a single decision tree. In other words, 
it can be hard to determine what sources have 
the greatest impact in diagnosis leading to a 
black box effect which can be a disadvantage 
to patient usage.

Deep learning has also recently been utilized to 
automate Gleason grading of histological spe- 
cimens from prostate biopsies. While Gleason 
grading is among the most important prognos-
tic predictors for patients suffering from pros-
tate cancer, it is time-consuming, requires 
experienced pathologists, and is subject to lim-
ited inter-rater reproducibility [19]. Lucas et al. 
recently found that convolutional neural net-
works that automate Gleason grading from 
prostatic biopsies were able to achieve a 65% 
concordance with an experienced GU patholo-
gist [20]. This is similar to the inter-observer 
agreement between two trained pathologists 
described in a study by Ozkan et al. [20, 21]. 
Similarly, Arvaniti et al. demonstrated that deep 
learning algorithms were successfully able to 
divide patients into prognostically different 
groups on the basis of automated Gleason 
grading of prostate cancer tissue microarrays 
in a manner comparable to trained pathologists 
[19]. In addition, machine learning has also 
been used to predict Gleason scores using mul-
tiparametric magnetic resonance (MR) images 
combined with texture features with a high 
degree of accuracy [22], thereby decreasing 
the need for prostatic biopsy for cancer diagno-
sis. Table 1A-D summarizes the findings dis-
cussed above. However, there are several road-
blocks to developing the perfect AI Gleason 
scoring software, including that many of the 
trained datasets contain only a small number 
samples that are used to train the algorithm. 
Larger data sets will allow models to perform 
more realistically when faced with new external 
samples. In addition, the quality of scans, spe-
cific methods in sample collection, and human 
error in pathologist scoring will vary in different 
datasets which makes it difficult to start with a 
gold standard. It is hard to estimate each of 
these variances within a given dataset, which is 
a basis for probabilistic models to determine 

regional effects. Despite this, these studies 
show some promise in how AI can improve the 
process of Gleason scoring in prostate cancer 
diagnosis by saving resources, improving reli-
ability, and reducing patient discomfort. 

Prostate cancer - management

AI has also made strides in influencing treat-
ment options for prostate cancer patients. For 
example, Nicolae et al. used a k-nearest neigh-
bor algorithm that allowed for the automatic 
generation of prostate low-dose-rate brachy-
therapy treatment plans in a manner that was 
comparable to experts. The average planning 
time using this approach was 0.84 minutes 
compared to an average of 17.88 minutes  
for the expert. Thus, this approach has the 
potential to create consistency within patients’ 
treatment as well as to decrease resource 
expenditures [23]. One limitation of the k-near-
est neighbor is that although it produces a defi-
nite classification result, increased complexity 
in the data can create too many overlapping 
groups leading to an unreliable classification.

Deep learning models have also been devel-
oped to aid in Intensity-Modulated Proton 
Therapy (IMPT). IMPT is capable of delivering a 
localized dose of radiation to a target tissue 
while diminishing potential damage to nearby 
normal tissue [24, 25]. Unfortunately, this 
method is quite sensitive to daily anatomical 
changes, which can exacerbate treatment-
associated toxicity. Nevertheless, deep learn-
ing has also recently been used to create a 
pipeline which can automate contour propaga-
tion to develop treatment plans that adapt to 
daily anatomical changes. The algorithm was 
successful in treatment plans that did not need 
any manual correction 80% of the time [24]. A 
significant limitations in these studies, howev-
er, is their retrospective analysis. Due to the 
growing trend in surveillance, it is critical to 
incorporate real time effects into the models. 
Furthermore, the retrospective nature poses 
the opportunity to make decisions without con-
trolling for confounding factors. For example, 
this can be seen in a study by Obermeyer et al. 
which found evidence of racial bias in a com-
monly used commercial algorithm that is used 
to guide health care decisions across the 
United States. The algorithm, which uses health 
care costs to predict health needs, falsely 
associated lower expenditures on African 
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Table 1. Prostate cancer review articles summary

Legend Name/Type 
of Model

No. of pa-
tients Cancer Summary Data Analysis Implications References

1-A Random 
forest

7543 Prostate 
Cancer

A clinical registry of relevant prostate cancer 
data across 45 urology practices in the state 
of Michigan, a random forest machine learn-
ing (ML) model was developed to predict 
probability of receiving a given treatment 
based on clinical, pathologic, and demo-
graphic factors.

Accuracy AUC was 0.81 This web- and smartphone-based platform can 
serve as a useful tool for patients to better un-
derstand treatment options and decisions and be 
able to take charge of their care.

18. Auffenberg 
et al.

1-B CNN 886 (641 for 
training, 245 
for testing)

Prostate 
Cancer

A CNN model was developed to automati-
cally assign Gleason scores to H&E stained 
prostate cancer tissue microarrays. 

Inter-annotator agreement between 
the model and 2 pathologists using 
Cohen’s quadratic kappa statistic was 
kappa = 0.75 and 0.71 respectively.

Deep learning technology has the potential to 
assist pathologists in histopathologic grading of 
prostate cancer and mitigate the effects of inter-
pathologist variability.

19. Arvaniti, E., 
et al.

1-C CNN 38 patients (96 
biopsies)

Prostate 
Cancer

A CNN model was developed to detect 
Gleason patterns (GP) and determine grade 
groups (GG) from H&E stained tissue sec-
tions of 96 prostate biopsies. 

The model’s ability to differentiate 
between malignant (GP ≥ 3) and non-
malignant (GP < 3) sections reached 
an accuracy of 92% (F-score = 0.93). 
Automated GG reached a concor-
dance of 65% with a genitourinary 
pathologist (kappa = 0.70).

Computer-aided automated histopathologic grad-
ing of prostate cancer has the potential to reduce 
both inter-pathologist variability and time required 
to diagnose.

20. Lucas, M. 
et al.

1-D SVM 147 Prostate 
Cancer

Three ML algorithms were tested to be able 
to classify prostate cancer Gleason scores 
based on combined apparent diffusion coef-
ficient (ADC) and T2-weighted prostate MRIs 
of patients with biopsy-proven prostate can-
cer undergoing radical prostatectomy. ML 
results were validated with Gleason grade 
patterns obtained from histopathological 
analysis of the excised prostates.

Distinguishing between GS 6 vs. GS 
≥ 7 resulted in 93% accuracy for 
cancers occurring in both peripheral 
(PZ) and transition (TZ) zones. Distin-
guishing between GS 7 (3+4) vs. GS 
7 (4+3) resulted in 92% accuracy for 
cancers occurring in both PZ and TZ.

The ability of ML algorithms to differentiate 
Gleason scores from multiparametric MRI images 
presents a unique method for non-invasive and 
accurate diagnosis of prostate cancer, potentially 
decreasing the need for prostate biopsies.

22. Fehr, D. 
et al.

1-E k-nearest 
neighbor

150 Prostate 
Cancer

ML algorithm was developed to generate 
low-dose-rate brachytherapy treatment 
plans for patients with prostate cancer. Auto-
matically generated plans were compared 
to both expert radiation therapist (RT) and 
brachytherapist (BT) plans.

Dosimetry and clinical quality of ML 
plans were found to be equivalent to 
RT and BT plans. Planning time was 
significantly reduced with the ML plan 
(mean 0.84 min vs. 17.88 min for RT/
BT, p = 0.020).

The capability of the ML algorithm to reach equiv-
alent clinical quality to experts in brachytherapy 
planning combined with its significant reduction 
in time and resource expenditure is a promising 
utilization of ML for aiding in planning treatments.

23. Nicolae, A. 
et al.

1-F CNN 418 for training
32 for testing

Prostate 
Cancer

An automatic contour propagation pipeline 
was created using deformable image 
registration (DIR) to develop online adaptive 
intensity-modulated proton therapy (IMPT) 
plans for prostate cancer. 

A conservative success rate of 80% 
was achieved, signifying that 80% 
of plans generated could be used 
without manual correction.

IMPT is capable of delivering a localized dose of 
radiation to target tissue, while minimizing dam-
age to surrounding organs. However, IMPT is more 
sensitive to daily anatomical changes, exacerbat-
ing treatment-associated toxicity. DIR and deep 
learning have the capability to create an auto-
mated plans that adapt to these daily anatomical 
changes and protect organs at risk (OARs).

24. Elmahdy, 
M.S., et al.
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American patients with overall better health 
status in this population [26]. Despite the need 
for more prospective analyses, these studies 
exemplify how AI and precision medicine can 
not only save resources, but also reduce 
adverse effects associated with prostate  
cancer treatments. Table 1E, 1F summarizes 
the findings in prostate cancer manage- 
ment.

Renal cancer

Renal cancer is the most lethal GU cancer with 
25% of patients having evidence of metastatic 
disease at initial presentation [27]. The three 
most common classifications of renal cancer 
include clear cell, papillary, and chromophobe 
types [28]. The proper classification is of par-
ticular importance due to differences in prog-
nostic and therapeutic factors between classes 
[29], including potential responses to molecu-
larly targeted therapies. In a recent study by 
Han et al., a convolutional neural network (CNN) 
was created to classify renal cancer into one of 
the three types using 3-Phase computerized 
tomography (CT) images that were marked  
with a particular region of interest. Using a 
training set with 135 randomly selected CT 
scans, a validation set of 34 biopsy-proven 
cases allowed for an AUC of about 0.9, regard-
less of the classification of the cancer. Despite 
the limitation that radiologists must initially 
mark the proposed region of interest prior to 
automated classification, the model has signifi-
cant implications for training radiologists [30]. 
Furthermore, it provides a method for radiolo-
gists to confirm their findings and may reduce 
the need for invasive biopsies. Finally, the small 
sample size of 135 scans used in the model 
was able to accomplish fairly impressive results 
compared to the several hundred samples typi-
cally needed to train a CNN.

Clear cell renal cell carcinoma is typically grad-
ed according to the Fuhrman method, which 
relies on nuclear pleomorphic pattern analysis. 
Unfortunately, analysis of pathological slides 
can lead to inconsistencies among different 
pathologists [31]. However, Holdbrook et al. 
devised a support vector machine (SVM) that 
allows for automated grading of these speci-
mens directly from histopathological whole-
slide images of biopsies. SVMs use many sub-
sets of features, known as support vectors, to 
make their final decisions, which makes them 
quick and efficient. Although this makes them 

ideal to use when there is a clear separation 
within classification groups, these models tend 
to do more poorly in noisy data and often do not 
give probability estimates in their results. 
However, the results of this study demonstrat-
ed a correlation between the generated auto-
mated image scores and another multigene 
assay based scoring system that has been 
known to accurately predict prognosis [31]. 

Lin et al. expanded on this study by developing 
yet another machine learning model to distin-
guish between high- and low-grade clear cell 
renal cell carcinoma using a variety of different 
types of CT images. This method proved the 
most successful, with three-phase CT images 
resulting in an AUC of 0.87 when compared to 
the classifications within a pathology database 
that were reconfirmed by an experienced 
pathologist [32]. Thus, these studies illustrate 
the potential of AI in determining prognostic 
factors in the diagnosis of renal cancer and in 
minimizing the risks, resources, and subjectivi-
ty associated with unnecessary biopsy collec-
tion and manual pathological analysis. 

AI has also been used to optimize treatment 
strategies in patients suffering from renal cell 
carcinoma. Renal cell carcinoma may be phar-
macologically treated by cytokine therapy or 
tyrosine kinase inhibitors [33]. However, treat-
ment with different systemic therapies tends to 
lend itself to significant variability in prognosis. 
Thus, Buchner et al. recently developed an arti-
ficial neural network that allows for the input of 
multiple parameters, including but not limited 
to treatment type, histological parameters, 
body mass index (BMI), and age. Using this 
data, the algorithm was able to accurately pre-
dict 36 month survival in patients according to 
different therapy types with 91% accuracy in 
the validation cohort [34]. A limitation of ANNs 
as used in this study, however, involves its use 
of multiple parameters by which the network 
builds its recommendation. If cases develop 
where clinical characteristics are treated equal-
ly as important as all other features, it could 
lead to the overfitting and overrepresenting of 
certain parameters. Nevertheless, these find-
ings demonstrates the ability of AI to develop 
personalized pharmacological treatment plans 
for renal cancer patients based on a multitude 
of prognostic factors and automated outcome 
analyses. Table 2 summarizes the advance-
ments of AI in renal cancer management. 
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Table 2. Renal cancer review articles summary

Legend Name/Type 
of Model No. of patients Cancer Summary Data Analysis Implications References

2-A CNN 135 for training
34 for testing

Renal 
Cancer

A deep learning neural network was developed to 
distinguish between three major subtypes of renal cell 
carcinoma (clear cell, papillary, and chromophobe) 
using computed tomography images, with regions of 
interest marked by radiologists. Automated results 
were trained with biopsy-proven samples.

The network showed 85% 
accuracy with AUC of 0.9.

ML models that can classify subtypes of 
cancer from CT images may have an impor-
tant role in reducing the need for invasive 
biopsies and in training radiologists to 
identify further signs of specific diagnoses.

29. Han, S. 
et al.

2-B SVM 59 Renal 
Cancer

An automated image classification pipeline was cre-
ated to detect relevant nuclear pleomorphic patterns 
from histopathologic tissue of patients with clear cell 
renal cell carcinoma and grade these images using 
the Fuhrman grading scale.

The results demonstrated 
a correlation (R = 0.59) be-
tween the automated pipeline 
and an already-established 
multigene assay-based scor-
ing system.

An automated pipeline that is able to grade 
histopathologic samples of clear cell renal 
cell carcinoma into high and low grades 
has important clinical implications in terms 
of treatment planning and reducing inter-
pathologist variability in grading.

30. Holdbrook, 
D.A. et al.

2-C naïve Bayes 231 patients
(232 pathological-
ly-proven clear cell 
renal cell carci-
noma lesions)

Renal 
Cancer

A ML model was developed to predict the Fuhrman 
grade of clear cell renal cell carcinoma from single- 
and three-phase CT images. Automated results were 
confirmed with pathology-proven samples. 

The model based on three-
phase CT images achieved 
the best diagnostic perfor-
mance with AUC = 0.87.

ML has the potential to minimize the risks, 
resources, and subjectivity associated with 
biopsy collection and manual pathological 
analysis for grading of clear cell renal cell 
carcinoma.

31. Lin, F. 
et al.

2-D ANN 175 Renal 
Cancer

A ML algorithm was developed to predict 36-month 
survival in patients with renal cell carcinoma using a 
multitude of clinical prognostic data, including tumor 
grade, vessel invasion, and pathologic T classification, 
to input into the network. 

The ANN achieved an ac-
curacy of 95%.

AI has the potential to aid in developing 
personalized treatment plans for patients 
with renal cancer based on varied prog-
nostic factors and automated ML outcome 
analyses.

33. Buchner, 
A. et al.
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Bladder cancer

Bladder cancer is the ninth most common type 
of cancer worldwide and causes significant 
morbidity and mortality in the aging popul- 
ation [35]. Unfortunately, there have been no 
improvements in the five-year survival rates  
for bladder cancer in over thirty years [36]. 
Although urine biomarkers have been discuss- 
ed in the diagnosis of bladder cancer, cystos-
copy remains the gold standard [37]. However, 
correctly recognizing cystoscopic findings can 
prove difficult for many clinicians and success 
is contingent on the clinician’s experience. 
Eminaga et al. tries to take an AI approach to 
the problem by developing a convolutional  
neural network that used 479 different cases 
that contained 44 different urological findings. 
After training the algorithm, it was able to suc-
cessfully identify all of the images with cancer-
containing lesions [38]. This shows how AI  
can be used to improve accuracy and reduce 
variability in analyzing cystoscopic images. This 
study was able to overcome the daunting task 
for a CNN to be able to identify regions given 
the variable input data from different clinicians 
by its large sample size and numerous distinct 
findings used to train the algorithm. However, 
although cystoscopy is the standard in the  
diagnosis of bladder cancer, it is an invasive 
and expensive procedure and some efforts 
have been made to move to more non-invasive 
methods. Sokolov et al. recently devised a 
machine learning based method that was able 
to detect bladder cancer using images of cells 
that were extracted from urine samples. This 
method showed 94% diagnostic accuracy, 
which demonstrated a significant improvement 
over cystoscopy [39]. However, this model 
relied on calculating surface features rather 
than analyzing them as would be done with a 
neural network. In cases with complex images 
and noisy features, this has potential to lead to 
inconsistent results. Overall, despite limita-
tions, these studies together highlight how AI 
can be used to improve, or perhaps even shift, 
the standard of care in the diagnosis of bladder 
cancer. 

A diagnosis of bladder cancer is typically fol-
lowed by staging in order to determine progno-
sis and potential therapeutic options. Neoad- 
juvant chemotherapy is usually recommended 
when the cancer grade is at or exceeds T2, at 
which point the tumor has reached the muscle 

in the bladder wall. Garapati et al. trained a 
CNN that accurately used images from CT 
Urography to stratify bladder cancer patients 
into one of two groups: equal to or above stage 
T2 or below stage T2 [40]. This model shows 
the potential of AI in not only the diagnosis of 
bladder cancer, but also in determining prog-
nostically relevant information, which has 
major effects on treatment options. 

AI has also been shown to have the potential to 
directly impact the treatment of bladder can-
cers. Although cystectomy has been consid-
ered the gold standard for treating invasive 
cancers, there is strong evidence that neoadju-
vant chemotherapy prior to cystectomy can  
prolong life. Nevertheless, drug-associated tox-
icities along with inadequate chemotherapy 
responses can lead to unnecessary resource 
expenditures and impacts on patients’ quality 
of life [41]. Recently, Cha et al. devised a study 
that analyzed different radiomics-based predic-
tive models using deep learning to accurately 
classify tumors according to their chemothera-
py responses. The model used over 6,000  
pre- and post-treatment paired regions of inter-
ests from CT scans and compared the results 
to that of two expert radiologists. The differ-
ences between the deep learning algorithms 
and the radiologists in predicting chemothera-
py responses did not reach statistical signifi-
cance [42]. Although the model is promising, 
the use of only two radiologists allows for the 
possibility that the pipeline is fitting for radiolo-
gist’s bias. As a whole, these findings demon-
strates how AI can be used to monitor treat-
ment responses, allowing clinicians to spare 
resources and avoid unnecessary drug-associ-
ated toxicity in patients’ whose cancers are 
resistant to chemotherapy. Table 3 summarizes 
the advancements of AI in bladder cancer 
management. 

Discussion

The involvement of AI in healthcare has been 
discussed for the last two decades, but only 
recently have we started working towards har-
nessing its true potential. The use of AI in clini-
cal decision-making takes advantage of its abil-
ity to pick out patterns in large data sets and 
use a training algorithm to make accurate pre-
dictions. While the volume of data makes this 
task extremely difficult and time consuming for 
humans, computers however have been shown 
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Table 3. Bladder cancer review articles summary

Legend Name/Type of 
Model No. of patients Cancer Summary Data Analysis Implications References

3-A CNN 479 patients with 
44 different urologic 
findings

Bladder 
Cancer

Multiple CNN models were developed 
to identify various urologic findings from 
cystocopic images. 

The Xception-based CNN 
achieved the highest F1 score 
(99.52%), and all models were 
correctly able to identify cancer-
ous lesions.

This study demonstrates the potential for 
artificial intelligence to be used to improve 
accuracy in diagnosis and reduce examiner-
variability in analyzing cystoscopic images.

37. Eminaga, 
O. et al.

3-B Random Forests 
(multiple)

43 patients without 
bladder cancer
25 patients with 
pathologically-proven 
bladder cancer

Bladder 
Cancer

Three different machine learning methods 
were used to analyze atomic force micros-
copy (AFM) images of urine samples to 
non-invasively identify evidence of bladder 
cancer. 

This method showed 94% diag-
nostic accuracy, which is a statis-
tically significant improvement in 
diagnostic accuracy compared to 
current gold standard cystoscopy.

AI has the ability to aid in diagnosis of blad-
der cancer from non-invasive methods with 
high accuracy, implying a plausible shift in 
the standard of care in the diagnosis of blad-
der cancer from more invasive methods.

38. Sokolov, 
I. et al.

3-C Multiple (NN, 
SVM, Random 
forest)

76 patients with 84 
bladder cancer lesions

Bladder 
Cancer

A machine learning algorithm was devel-
oped to stage bladder cancer into high (≥ 
pathologic stage T2) and low (< pathologic 
stage T2) based on CT urography images. 

AUC for each of the models 
ranged between 0.88-0.97.

AI has the potential to accurately determine 
prognostically relevant information, such as 
stage of bladder cancer, which has major 
effects on treatment planning.

39. Garapati, 
S.S. et al.

3-D CNN 82 patients with 87 
bladder cancers for 
training
41 patients with 43 
bladder cancers for 
testing

Bladder 
Cancer

A CNN was used to develop 3 predictive 
models that can distinguish between blad-
der cancers that have fully responded to 
neoadjuvant chemotherapy and those that 
have not based on analysis of pre- and 
post-treatment CT images. 

All 3 models performed compa-
rably in terms of AUC to the two 
expert radiologists.

ML can be used to monitor treatment 
responses, allowing clinicians to conserve 
resources and avoid unnecessary drug-
associated toxicity in patients whose cancers 
are resistant to chemotherapy.

41. Cha, K.H. 
et al.
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to do it efficiently and accurately. Moreover, 
processes such as identifying, classifying, and 
staging cancerous lesions use significant res- 
ources and are open to a level of subjectivity. 
Automation of these processes could help con-
serve these resources and reduce this level of 
subjectivity, thus improving the efficiency and 
accuracy of how GU cancer patients are diag-
nosed and treated. 

The estimated 3-year total Medicare cost of the 
diagnosis and treatment of prostate cancer 
alone in men over the age of 70 is 1.2 billion 
dollars [3]. This, combined with the increasing 
incidence of GU cancers, demonstrates the 
importance of conserving resources without 
sacrificing outcomes in these patients [2]. 
Incorporating AI in the diagnosis and treat- 
ment of these patients is one way this could 
successfully be accomplished. While there may 
be an initial investment in implementing the 
technology, the eventual cost savings could 
certainly be significant. 

The accurate grading of tumors plays a crucial 
role in determining both prognosis and poten-
tial therapeutic options. Automating these pro-
cesses could allow clinicians to make more 
accurate decisions in managing the care of 
these patients. Furthermore, this may help 
patients avoid the side effects of therapies that 
are not likely to be successful. Thus, by reduc-
ing subjectivity it is possible to reduce the mor-
bidity and mortality in cancer patients while 
improving quality of life. Overall, as the clinical 
data available to physicians continues to 
expand, AI will likely have an increased role in 
automation, pattern recognition, and predictive 
modeling. Therefore, it is imperative to create 
pipelines that can serve to further the field of 
urologic oncology while focusing on improving 
patient care. 
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