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Abstract: Prostate cancer (PCa) is the most commonly diagnosed solid tumor and the second leading cause of can-
cer-related deaths in U.S. men in 2020. Androgen-deprivation therapy (ADT) is the standard of care for metastatic 
PCa. Unfortunately, PCa relapse often occurs one to two years after initiation of ADT, resulting in the development of 
castration-resistant PCa (CRPCa), a lethal disease. While several anticancer agents such as docetaxel, abiraterone 
acetate, and enzalutamide are currently utilized to extend a patient’s life after development of CRPCa, patients will 
eventually succumb to the disease. Hence, while targeting androgen signaling and utilization of docetaxel remain 
the most crucial agents for many of these combinations, many studies are attempting to exploit other vulnerabilities 
of PCa cells, such as inhibition of key survival proteins, anti-angiogenesis agents, and immunotherapies. This review 
will focus on discussing recent advances on targeting therapy. Several novel small molecules will also be discussed. 
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Introduction

Prostate cancer (PCa) is the most commonly 
diagnosed solid tumor with 1 in 7 males devel-
oping the disease. It is also the second leading 
cause of cancer-related deaths in men in the 
United States in 2020 [1]. While nonmetastatic 
(M0) PCa has an excellent prognosis for pa- 
tients [2], patients who develop metastatic 
(M1) PCa have a 5-year survival rate of only 
31%. Due to the dependence of PCa cells on 
androgens for survival and growth [3], andro-
gen-deprivation therapy (ADT), which blocks 
androgen receptor (AR) signaling, has been the 
standard of care for treating M1 PCa. 
Unfortunately, many patients will often remain 
on ADT for the rest of their lives [1, 4]. 

PCa cells have many mechanisms by which 
they can overcome and become resistant to 

ADT or androgen biosynthesis inhibition, thus 
developing the castration-resistant (CR) pheno-
type. The CR phenotype results from the ability 
of the cells to bypass the need for normal physi-
ological testosterone levels. For example, devel-
opment of castration-resistance can arise from 
AR overexpression, mutation in the ligand-bind-
ing site of AR, constitutive AR activation through 
splice variants (e.g. AR-V7), or intra-tumoral 
androgen biosynthesis due to overexpression 
of CYP17A1. Some PCa tumors exhibit ligand-
independent AR activation through activation of 
growth factor signaling pathways, such as ErbB-
2, AKT, MAPK, etc. to promote progression and 
survival [5-17]. Moreover, neuroendocrine (NE)-
like cells can support the CR phenotype of ade-
nocarcinoma. While the authentic NE cell and 
its tumors may account for less than 5% of total 
PCa, NE-like PCa cells have been found in more 
than 40% of CRPCa tumors [18-21]. While, 
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these NE-like PCa cells express NE biomarkers, 
they are derived from adenocarcinoma cells via 
trans-differentiation pathways during ADT. 
NE-Like cell are vital to prostate tumor survival 
by altering the microenvironment for promoting 
CRPCa cell growth [18-21]. 

ADT is a long-term treatment for metastatic 
PCa; unfortunately, PCa cells eventually devel-
op resistance to this treatment. Currently, FDA-
approved drugs such as docetaxel, abiraterone 
acetate, and enzalutamide that can treat 
CRPCa have a modest impact on extending sur-
vival in patients by only a few months (Figure 
1). Finding alternative therapies or combina- 
tions of therapies that can directly target these 
mechanisms of resistance are necessary to 
improve patients’ clinical outcomes and po- 
tentially achieve longer term survival. Because 
targeting androgen signaling is the primary 

tion of PCa cells via the reduction of testoster-
one production in the testes [1, 4]. 

Androgen targeted therapies (ATTs) can also be 
utilized in conjunction with chemical or surgical 
castration to further reduce the ability of can-
cer cells to produce or utilize androgen signal-
ing. One class of ATT is the androgen biosynthe-
sis inhibitor, such as abiraterone acetate, which 
is an effective treatment option for tumors that 
have obtained the ability for extragonadal and/
or intratumoral androgen biosynthesis [23, 24]. 
Another class of ATT is the AR antagonist that 
prevents AR nuclear translocation and DNA 
binding. First generation AR antagonists includ-
ing bicalutamide, nilutamide, and flutamide are 
FDA-approved for the treatment of PCa. The 
second generation agent enzalutamide was 
FDA-approved for CRPCa treatments in 2012 
[22, 25-27]. Demonstrating the significantly 

Figure 1. PCa Disease Progression and Current Treatment Options. PCa 
originates within the prostate and will often be detected before it invades 
into other areas of the body. Localized PCa is treated via surgery and/or 
radiotherapy. When the PCa is metastatic, the standard-of-care treatment is 
ADT. Three to five years after treatment with ADT, the PCa is likely to relapse, 
thus the development of CRPC. CRPC is initially treated with antiandrogens 
such as enzalutamide or abiraterone or immunotherapy Sipuleucel-T. Upon 
further progression of the disease, docetaxel and cabaitaxel may be uti-
lized, in addition to abiraterone and enzalutamide if the patient has not 
previously been treatment with these agents. Unfortunately, these anti-can-
cer treatments utilized for CRPC will only prolong a patient’s life by several 
months before they succumb to the disease [120]. 

mechanism of CR PCa the- 
rapy, this review will briefly 
overview ADT and then focus 
on discussing recent advances 
on targeting other vulnerabili-
ties of PCa cells, for example, 
inhibition of key survival pro-
teins and anti-angiogenesis 
agents. We will also discuss 
several novel small molecules 
that are currently under inves-
tigation in preclinical models 
that could be utilized for the 
management of CRPCa. 

Single agent therapy with life-
long ADT

Due to the reliance of PCa cells 
on androgens for survival and 
proliferation, inhibition of the 
AR signaling pathway is the 
standard-of-care for the treat-
ment of metastatic PCa. ADT 
can be carried out by one or 
more of the following methods: 
orchiectomy, chemical castra-
tion, and/or antiandrogen ther-
apy. Chemical castration em- 
ploys luteinizing hormone rele- 
asing hormone (LHRH) or gon-
adatropin releasing hormone 
(GnRH) agonists or antagonis- 
ts to prevent androgen stimula-
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superior activity of the second generation anti-
androgens compared to first, the STRIVE trial 
(NCT01664923), in both M0 and M1 CRPCa 
patients, showed that enzalutamide had a sig-
nificantly higher PFS at 19.4 months compar- 
ed to 5.7 months with bicalutamide, and also 
increased time to PSA progression [28]. These 
results have led to the adoption of first-line 
enzalutamide (or abiraterone) over bicalutami- 
de in treating PCa in recent years. More recent-
ly, nonsteroidal AR antagonist darolutamide 
has more recently become FDA-approved for 
the treatment of M0 CRPCa due to the ARAMIS 
trial (NCT02200614).

Although ADT is the gold standard treatment for 
metastatic PCa, hormone therapy usually fails 
as the cancers can overcome androgen signal-
ing inhibition and continue to progress. The 
relapse can occur as early as <12 months after 
initiation of ADT [1, 29]. Therefore, many com-
pleted and ongoing studies are looking to com-
bination treatments with ATTs to reduce the 
risk of recurrence after ADT or to treat CRPCa. 
In the following sections, this review will focus 
on analyzing recent advances on targeting the 
vulnerabilities of PCa cells that could be the 
potential regiments for managing CRPCa. 

Precision medicine combinations in prostate 
cancer

In the past fifteen years, precision medicine for 
treatment of multiple different types of can-
cers, including PCa, has begun to become a 
topic of interest for many clinicians and re- 
searchers. Some approaches of targeting ther-
apies for CRPCa during ADT are discussed 
below.

Genetic polymorphisms in PCa 

Genetic factors are shown to play a critical role 
in about 40% PCa risk. Many single nucleotide 
polymorphisms (SNPs) have been identified to 
be associated with increased disease risk in 
PCa, which have become strong predictors of 
PCa aggressiveness compared to PSA alone 
[30, 31]. Importantly, the risk of aggressive  
PCa is predictably enhanced with compounding 
SNPs, particularly SNPs at 8q24 (MYC), 17q12, 
and 17q24.3. The potential utility of these spe-
cific SNPs in regards to targeted treatments for 
PCa are currently under investigation. 

AR-V7 expression in PCa

As mentioned previously, AR amplification, mu- 
tation, and expression of alternative splice vari-
ants often occurs in PCa in attempt to evade 
ADT-mediated suppression of tumor growth. 
Although there are no current strategies that 
directly target AR amplification or mutation, 
AR-V7 has become an important biomarker for 
finding new treatments for CRPCa. Several 
treatment combinations have been proposed 
to tackle this common problem, including ATT, 
bromodomain extraterminal enhancer protein 
inhibitors (BETi), immune checkpoint inhibitors, 
and small molecule inhibitors. 

AR-V7 expression in PCa confers resistance to 
various ATTs [32, 33] as well as taxanes [34] 
and is strongly correlated with poor survival 
[35]. Many preclinical studies have found suc-
cess in inhibiting PCa growth through the com-
bination of ATT with small molecule inhibitors. 
For example, due to the ability of BETi to block 
AR binding to chromatin [36], the utilization of 
these molecules in combination with enzalu-
tamide has shown to enhance anticancer ef- 
fects [37]. As such, several clinical trials are 
underway to examine the combination of ATT 
with BETi in AR-V7 positive metastatic CRPCa 
patients (Table 1). Surprisingly, niclosamide, a 
treatment used for tapeworms, can effectively 
inhibit AR-V7 [38]. The combination of this drug 
with bicalutamide or abiraterone can re-sensi-
tize PCa cells to cell death that were previous- 
ly resistant to abiraterone, bicalutamide, or 
enzalutamide treatments [39, 40]. Similarly, 
bardoxolone-methyl (CDDO-Me) also inhibits 
both full length AR and AR-V7 and had additive 
efficacy in CRPCa cells when combined with 
enzalutamide [41]. Targeting AR and AR-V7 
cofactor phosphatidylinositol-4-phosphate 5- 
kinase type 1 alpha (PIP5K1a) via its inhibitor 
ISA-2011B can also sensitize PCa cells to 
enzalutamide in vitro and in vivo [42]. On the 
other hand, the unique combination of imipri-
done ONC201 and mammalian target of ra- 
pamycin (mTOR) inhibitor everolimus shows 
synergy in AS and AI preclinical PCa models  
due to the ability of ONC201 to inhibit AR and 
AR-V7 activity [43]. It has also been noted that 
AR-V7 positive PCa tumors have a higher muta-
tional burden [44], of which has been suggest-
ed to be sensitive to immune checkpoint inhi- 
bition in various tumors [45]. As such, AR-V7 
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Table 1. Ongoing clinical trials for ATT combination therapies in PCa

Clinical Trial Primary Anticancer Agent Secondary Anticancer Agent Phase Current Status Estimated  
Completion Date

LACOG-0415 (NCT02867020) Abiraterone Apalutamide II Recruiting December 2020

NCT03419234 Abiraterone Cabazitaxel II Recruiting April 1, 2025

NCT02703623 Abiraterone, Apalutamide Ipilimumab, Cabazitaxel, Carboplatin II Active, not recruiting May 1, 2020

NCT03072238 Abiraterone Ipatasertib III Active, not recruiting November 17, 2023

NCT01485861 Abiraterone Ipatasertib or Apitolisib I/II Recruiting April 30, 2021

LATITUDE (NCT01715285) Abiraterone LHRH agonists or castration III Active, not recruiting December 31, 2022

NCT03732820 Abiraterone Olaparib III Recruiting August 17, 2022

NCT01576172 Abiraterone Veliparib II Active, not recruiting March 30, 2020

HERO (NCT03085095) ADT Relugolix (Reluminia) III Active November 1, 2021

NCT02913196 Apalutamide Abiraterone, Docetaxel I Recruiting June 2022

NCT02106507 Apalutamide Everolimus I Active, not recruiting April 2021

NCT01251861 Bicalutamide MK2206 (AKT Inhibitor) II Active, not recruiting June 19, 2020

ARNEO (NCT03080116) Degarelix (GnRH antiagonist) Apalutamide II Recruiting December 30, 2021

IMbassador250 (NCT03016312) Enzalutamide Atezolizumab (Anti-PD-L1) III Active, not recruiting Sept 30, 2020

NCT02833883 Enzalutamide CC-115 (Dual DNA-dependent protein kinase and mTOR Inhibitor) I Active, not recruiting July 2021

NCT02207504 Enzalutamide Crizotinib (TKI) I Active, not recruiting March 2021

NCT02125084 Enzalutamide Everolimus (mTOR Inhibitor) I Active, not recruiting January 2021

NCT03834493 Enzalutamide Pembrolizumab III Recruiting April 30, 2024

NCT01867333 Enzalutamide PROSTVAC II Active, not recruiting January 1, 2021

NCT00450463 Flutamide PROSTVAC II Completed (No compiled results) June 8, 2017

NCT03488810 LHRH, Radiation Apalutamide III Not yet recruiting June 15, 2026
To date, there are many active clinical trials analyzing the efficacy of combination trials in advanced PCa and CRPCa, many based on the preclinical studies mentioned above. Here we have listed some studies of interest that focus on combi-
nations with ATTs will have results shortly.
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positive tumors have been treated with multi-
ple immunotherapies, such as anti-PD-1 nivo- 
lumab and anti-CTLA-4 ipilimumab with quite 
some success [44].

DNA damage repair deficient PCa

Mutations and deletions in DNA damage repair 
proteins are seen in up to 20% of primary PCa. 
Commonly lost DNA damage repair genes 
include BRCA1, BRCA2, CDK12, ATM, FANCD2, 
among many others. Tumors with any of these 
genetic abnormalities will often receive radia-
tion, and occasionally radiation plus ADT for 
patients with local disease, which appears to 
be effective [46, 47]. Poly (ADP-ribose) poly-
merase (PARP) inhibition in post-abiraterone 
metastatic CRPCa patients was found to have 
some success, mainly in patients with muta-
tions in DNA repair genes who experiences  
an increased survival of 6.3 months [48]. Two 
PARP inhibitors, Rucaparib and Olaparib, have 
since received FDA approval for treating meta-
static CRPCa. Two pre-clinical models showed 
synergistic anticancer effects of Olaparib and 
enzalutamide in AR-sensitive and AR-indepen- 
dent cell lines and in xenograft models [49,  
50]. The combination of abiraterone and Ola- 
parib in a phase II trial (NCT01972217) initially 
found a 5.6 month increase in PFS in metastat-
ic CRPCa patients compared to abiraterone 
alone [51] (Table 2). Another phase III trial 
(NCT03732820) for this combination is curren- 
tly ongoing. Several studies are also ongoing  
to determine the anti-cancer efficacy of Ola- 
parib and Veliparib in PCa in combination with 
abiraterone or enzalutamide (Table 1). How- 
ever, initial results suggest that PCa tumors 
with homologous recombination deficiency 
(HRD) are already more susceptible to andro-
gen deprivation than those tumors who have 
intact DNA damage repair response and do not 
require PARP inhibitors [52]. HRD was shown  
to give metastatic CRPCa patients increased 
sensitivity to radionucleotide Radium-223 [53], 
therefore the combination of Olaparib and Ra- 
dium-223 will be studied in phase II trials in 
attempt to further increase anti-tumor effects 
of this molecule. Chemotherapeutics, such as 
combinations of docetaxel and carboplatin, 
have also been utilized for these particular tu- 
mors with some efficacy in metastatic CRPCa 
patients with HRD [54, 55]. Preclinical studies 
have suggested that there is synergistic anti-

tumor effects in combining DNA repair protein 
inhibitors, specifically Olaparib and ATR-inhi- 
bitor AZD6738 (Ceralasertib) [56], which have 
spurred clinical trials in metastatic CRPCa, 
among several other cancers (Table 3).

ERG-positive PCa

Gene fusion events are also common in PCa 
and often include ETS transcription factors 
ERG or ETV. The fusion of TMPRSS2 and ERG 
oncogenes occurs in up to 50% of PCa [57, 58]. 
Although a frequent mutation, several studi- 
es have shown mixed associations between 
TMPRSS2-ERG, Gleason grade, and patient out- 
come [59-61]. While other ETS fusion proteins 
can occur in PCa, most have a frequency of less 
than 1%, thus they are rarely studied [62]. One 
method to treat PCa with TMPRSS2-ERG fu- 
sions is through inhibition of ETS co-factors, 
such as PARP or histone deacetylase 1 (HD- 
AC1), often in combination with ADT. Unfortu- 
nately, these phase I and II trials for patients 
with metastatic CRPCa have not achieved 
much success compared to ADT alone [52, 63, 
64]. As such, novel inhibitors of ERG are un- 
der development and show some promise. For 
example, selective ERG inhibitor ERGi-USU 
effectively inhibited ERG-positive VCaP xeno-
graft tumor growth alone, but had additive 
effects when cells were treated in combination 
with enzalutamide [65]. This same group found 
that dual inhibition of NOTCH (GSI-1) and AR 
(bicalutamide, enzalutamide, or abiraterone) 
signaling also synergistically suppressed ERG-
positive PCa cells [66]. Additionally, silencing 
TMPRSS2-ERG mRNA through Arg-Gly-Asp 
(RGD)-peptide-coated liposomal siRNA nano-
vectors has shown to enhance PCa sensitivity 
to docetaxel in vivo [67]. 

PTEN-Null PCa

Phosphatase and tensin homolog (PTEN) dele-
tion is another common genetic alteration in 
PCa that positively correlates with TMPRSS2-
ERG fusions. The loss of PTEN has a strong 
relationship with aggressive PCa and increas- 
ed mortality rates, especially when the tumor 
exhibits no ERG overexpression [68, 69]. Be- 
cause the loss of PTEN leads to increased acti-
vation of the phosphoinositide 3-kinase (PI3K)/
AKT/mTOR pathway, this pathway is the most 
common target for PTEN-null PCa [70], however 
there has been little success in these mono-
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Table 2. Completed clinical trials of abiraterone combination treatments for CRPCa
Clinical Trial Secondary Anticancer Agent Phase N Primary Outcome Result Reference
NCT01685125 Dastinib (Src Inhibitor) II 26 PFS No Benefit Dorff et al. 2019 [100]

NCT01485861 Ipatasertib (AKT inhibitor) II 253 Radiographic PFS Increased PFS, time to PSA progression, and survival De Bono et al. 2019 [77]

NCT01972217 Olaparib II 142 Radiographic PFS Increased PFS by 5.6 months, more dramatic response in HHR mutant tumors Clarke et al. 2018 [51]
Many clinical trials have analyzed the toxicity and effectiveness of combination treatments with abiraterone for the potential of PCa and CRPCa therapy. 

Table 3. Current clinical trials analyzing the safety and efficacy of combinations treatments with small molecule inhibitors or radium 223
Clinical Trial Primary Anticancer Agent Secondary Anticancer Agent Phase Current Status Estimated Completion Date
NCT03840200 Ipatasertib (AKT inhibitor) Rucaparib (PARP inhibitor) I/II Recruiting November 5, 2021
NCT03874884 Olaparib 177Lu-PSMA-617 II Recruiting October 2022
TRAP (NCT03787680) Olaparib AZD6738 (ATM Inhibitor) II Recruiting November 2025
NCT02893917 Olaparib Cediranib (Anti-angiogenesis) II Active, not recruiting December 2020
NCT03810105 Olaparib Durvalumab II Recruiting February 2021
NCT03574571 Radium 223 Docetaxel III Recruiting June 2023
NCT03737370 Radium 223 Docetaxel II Recruiting October 31, 2021
PEACE III (NCT02194842) Radium 223 Enzalutamide III Recruiting December 2025
NCT02225704 Radium 223 Enzalutamide II Active, not recruiting December 2022
NCT04019327 Talazoparib (PARP Inhibitor) Temozolomide I/II Recruiting July 2022
NCT02711956 ZEN003696 (BETi) Enzalutamide I/II Active, not recruiting October 2019
NCT04471974 ZEN003696 Enzalutamide, Pembrolizuman II Not yet recruiting August 31, 2025
Other various small molecule or Radium 223 combinations have emerged due to the fact that not many anti-cancer agents can effectively suppress CRPC for less than a year. PARP 
inhibitors have becoming an area of major interest as they have been shown to be quite effective in patients with mutations in DNA repair pathways. 
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therapies due to crosstalk activation of AR [71]. 
Preclinical models demonstrated that inhibition 
of PI3K or AKT with small molecules AZD8186 
or AZD5363, respectively, in combination with 
ADT resulted in enhanced growth suppression 
of cells and xenograft PCa tumors [72-74]. 
While the combinations of dual PI3K/mTOR 
inhibitor BEZ235 and abiraterone or pan-class 
I PI3K inhibitor buparlisib and enzalutamide 
caused many adverse side effects in phase I 
and II trials [75, 76], other clinical trials were 
more successful. For example, phase II clinical 
studies of abiraterone acetate in combination 
with AKT inhibitor ipatasertib have shown effi-
cacy against metastatic CRPC, particularly in 
patients with PTEN loss [77] (Table 2). Similarly, 
inhibition of mTOR can sensitize PTEN-null PCa 
cells to radiation in vitro [78]. The combination 
of olaparib and PI3K inhibitor BKM120 [79] or 
radiation [80] can also be utilized to effectively 
suppress the growth of PTEN/TP53-deficient 
PCa cells in vivo. Further studies on the combi-
nation of PI3K pathway inhibitors are warrant-
ed. Nevertheless, while AKT inhibitors may in- 
hibit PCa tumorigenicity, treatments of those 
compounds can cause an adverse elevation of 
PSA levels [81]. Therefore, alternative biomark-
ers to determine the success of this treatment 
should be developed.

MYC amplified or dysregulated PCa

MYC encodes a transcription factor oncogene 
that drives many cancers by increasing expres-
sion of pro-proliferative genes. MYC is amplified 
in about 8% of primary PCa tumors and can 
predict biochemical recurrence [82, 83]. MYC 
dysregulation can also occur upon loss of pros-
tate-specific transcription factor NKX.3.1, whi- 
ch competes for MYC binding spots [84]. 
Importantly, amplification or dysregulation of 
MYC results in the CR phenotype [85, 86]. 
Targeting MYC transcription through BETi has 
shown some efficacy in preclinical models 
through interrupting AR-mediated transcription 
of MYC [87, 88]. Importantly, combination treat-
ment of PI3K and BET inhibitors showed strong 
anti-cancer effects against a murine model of 
PCa with PTEN deletion and forced MYC expres-
sion [89]. New evidence has also demonstrated 
that SPOP mutants, which are commonly seen 
in PCa, are resistant to BETi [90]. This has been 
attributed to increased AR and PI3K signaling 
[91], therefore this type of therapy would be 
beneficial for a limited patient population.

Targeting MYC interacting proteins PIM or Pol I 
has become an interesting strategy to pre- 
vent MYC function in PCa. Inhibition of PIM 
(AZD1208) or Pol I (CX-5461) alone have shown 
to effectively suppress MYC-driven cancers in 
preclinical studies [92, 93], therefore the com-
bination of these two inhibitors was attempted 
in PCa. In vivo studies from a MYC overexpres-
sion and PTEN-deficient mouse model and 
patient derived xenografts (PDX) showed effec-
tive suppression of tumor growth as well as 
induced cell death with their combination [94]. 
Additionally, attempts have been made to tar-
get MYC mRNA and expression. In a study by 
Leonetti et al., it was demonstrated that utiliza-
tion of of bcl-2 (G3139) and c-myc (INX-6295) 
antisense olidodeoxynucleotides in combina-
tion with docetaxel effectively promoted tumor 
regression PC3 PCa xenograft growth, in addi-
tion to increasing survival [95]. Another preclin-
ical study by Ciccarelli et al. showed that in vitro 
and in vivo PCa cells with overexpression of 
MYC could be sensitized to radiation by MEK/
ERK inhibitors, which down regulated MYC pro-
tein levels [96].

Combinations of standard treatments with 
novel small molecule inhibitors

Expanding the toolbox of anticancer agents for 
CRPCa is currently ongoing with some novel 
small molecules showing to be quite effective 
against this disease. While most of these mol-
ecules can be effective alone, they are often 
analyzed for their anti-tumor effects in combi-
nation with other standard-of-care therapies 
for PCa. 

Although many small molecule inhibitors have 
been combined with docetaxel, mixed results 
have been obtained. Due to the frequent altera-
tions in kinase signaling pathways upon pro-
gression to the CR phenotype [7, 8, 97], inhibi-
tion of tyrosine kinases and their correspond-
ing downstream molecules was attempted for  
a treatment for CRPCa. Phase I/II trials (NCT- 
00439270) showed that dasatinib (Sprycel), a 
Src and BCR-ABL tyrosine kinase inhibitor (TKI), 
in combination with docetaxel was well tolerat-
ed by patients [98]; however the phase III 
READY trial (NCT00744497) demonstrated th- 
at there was no improvement in patient survi- 
val [99] (Table 4). Similarly, the combination of 
dasatinib and abiraterone also did not show 
any benefit to patients [100] (Table 4). Phase III 
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Table 4. Clinical trials of combination therapies for CRPCa with taxanes

Clinical Trial Primary Anti-
Cancer Agent

Secondary  
Anticancer Agent Phase N Primary  

Outcome Result Reference

SYNERGY (NCT01188187) Docetaxel Custirsen III 1022 Overall Survival No Survival Benefit Chi et al. 2017 [102]

READY (NCT00744497) Docetaxel Dastinib (Src Inhibitor) III 1522 Overall Survival No Survival Benefit Araujo et al. 2013 [99]

TRAPEZE (NCT00554918) Docetaxel Strontium-89 or Zolendronic  
Acid (Osteoclast Inhibitor)

II 757 PFS and Cost-Efficacy St-89 improved PFS, ZA Reduced Bone 
Metastasis, No Survival Benefit

James et al. 2016 [101]

Several other combinations with docetaxel have been analyzed for their efficacy against CRPC. However, docetaxel continues to have associated toxicities that result in reduced survival or lower the quality of life.

Table 5. Current clinical trials for CRPCa of combination therapies with taxanes

Clinical Trial Primary  
Anticancer Agent Secondary Anticancer Agent Phase Current Status Estimated Completion 

Date
upFrontPSMA (NCT04343885) Docetaxel 177Lu-PSMA-617 II Recruiting April 2024
TheraP (NCT03392428) Post-Docetaxel 177Lu-PSMA-617 II Active, not recruiting January 2021
NCT02218606 Cabazitaxel Abiraterone II Active, not recruiting August 2020
NCT03110588 Cabazitaxel Abiraterone and Enzalutamide I Recruiting August 1, 2023
NCT01555242 Docetaxel Aneustat I Completed (No compiled results) January 2014
ProCAID (NCT02121639) Docetaxel AZD5363 (AKT Inhibitor) I/II Active, not recruiting February 2020
NCT03218826 Docetaxel AZD8186 (PI3K Inhibitor) I Recruiting April 1, 2021
NCT01505868 Cabazitaxel Carboplatin I/II Active, not recruiting July11, 2030
NCT02522715 Cabazitaxel Enzalutamide I/II Active, not recruiting August 31, 2025
PROSTRATEGY (NCT03879122) Docetaxel/ADT Nivolummab, Ipilimumab II/III Active, not recruiting December 31, 2023
NCT03834506 Docetaxel Pembrolizumab III Recruiting February 28, 2023
NCT02649855 Docetaxel PROSTVAC II Active, not recruiting January 1, 2021
NCT01420250 Cabazitaxel Radiation (IMRT), Bicalutamide I Active, not recruiting January 1, 2021
NCT02494921 Docetaxel Ribociclib (CDK4/6 Inhibitor) I/II Active, not recruiting June 30, 2021
Similar to combination therapies with ATTs, many trials are looking to combinations with docetaxel to effectively suppress CRPCa. The intent is to find other therapies that can 
reduce the amount of taxane necessary for cancer treatment to prevent the toxicities commonly associated with these types of agents.
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TRAPEZE trial (NCT00554918) combining do- 
cetaxel with strontium-89, zoledronic acid, or 
both showed significantly reduced bone metas-
tasis, while no effect on overall patient survi- 
val upon treatment with zoledronic acid and 
docetaxel [101]. The SYNERGY trial (NCT011- 
88187) demonstrated that the combination of 
docetaxel and custirsen, an antisense oligonu-
cleotide that inhibits production of resistance-
associated chaperone protein Clusterin, also 
does not improve overall patient survival [102] 
(Table 4). 

As for pre-clinical models, one promising small 
molecule is Aneustat (OMN54), a multivalent 
botanical drug currently undergoing a phase I 
clinical trial (NCT01555242) for advanced can-
cers, primarily lymphomas. Interestingly, pre-
clinical studies revealed that treatment of PCa 
mouse xenografts with docetaxel and Aneustat 
dramatically reduced PCa tumor growth with 
potential synergistic effects [103]. Additionally, 
fatty acid binding protein 5 (FABP5) inhibitors 
with docetaxel or cabazitaxel show synergistic 
cytotoxic effects in vitro and in vivo [104]. 
Inclusion of ERK inhibitors can be an alternate 
approach to reduce taxane toxicity. Because 
ERK inhibitors are shown to increase the po- 
tency of docetaxel inhibition of CRPCa cells 
[97], ERK inhibitors may be included with 
docetaxel under ADT, which will allow to reduce 
the docetaxel dosage, as well as its cytotoxi- 
city, while accomplish a similar therapeutic 
index [97]. Another study aimed at targeting  
the PI3K/mTOR survival pathway in combina-
tion with docetaxel through N-(2-hydroxypropyl)
methacrylamide (HPMA) drug conjugates. Th- 
ey found increased solubility and anti-tumor 
effects with the HPMA conjugate combinations 
against PC-3 xenograft tumors, in addition to a 
reduction in the cancer stem cell population 
[105]. Because focal adhesion kinase (FAK) 
expression positively correlates with advanced 
disease, inhibition of this protein via defactinib 
in combination with docetaxel enhanced can-
cer cell death in CRPCa and docetaxel-resistant 
CRPCa preclinical models [106]. Another com-
bination of docetaxel with additional anti-micro-
tubule agent mebendazole was found to be 
effective against PCa through a drug screen. 
Interestingly, further analysis showed enhanced 
anti-tumor activity; unfortunately, potential tox-
icities due to excessive disruption of the micro-
tubule network were not reported in this study 
[107]. 

Other successes with docetaxel have been 
found through inhibition of specific receptors. 
Docetaxel nanoparticles in combination with a 
receptor activator of nuclear factor κB ligand 
(RANKL) monoclonal antibody, denosumab, led 
to an increase in survival and reduction in 
tumor burden and bone metastasis in PCa 
xenograft animal models [108]. Other preclini-
cal studies have found success by inhibition of 
endothelin-1 (ET-1) binding to its receptor 
Endothelin A (ETA) through ETA antagonist ABT-
627 to reduce in vitro and in vivo LNCaP and 
C4-2b PCa cell growth [109]. Meanwhile, early 
ex vivo studies showed that the combination of 
docetaxel and dopamine D2 receptor agonist 
bromocriptine did effectively reduce tumor gr- 
owth and bone metastasis in PCa xenograft 
models [110], suggesting another novel treat-
ment combination for utilization in PCa. Future 
clinical trials of these new combinations may 
provide an answer. As of late, many clinical tri-
als have aimed to tackle late stage disease 
through combination therapies with docetaxel. 
Examples include docetaxel plus radioligand 
therapy, immunotherapies, or small molecule 
inhibitors (Table 5).

Other combinations with two non-standard PCa 
treatments have also been analyzed in preclini-
cal and clinical studies. While in vitro results of 
DNA damaging agent temozolomide in combi-
nation with olaparib have shown to have en- 
hanced anti-tumor efficacy [111], a phase 1 
trial (NCT01085422) of veliparib and temo- 
zolomide showed little synergy in M1 CRPCa 
patients [112]. It is important to note that 
although these particular results showed no 
survival benefit, clinical studies continue to 
analyze the efficacy of PARP inhibitors with 
temozolomide combinations in CRPCa (Table 
3). Similarly, anti-angiogenesis agent cediranib 
showed modest activity alone in M1 CRPC 
patients [113], therefore, this drug is now being 
explored in combination therapy with olaparib 
in PCa (Table 3), as ovarian cancer patients 
have benefited from this combination [114]. 

It is noteworthy that statin derivative SVA is of 
particular interest. In addition to functioning  
as a single agent with minimal toxicity, SVA 
exhibits an added effect when combined with 
docetaxel (Figure 2A and 2B) and novel anti-
microtubule CIL-102 derivatives (Figure 2C and 
2D). Those novel CIL-102 derivatives are shown 
to have increased selectivity over CRPC cells 
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with low toxicity toward non-cancerous cells, 
and also effectively inhibit the tumorigenicity  
of both CRPCa and docetaxel-resistant CRPC 
[115]. Thus, these compounds have great po- 
tential for utilization in treating docetaxel-resis-
tant CRPCa as a single agent as well as in com-
bination with other types of therapies. 

Development of more novel compounds for 
CRPCa treatment is equally important in this 
aspect. Additional novel compounds, for exam-
ple, imidazopyridine derivatives [116] and preg-
nene analogs [117], have been shown to pos-
sess anti-tumor effect on various CRPCa cells 
under ADT conditions. More recently phase II 
and III clinical studies have begun to show the 

efficacy of novel compounds to treat advanced 
PCa including radioactive compound 177Lu- 
PSMA617 [118] in post-docetaxel CRPCa pa- 
tients and GnRH antagonist Relugolix (Relu- 
mina) [119]. Importantly, imidazopyridine com-
pounds exhibit activities toward CRPCa cells as 
well as NE-like PCa cells at a clinically achiev-
able concentrations (Figure 3). The potential of 
these novel small compound inhibitors deser- 
ve further investigation for their utilities in 
advanced PCa therapy. 

Conclusion and prospective

In summary, many attempts have been made 
to reduce the lethality of CRPCa. The search for 

Figure 2. Combination treatments with Simvastatin Derivative SVA. A. LNCaP-AI cells were plated for 3 days in regu-
lar medium before being adjusted to steroid-reduced conditions for 2 days. Cells were then treated with 2.5 μM SVA 
and/or 5 μM abiraterone acetate for 3 days in steroid-reduced conditions. Cell number was determined with trypan 
blue exclusion dye assay. Results presented are mean ± SE. n=3. *P<0.05 (Unpublished data). B. LNCaP-AI cells 
were plated for 3 days in regular medium before being adjusted to steroid-reduced conditions for 2 days. Cells were 
then treated with 2.5 μM SVA and/or 1 nM docetaxel for 3 days in steroid-reduced conditions. Cell number was de-
termined with trypan blue exclusion dye assay. Results presented are mean ± SE. n=3. *P<0.05 (Unpublished data) 
C. LNCaP-AI cells were plated for 3 days in regular medium before being adjusted to steroid-reduced conditions for 
2 days. Cells were then treated with 5 μM SVA and/or 500 nM of the CIL-102 derivatives 1, 22, or 23 for 3 days in 
steroid-reduced conditions. Cell number was determined with trypan blue exclusion dye assay. Results presented 
are mean ± SE. n=3. *P<0.05 (Unpublished data). D. Chemical structures of CIL-102 derivatives 1, 22, and 23.
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improved treatment strategies continues as 
current therapies are combined together or 
with new therapeutic agents, as well as preci-
sion medicine for specific genetic abnormali-
ties, such as expression of AR-V7. Currently, 
there has been some progress made in extend-
ing a CR PCa patients lifespan, but combina-
tions thus far have not been shown to be safe 
and effective options to further improve out-
comes in CRPCa. 

We propose that the next immediate step in  
the management and treatment of PCa is to 
make CRPCa as a chronic disease, thus reduc-
ing the lethality of this specific type of cancer. 
Importantly, further studies of combination tre- 
atments utilizing ADT, immunotherapy, and do- 
cetaxel, as well as studies directed towards 
precision medicine, are warranted in preclinical 
and clinical settings. Additionally, the disco- 
very and development of novel compounds,  
for example, SVA, CIL-102, and imidazopyridine 
derivatives, as single agents and/or combina-
tion usages with efficacy toward CRPCa as well 
as NE-like PCa cells is imperative. An important 

treatment combination to be developed is one 
which targets both the adenocarcinoma and 
the neuroendocrine PCa cell populations while 
spare the normal cells from cytotoxicity. Never- 
theless, advancements in immunotherapy and 
the synthesis of novel anticancer agents pro-
vide new methods and combinations for the 
treatment of CRPCa. 
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