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Abstract: The Hippo pathway controls several biological processes, including cell growth, differentiation, motility, 
stemness, cell contact, immune cell maturation, organ size, and tumorigenesis. The Hippo pathway core kinases 
MST1/2 and LATS1/2 in mammals phosphorylate and inactivate YAP1 signaling. Increasing evidence indicates that 
loss of MST1/2 and LATS1/2 function is linked to the biology of many cancer types with poorer outcomes, likely due 
to the activation of oncogenic YAP1/TEAD signaling. Therefore, there is a renewed interest in blocking the YAP1/
TEAD functions to prevent cancer growth. This review introduces the Hippo pathway components and examines their 
role and therapeutic potentials in prostate, kidney, and bladder cancer. 
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Introduction

The Hippo pathway regulates several biologi- 
cal processes, including cell growth, cell fate, 
energy stress, organ size control, and tumori-
genesis [1, 2]. The serine/threonine protein 
kinases MST1/2 and LATS1/2 (large tumor 
suppressor 1 and 2) are the core components 
of the Hippo pathway in mammals [3]. YAP1 
(Yes-associated protein 1) and its paralog 
WWTR1 (WW domain-containing protein; also 
known as TAZ) are transcriptional coactivators 
[4, 5]. YAP1 and WWTR1 are key nuclear effec-
tors of the Hippo pathway. MST1/2 and 
LATS1/2 phosphorylate and inactivate YAP1 by 
canonical and non-canonical signaling mecha-
nisms. In canonical signaling, MST1/2 phos-
phorylates and activates LATS1/2 kinase, 
which in turn phosphorylates and inactivates 
YAP1 [6]. In non-canonical signaling, however, 
MST1/2 and LATS1/2 kinase independently 
phosphorylate and inactivate YAP1 [7, 8]. The 
MST1/2 and LATS1/2 induction of phospho-
Ser127 attenuates the transcriptional activity 
of YAP1 through cytoplasmic localization and 
proteasomal degradation via protein 14-3-3  
[9, 10].

The TEA domain (TEAD) transcription factors 
(TEAD1-4) are the critical mediators of YAP1-
dependent gene expression [11]. Genes induc- 
ed by YAP1/TEAD modulate broad cellular pro-
cesses, including cell growth, migration, surviv-
al, anchorage-independent growth, epithelial-
mesenchymal transition (EMT), tissue homeo- 
stasis, organ size, oncogenic transformation, 
and tumorigenesis [12]. Also, YAP1 interacts 
with specific transcriptional programs and sig-
naling pathways that are central to stem cell 
maintenance and epithelial commitment, in- 
cluding the Wnt/β-catenin [13, 14], Notch [15] 
and TGF-β [16] pathways. In addition, YAP1 sig-
naling during development has been shown to 
maintain progenitor populations by enhancing 
proliferation and simultaneously inhibiting epi-
thelial differentiation [17, 18]. Furthermore, the 
inactivation of YAP1 resulted in cell contact in- 
hibition and tissue overgrowth [10]. YAP1 also 
functions as a potent oncogene, and YAP1 
nuclear abundance contributes to tumor pro-
motion, progression, and resistance to chemo-
therapeutics [19]. The interaction between 
YAP1 and TEAD is mutual because YAP1 ser- 
ves as a transcriptional coactivator for TEAD-
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dependent gene transcriptions. Therefore, tar-
geting the YAP1-TEAD axis is a promising the- 
rapeutic strategy against YAP1-induced onco- 
genesis.

In addition to MST1/2 and LATS1/2, other pro-
tein kinases regulate YAP1 signaling possibly  
in a context-dependent manner [20, 21]. For 
example, activation of AMPK (AMP-activated 
protein kinase) under cellular energy stress, 
such as glucose starvation, disrupted the YAP1-
TEAD interaction by directly phosphorylating 
YAP1 on Ser94, a residue essential for interac-
tion with TEAD [20]. These molecular events 
inactivated YAP1 and suppressed the growth of 
LATS-null cells [20]. This study establishes a 
molecular and functional link between AMPK 
and the Hippo-YAP1 pathway during cellular 
energy stress. Moreover, a study by Sorrentino 
et al. demonstrated that metabolic cues regu-
late YAP1/TAZ [22]. Mevalonic acid induced  
by the SREBP transcription factor promotes 
YAP1 nuclear localization by activating Rho 
GTPases, which attenuated phospho-Ser127 
on YAP1, likely by inhibiting LATS1/2 kinase 
[23]. Statins, a potent HMG-CoA reductase 
inhibitor, a rate-limiting enzyme in the SREBP-
mevalonate pathway, attenuates YAP1 nuclear 
localization and transcriptional responses. Me- 
valonate-YAP1/TAZ axis is required for prolifer-
ation and self-renewal of breast cancer cells 
[22]. In addition, serum-drived S1P and LPA 
activated YAP1 by inhibiting Hippo/MST signal-
ing, and thus, S1P and LPA might modulate  
cell proliferation and tumorigenesis by activat-
ing YAP1 [24].

Hippo pathway core components

Mammalian STE20-like kinase 1 and 2 (MST1/ 
2, encoded by STK4 and STK3 genes, respec-
tively) are serine-threonine protein kinases 
[25]. Structurally, MST1/2 has an N-terminal 
catalytic domain and a C-terminal regulatory 
domain with SARAH coiled-coiled protein  
dimerization and inhibitory sites [26]. MST1/2 
are phosphoproteins, and phospho-modifica-
tions are important for their activation and 
functions [27]. Autophosphorylation of MST1 
on Thr183 (Thr180 in MST2) regulates the 
MST1/2 kinase activity and apoptosis [28]. 
Conversely, phosphorylation of MST1 on Thr- 
120 (Thr117 in MST2) by AKT protein kinase 
could attenuate MST1 activity [29]. In addition, 
phosphorylation of MST1 at Tyr433 by a non-

receptor tyrosine protein kinase c-Abl resulted 
in MST1 stabilization and activation, leading to 
neuronal cell death [30]. Similarly, c-Abl was 
demonstrated to phosphorylate MST2 at Tyr81 
and resulted in MST2 activation and neuronal 
cell death [31]. Nevertheless, phosphorylation 
of MST1 at Tyr433 by the FGFR4 tyrosine kinase 
resulted in the inactivation of MST1/2 in T47D 
and MDA-MB-231 breast cancer cells [32]. In 
that study, the author showed that the knock-
down of FGFR4 promoted MST1 nuclear local-
ization, N-terminal cleavage, and autophosph- 
orylation, which accompanied augmented cell 
death. In addition, phosphorylation and dimer-
ization was shown to modulate nucleocytoplas-
mic shuttling of MST1/2 [33]. These observa-
tions suggest that MST1/2 can be regulated by 
a context-dependent manner. 

Hippo pathway in development and cancer

Hippo signaling is critical for tissue develop-
ment and tumorigenesis [34, 35]. Loss of func-
tion of the Drosophila MST ortholog, hippo 
(hpo) caused tissue overgrowth, defects in eye 
development, and cell enlargement [36, 37]. 
Similarly, silencing of the hippo-like Cst-1 gene 
in C. elegans reduced life span [38]. Likewise, 
MST1 or MST2 single gene knockout did not 
show apparent developmental defects; how- 
ever, MST1/2 double-knockout mice exhibited 
early embryonic lethality due to excessive cell 
death in embryo, developmental defects in pla-
centa, impaired yolk sac/embryo vascular pat-
terning, and primitive hematopoiesis [39]. 

Evidence based on experimental and clinical 
studies indicates that loss of MST1/2 signal- 
ing results in cancer development [40-42]. 
Targeted deletion of MST1/2 alleles in the 
hepatocytes resulted in liver enlargement and 
eventually caused liver tumors in mice [43]. 
Similarly, deletion of Sav1 in hepatocytes re- 
sulted in hepatic tumors in mice [43]. Transcri- 
ptional profiling of both MST1/2 and Sav1 defi-
cient liver tissues revealed a network of genes 
involved in immune and inflammatory respons-
es [43]. Likewise, deletion of the MST1/2 scaf-
fold protein WW45 (Salvador in Drosophila) in 
the mouse liver increased liver size and re- 
sulted in hepatomas [44]. In addition, deletion 
of the Nf2/Merlin, an upstream activator of 
MST1/2, resulted in liver tumors and progres-
sive expansion of progenitor cells in developing 
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or adult livers without affecting differentiated 
hepatocytes [45]. MST1/2, WW45, Sav, and 
Nf2 double mutant liver tissues showed a sub-
stantial increase in hepatic progenitor cells or 
adult facultative stem cells (a.k.a. oval cells, 
which are commonly associated with liver in- 
jury and tumor formation). MST1/2 restrained 
intestinal stem cell proliferation and colonic 
tumorigenesis by inhibiting YAP1 nuclear accu-
mulation [46]. A recent study demonstrated 
that MST1/2 kinases suppressed Ras driven 
non-small cell lung cancer in the transgenic 
mouse model [47]. Activation of YAP1 expand-
ed undifferentiated progenitor cells and incre- 
ased liver size more than 4-fold [48]. These 
observations are physiologically relevant be- 
cause the loss of MST1/2 expression have 
been suggested in head and neck squamous 
cell carcinoma [49], soft tissue sarcoma [50], 
glioblastoma [51], and colorectal cancers [52], 
along with a poorer prognosis.

Hippo pathway in prostate cancer

Metastatic prostate cancer (PC) is a leading 
cause of cancer deaths among men world- 
wide. Dysregulated androgen receptor (AR) sig-
naling is central to PC development, progres-
sion, metastasis, and relapse. The gene ampli-
fication [53], mutations [54], oncogenic growth 
factor signaling [55], and altered expression of 
the AR co-regulatory proteins [56] have been 
shown to dysregulate AR signaling, even in the 
presence of suboptimal levels of androgens 
[56, 57]. Therefore, antiandrogen therapy is 
standard care for patients with advanced PC. 
This treatment strategy has significant clinical 
benefits, but it is temporary because the  
metastatic castration-resistant prostate can-
cer (CRPC) invariably evolves, even in the pres-
ence of second-generation AR inhibitors such 
as enzalutamide [58, 59]. Despite recent ad- 
vances [60-69], the molecular mechanisms 
contributing to CRPC are largely unknown.

Increasing lines of evidence have indicated  
that loss of MST1/2 functions plays an impor-
tant role in PC biology [42, 70]. Structural  
modifications such as by phosphorylation, 
altered-subcellular localization, and reduced 
expression by promoter methylation could 
cause loss of MST1/2 functions [3, 70, 71]. 
MST1 was initially identified from the AKT pro-
tein complexes that were isolated from lipid 

rafts of LNCaP cells using proteomic appro- 
aches [72]. Lipid raft is a cholesterol-rich  
membrane microdomain and harbors impor-
tant signals for cell survival [73, 74]. MST1  
biochemically interacted with and antagonized 
AKT signaling in ex vivo and in vivo conditions. 
In addition, MST1 protein expression was 
reduced during prostate cancer progression, 
which coincided with increases in AKT activity. 
Also, STK4/MST1 functions as a potent nega-
tive regulator of AR signaling and suppressor  
of PC ex vivo and in vivo [75]. These findings  
are the first to demonstrate that MST1 is a 
potent inhibitor of AKT and AR oncogenic sig-
naling in PC, supporting the relevance of the 
Hippo pathway in PC progression. Besides, 
LATS2 could act as a corepressor by blocking 
AR protein nuclear-cytoplasmic interactions 
[76]. The recent studies on genomic and pro-
teomics analyses on PC cells models and clini-
cal samples have shown additional evidence 
for crucial cellular events related to the agg- 
ressiveness of PC, including DNA repair, epi-
genetic alteration, cell cycle, and translational 
regulation [77-79]. 

A growing body of research has indicated that 
YAP1 activation or amplification is linked to the 
biology of many cancers with poor prognosis, 
including PC. YAP1 was demonstrated to trans-
form prostate epithelial cells and promote cell 
migration, cell invasion, and androgen-indepen-
dent cell growth, which most likely activated  
AR and ribosomal S6 kinase (RSK1) signaling 
[80]. Similarly, induction of KIBRA, a potent 
activator of YAP1, was shown to promote PC 
cell proliferation, migration, and invasion in 
immortalized and cancerous prostate epithe- 
lial cells [81]. This study showed that AR pro-
moted KIBRA overexpression, suggesting the 
functional connection between YAP1 and AR 
signaling. Moreover, upregulation of YAP1 in  
the ERG transgenic mouse prostate epithelium 
resulted in age-related PC [81]. ERG was sh- 
own to transcriptionally regulate YAP1 expres-
sion and its transcriptional program, providing 
a possible mechanism by which ERG cooper-
ates with YAP1 to promote PC in mice. Eviden- 
ce suggests that YAP1 expression was hetero-
geneous in PC and increased YAP1 expression 
correlated with PC metastasis to the surround-
ing tissues [82]. Another study demonstrated 
that expression of YAP1 increased high-grade 
PC as opposed to low-grade PC, although neu-
roendocrine prostate tumors showed reduced 
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YAP1 expression [82, 83]. Altogether, these 
studies emphasize the critical role of YAP1 sig-
naling in PC biology.

In addition, an elegant study by Kuser-Abali et 
al. demonstrated that the interaction of YAP1 
with AR may contribute to CRPC [84]. A key find-
ing from this study was that YAP1 and AR inter-
acted with each other without androgen expo-
sure in the CRPC cell model compared to its 
castration-sensitive PC cell counterpart. This 
study also showed that genetic silencing of 
MST1, a potent YAP1 inhibitor, enhanced an- 
drogen independent YAP1 and AR interactions. 
Truncated AR variants, lacking the ligand bind-
ing domain, are critical for driving metastatic 
CRPC [58, 85, 86]. YAP1 interacted with N- 
terminal domain of AR, providing a possible 
mechanism of action by which YAP1 mediates 
development of CRPC cell phenotype in collab-
oration with AR. A recent study from the same 
group showed that androgen exposure promot-
ed YAP1 nuclear localization that also occurred 
in an AR-dependent manner because disrup-
tion of AR activity by pharmacologic and genet-
ic approaches reduced the levels of YAP1 pro-
tein and nuclear localization [87]. Mechanisti- 
cally, androgen suppressed the inhibitory phos-
pho-Ser127 on YAP1, possibly activating pro-
tein phosphatases and inhibiting MST1 signal-
ing to exert its effect on YAP1. The link between 
YAP1 and AR is physiologically relevant because 
the analysis of TCGA (The Cancer Genome At- 
las) PC data sets showed that the expression of 
YAP1 and AR at the transcript levels positively 
correlate in a subset of PC tissues [87-89]. In 
addition, a comprehensive analysis of YAP1 
protein expression in more than 17,000 pros-
tate cancer specimens showed that YAP1 over-
expression is associated with advanced tumor 
stage, Gleason grade, positive nodal stage, and 
early biochemical occurrence [90]. Further- 
more, enhanced YAP1 immunoreactivity signifi-
cantly associated with TMPRSS2:ERG fusion, 
high androgen receptor (AR) expression, high 
Ki67 labeling index, and PTEN and 8p deletions 
[90] indicated that high YAP1 expression could 
be an independent predictor of poorer disease 
outcomes. Overall, there is a strong connection 
between YAP1 activation and metastatic CRPC. 

Moreover, YAP1 signaling is crucial for main-
taining stem cell characteristics. Cancer stem 
cells are implicated in the etiology of metastat-
ic PC and chemoresistance. A published stu- 

dy suggested that increased YAP1 expression 
after enzalutamide exposure resulted in over-
population of cancer stem-like cells [91]. Con- 
sistent with this finding, induction of YAP1 pro-
moted cancer stemness and lipid metabolism 
to mediate the development of enzalutamide-
resistant PC [92]. Similarly, a recent study sh- 
owed that docetaxel exposure elevated the 
expression of CYR61, YAP1, CD44, CTGF, and 
ERK in castration-resistant prostate cancer cell 
lines PC/DX25 and DU/DX50 [93]. Induction of 
these genes in response to docetaxel could 
promote migration and invasion abilities of PC/
DX25 and DU/DX50 because knockdown of 
CD44 and YAP1 inhibited observed effects. 
CYR61, YAP1, CD44, and CTGF are the YAP1 
targets, suggesting that higher stem cell popu-
lations contribute to resistance to chemothera-
peutic agents [93]. Taken together, there is a 
strong connection between YAP1 activation 
and the evolution of metastatic PC. Neverthe- 
less, it is unknown whether YAP1 collaborates 
with AR to contribute to the overpopulation of 
cancer stem cells in PC in response to cancer 
therapy.

Furthermore, the impact of tumor microenviron-
ment on cancer progression has gained atten-
tion. Cancer-associated fibroblasts (CAFs) are 
vital components of the tumor microenviron-
ment. Tumor-promoting factors produced by 
CAFs play important roles in cancer progres-
sion and metastasis [94]. A recent study by 
Shen et al. showed that YAP1 in complex with 
the TEAD1 transcription factor, a key mediator 
of YAP1 transcriptional activity, promotes the 
conversion of normal fibroblasts to CAFs [95]. 
Mechanistically, the YAP1 and TEAD complex 
promote CAFs by increasing the expression of 
SRC, a non-receptor tyrosine kinase, in fibro-
blasts [95]. The GREM2 (Gremlin 2), a bone 
morphogenic protein antagonist is considered 
as another viable target in PC. Shan et al. 
reported that the elevated miR-423-5p in exo-
somes secreted by CAFs could lead to taxane 
resistance targeting GREM2 via the TGF-β  
pathway [96]. These observations further em- 
phasize the significance of YAP1 signaling in  
PC progression. Thus, the Hippo/MST1-YAP1-
AR axis is a viable cancer drug target to reduce 
deaths from PC.

Hippo pathway in kidney cancer

Renal cell carcinoma (RCC), which is derived 
from renal tubular epithelial cells, accounts for 
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up to 85 percent of all renal malignancies [97]. 
Over the past 20 years, however, research has 
revealed that kidney cancer is not a single dis-
ease but consisting of multiple dissimilar types 
of cancer. RCC includes a set of heterogeneous 
malignancies of the kidney. RCC is one of the 
most well-known types of cancer, exhibiting 
83-88% of human cancer metastasis [98, 99]. 
However, the kidney cancer types not classifi- 
ed as RCC are graded as non-clear cell RCC 
(nccRCC). Clear cell RCC (ccRCC), papillary RCC 
(pRCC), and chromophobe RCC (chRCC) are  
the main subtypes of kidney cancer with ≥5% 
occurrence [100]. The other subtypes of kidney 
cancer are exceptionally uncommon (each with 
≤1% occurrence) [101]. In the United States, 
kidney cancer affects thousands of people 
each year [102]. However, there is no effective 
therapy for patients with advanced RCC due to 
the poorly understood disease mechanisms 
[102]. Here, we discuss the role of the Hippo-
YAP1 in ccRCC, the deadliest form of kidney 
cancer.

Emerging evidence suggests that dysregulation 
of Hippo-YAP1 signaling plays a significant role 
in the etiology of aggressive kidney cancer 
[103]. A study by Godlewski et al. revealed that 
YAP1 protein is accumulated in the nuclei of 
ccRCC cells, even though normal kidney cells 
primarily express the cytoplasmic YAP1 protein 
[104]. Likewise, nuclear YAP1 is dramatically 
higher in ccRCC than nuclear YAP1 in the proxi-
mal, unaltered kidney cortexes, as assessed by 
immunohistochemistry [105]. The upregulation 
of YAP1 in ccRCC patients showed poorer clini-
cal outcomes [106]. The higher YAP1 protein 
expression is associated with the clinical sta- 
ge and pathomorphological features, such as 
higher TNM and Fuhrman’s stages [105]. It 
appears that nuclear YAP1 has an oncogenic 
role in ccRCC cells, promoting cell proliferation 
and survival [105]. 

Nevertheless, another study demonstrated th- 
at cytoplasmic YAP1 correlated with poor prog-
nosis and a high death hazard ratio in the sub-
set of ccRCC patients [107], suggesting that 
YAP1 retained in the cytoplasm could interact 
with other signaling pathways to stimulate cc- 
RCC cell proliferation and progression [108]. 
The proto-oncogene KRAS (Kirsten rat sarcoma 
virus) acts as a potent oncogene once mutated 
[109-112]. KRAS is a cytoplasmic and mem-

brane associated protein and a part of the 
RAS/MAPK pathway [113]. Genetic and bio-
chemical studies suggested that YAP1 and 
KRAS functionally intersect. For example, YAP1 
and KRAS cooperate to regulate the expression 
of the E2F transcription factor, a key cell cycle 
regulator [114]. In KRAS-dependent cancer 
cells, YAP1 functionally counteracted the ab- 
sence of KRAS oncogenic signaling [115], al- 
though the mechanism remains elusive. Other 
studies showed that cytoplasmic YAP1 corre-
lated with an increase in keratin 19 expression 
in hepatocellular carcinoma and cholangiocar-
cinoma. The upregulation of keratin 19 is link- 
ed to poor prognosis and cancer progression in 
patient subsets [116], suggesting the function-
al interaction between YAP1 and keratin 19 in 
the development of aggressive cancer. In addi-
tion, cytoplasmic YAP1 correlated with histo-
logical grade, cancer relapse, and metastasis 
in uterine cervix squamous cell carcinoma 
[117]. 

Moreover, the interaction of YAP1 with the GLI 
family zinc finger 2 (GLI2) transcription factor 
promotes the expression of vascular endothe-
lial growth factor A (VEGFA) and angiogenesis  
in RCC cells [118]. In that study, the author 
showed that the silencing of YAP1 by RNAi sup-
pressed the angiogenic ability of 786-O kidney 
cancer cells [118]. Also, the silencing of YAP1 
reduced the tube formation and recruitment of 
human umbilical vein endothelial cells (HUVEC) 
[119]. The knockdown of GLI2 dramatically re- 
duced YAP1 and VEGFA expression, HUVECs 
recruitment, and tube formation [118]. GLI2 
was demonstrated to promote YAP1 expres-
sion, which in turn stimulated the expression of 
VEGFA in RCC cells [120], implicating that YAP1 
is a potential therapeutic target to fight against 
invasive RCC. In addition, the SRC-JNK (Jun 
N-terminal kinase)-LIMD1 (LIM domains- con-
taining 1)-LATS (large tumor suppressor homo-
log) axis was demonstrated to promote YAP1 
expression through SRC in RCC cells [120]. It 
was also shown that the activation of SFK (SRC 
family kinase) and FAK (focal adhesion kinase) 
upregulated YAP1 in different types of tumors 
[119-122]. 

The LATS1/2 kinase phosphorylates inacti-
vates nuclear YAP1 through cytoplasm seques-
tration [3]. The immunoreactivity of LATS1 was 
detected in the cytoplasm of normal and can-
cer cells in the patient subset [123]. However, 
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the expression of LATS1 was absent or weak in 
40% of ccRCC patients [124]. One mechanism 
suggested that the low levels of LATS1 were 
due to the hypermethylation of the LATS1 pro-
moter region in ccRCC cells [105]. The de- 
methylation of LATS1 promoter in 786-O cell 
line is intensely correlated with overexpression 
of the YAP1 protein [106]. The low levels of 
LATS1/2 protein are correlated with the clini- 
cal stage and pathological grade of ccRCC 
[104]. A subset of ccRCC patients showed a 
substantial decline of LATS1/2 protein levels, 
which is consistent with mRNA levels in an- 
other set of patients [125]. Furthermore, the 
TCGA data from 469 ccRCC tumors revealed 
that YAP1 mRNA was upregulated in 9.6% and 
downregulated in 4.9% of cases, and LATS1 
mRNA was upregulated in 4.5% and downregu-
lated in 10.7% of cases [4]. The low expression 
of LATS 1/2 demonstrated a poor survival rate 
in RCC patients likely due to the nuclear YAP1 
abundance.

Furthermore, the SH3 Domain Binding Gluta- 
mate Rich Protein Like 2 (SH3BGRL2) was iden-
tified as one of the novel regulators of the Hippo 
pathway in ccRCC. SH3BGRL2 acts as a sup-
pressor via interacting with LATS1/2-YAP1-TE- 
AD1 axis in ccRCC [125]. In addition, YAP1 is 
transcriptionally activating Twist1 expression 
by binding to TEAD1, which leads to epithe- 
lial-mesenchymal transition (EMT) phenotype 
[125]. Another regulator is the microphthalmia-
associated transcription factor (MITF). MITF is 
an essential helix-loop-helix leucine zipper tran-
scription factor involved in the progression of 
various malignancies such as melanoma [126]. 
In ccRCC, MITF contributes to cell proliferation 
and tumor growth by activating the RhoA/YAP1 
signaling pathway [127]. Silencing MITF hin-
dered the translocation of YAP1 from the cyto-
plasm to the nucleus [127]. Interestingly, the 
upregulated YAP1 stimulated cell migration and 
cell invasion, while these effects were revers- 
ed upon MITF silencing [128]. In addition, al- 
tered expression of microRNAs (miRNAs) are 
linked to cancer proliferation in various ma- 
lignant tumors, including RCC [129-132]. The 
miR-10b is one of the essential factors in renal 
cancer [133], and has a vital role in ccRCC cell 
proliferation, migration, and invasion. Studies 
demonstrated that miR-10b repressed cell mi- 
gration and cancer metastasis by targeting 
HOXA3 through the FAK-YAP1 axis in ccRCC 
[134].

Degalactotigonin (DGT), a plant extract derived 
from S. nigrum L, can act as a viable therapeu-
tic agent for advanced RCC. The RNA-seq has 
demonstrated the efficacy of DGT on 786-O 
cells affecting YAP1 target genes [135] possi- 
bly by inducing the expression of LAST1 and 
SAV1 that negatively regulate YAP1. In addition, 
DGT diminished the growth of RCC by YAP1 
overexpression in vitro and in vivo. Additional 
studies suggested that DGT could block YAP1 
and TEAD1 interaction, YAP1 expression, and 
their target gene expression [136]. Also, DGT 
disrupted YAP1 by stimulating LAST1/2, which 
leads to YAP1 retention in the cytoplasm [137]. 
Curcumin is another therapeutic agent that 
potentially targets YAP1 signaling in Renal 
Cancer. Curcumin is an herbal compound with 
anti-cancer effects inhibiting carcinogenesis, 
angiogenesis, and tumor growth in pre-clinical 
and clinical studies [138]. Studies demonstrat-
ed that the treatment of a low concentration  
of curcumin stimulated YAP1 and p53 expres-
sion but did not induce apoptosis. Neverthe- 
less, the combination of low concentration of 
curcumin and temsirolimus, an mTOR inhibitor, 
drastically promoted cell death. Also, high 
doses of curcumin alone induced apoptosis of 
the Caki-1 and OSRC-2 renal cell lines [139]. 
Dasatinib is a pharmacological inhibitor of sev-
eral tyrosine kinases such as Bcr-Abl and the 
Src kinase family [140]. Dasatinib was shown  
to trigger the activation of the JNK-LIMD1-LATS 
axis and resulted in downregulated YAP1 tran-
scriptional activity in RCC cells [141]. Thus, 
dasatinib is a promising therapeutic option for 
RCC in which the Hippo-YAP1 pathway plays a 
significant role; however, this requires addition-
al studies [120].

Hippo pathway in bladder cancer

Bladder cancer is the fourth most common 
cancer type with a substantial mortality rate in 
men and is the eighth most common cancer in 
women worldwide [142]. The heterogeneity of 
the disease with the variable pathology of its 
nature presents a challenge to treat it efficient-
ly. Available molecular data have shown that 
the pathological properties of bladder cancer 
are difficult to establish. The complexity arises 
from different histological subtypes of the dis-
ease. Furthermore, lack of standardization on 
staging, grading, and histological analysis ma- 
kes comparison of pathological and clinical re- 
sults on bladder tumor difficult, causing varia-
tion in interpretation [143]. In 2016, WHO 
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(World Health Organization) categorized uro- 
thelial cancer into high grade and low grade to 
create a clear histological difference in between 
tumors. Three non-invasive group of bladder 
cancers (pTa low-grade tumors, pTa high-grade 
tumors, and papillary urothelial neoplasm of 
low malignant potential (PUNLMP) were includ-
ed in the list. The non-invasive term differenti-
ates the high- and low-grade papillary carcino-
mas from invasive urothelial carcinomas. Sta- 
ging is also another challenge to identify and 
classify bladder cancer pathological subtypes 
clearly [143]. Urothelium is one of the slowest 
cycling epithelia that is exposed to many car-
cinogens. This makes the bladder a high-risk 
organ for cancer development, progression, 
and mortality [144]. About 90% of bladder 
tumors arise from transitional cells of the uro-
thelium, and the rest of them originates from 
squamous (5%) and glandular (2%) variants. 
The remainder of the groups include the rare 
subtypes of bladder tumors [145, 146].

There are several signaling pathways that in- 
volve the survival of bladder cancer cells such 
as the NF-kB, MAPK, mTOR, and JAK-STAT path-
ways [147]. The NF-κB pathway has been iden-
tified to contribute to the upregulation of the 
survivin gene in bladder cancer. Studies have 
also shown that upregulation of the survivin 
gene by NF-κB not only suppresses apoptosis 
in bladder cancer cell lines in vivo and in vitro, 
but it also enhances proliferation [148]. YAP1 
has been shown to work as an upstream regu-
lator and activator of the MAPK pathway in 
bladder cancer [149]. However, the YAP1-MAPK 
pathway is still a novel area of study in bladder 
cancer. The YAP1 and mTOR proteins are known 
to regulate each other positively. The crosstalk 
between these proteins has been shown to 
accelerate the progression of the disease 
[150]. The JAK-STAT pathway is the most stud-
ied pathway that has various functions in cellu-
lar signal transduction. The deregulation in this 
pathway is associated with tumorigenesis and 
metastasis in several cancer types, including 
bladder cancer [151]. The constitutive activa-
tion of STAT3 plays a vital role in bladder malig-
nancy [152]. Chen et al. reported an increase in 
phospho-STAT3 in bladder cancer tissue and 
bladder cell lines UMUC-3, WH, and 253-J. The 
inhibition of STAT3 signaling by dominant nega-
tive STAT3-Y705F mutant and small molecule 
STA-21 inhibitor not only suppressed the blad-

der cell growth, but also induced apoptosis, 
demonstrated by immunostaining of cleaved 
caspases 3, 8, and 9 [152]. Studies have sh- 
own that RAC3 (Rac family small GTPase 3) is 
upregulated in bladder cancer cell lines and tis-
sues [153]. The overexpression of RAC3 could 
enhance invasion, migration, and proliferation 
in bladder cancer cells through PYCR1 (pyrro-
line-5-carboxylate reductase 1), a mitochondri-
al enzyme, given that PYCR1 knockdown re- 
versed the observed effects of RAC3. Silencing 
of PYCR1 negatively affects the levels of STAT3, 
phospho-STAT3, c-MYC, JAK2, and phospho-
JAK2 proteins. Overall, activation of the JAK/
STAT pathway, which is likely mediated by PY- 
CR1 overexpression, has a critical role in the 
etiology of bladder cancer [153].

Moreover, recent studies have suggested that 
Hippo pathway has an important role in  
the progression of bladder cancer [154]. The 
Hippo pathway in bladder cancer has not been 
studied thoroughly. The limited reports have 
shown that dysregulation of Hippo signaling in 
bladder cancer is correlated with bladder tu- 
mor initiation, progression, and metastasis 
[155]. Findings point to the fact that the tu- 
mor suppressor proteins MST1 and LATS1 are 
downregulated in bladder cancer clinical sam-
ples [156, 157]. Saadeldin et al. identified the 
alteration and mutations in the LATS1 gene in 
Egyptian patients with bladder cancer. The 
group showed that the new variants of LATS1 
caused the reduction of LATS1 mRNA expres-
sion in urinary bladder tissues [158]. RUNX3 
(Runt-related transcription factor 3), which  
is a downstream effector of the Hippo/MST1 
pathway, serves as a tumor suppressor in  
multiple cancers, including bladder cancer 
[156]. A recent study investigated the effect  
of RUNX3 inactivation and polymorphism in 
bladder cancer [159]. The genetic variations in 
the RUNX3 gene increases the risk of bladder 
cancer development and progression [159].  
In addition, the role of ETV5, a transcription 
factor of the ETS family, in FGFR3 and Hippo 
signaling in bladder cancer has been investi-
gated. The ETV5 is a downstream target of 
mutant FGFR3 and associated with crosstalk 
between Hippo and FGFR3 pathway. It is also 
involved in the up-regulation of genes associ-
ated with epithelial-mesenchymal transition of 
invasive cells, followed by the proliferation and 
growth of bladder cancer cells [160]. 
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Furthermore, overexpression of YAP1 has also 
been reported in bladder cancer [161]. 4-Hy- 
droxynonenal (HNE), a pro-oxidant agent, down-
regulated YAP1 expression via redox-depen-
dent mechanism in bladder cancer cells [162]. 
Similarly, increasing doses of verteporfin, a po- 
tent activator of MST1 kinase and inhibitor  
of YAP1-TEAD interaction, suppressed blad- 
der cancer cell invasion and growth through 
MST1/Hippo signaling [160]. In previous stud-
ies, YAP1 was noted to promote bladder cancer 
cell progression and migration by interacting 
with COX2, ANKRD17, and KLF5 [163-165]. 
YAP1 expression has also been associated wi- 
th poor prognosis and the advanced stages of 
bladder cancer [166]. A recent study suggested 
that YAP1 could be used as prominent biomark-
er for shortened survival time in patients with 
urothelial carcinoma of the bladder [149]. This 
study indicated that silencing of YAP1 changed 
the migration and proliferating ability of bladder 
cancer cell lines [149]. YAP1 promotes cell pro-
liferation and is required for the tumorigenesis 
of bladder cancer, most likely in collaboration 
with the MAPK/ERK pathway [149]. All these 
studies suggest that YAP1 is a prominent tar- 
get for bladder cancer treatment. 

Finally, current therapies focus on improving 
treatment outcomes using rational cocktail 
regimens and projectile biomarkers. Although 
cisplatin-based therapy still reigns as the stan-
dard approach at the early metastatic settings, 
novel therapies are now altering previous treat-
ment paradigms. These therapies include the 
approval of five immune checkpoint inhibitors 
that include durvalumab, pembrolizumab, ave-
lumab, nivolumab, and atezolizumab in the 
platinum refractory setting and two immune 
checkpoint inhibitors in the first line setting for 
patients who are deemed cisplatin ineligible 
and harbor tumors with high PD-L1 expression 
[156, 157, 159, 160, 162, 167-169]. Studies 
have shown nivolumab to have significant res- 
ponse rates as well as resilient scientific res- 
ponses in pretreated metastatic urothelial car-
cinoma patients [157]. The data from this 
study, which are consistent with data from pre-
vious studies in other malignancies, suggest 
that there is a substantial benefit in using 
nivolumab for treating metastatic urothelial 
carcinoma [157]. Atezolizumab also was proven 
to have a favorable response and endurance 
with little incidence of clinically significant tox-

icities when used in untreated cisplatin-ineligi-
ble metastatic urothelial carcinoma patients 
[159]. In fact, this study suggests that atezoli-
zumab could be a prominent agent for cispla- 
tin-ineligible metastatic urothelial carcinoma 
[159]. The authors observed that atezolizumab 
is most efficient when treating metastatic uro-
thelial carcinoma patients with high levels of 
PD-L1 expression. This theory seems to come 
from underlying biological and genomic factors 
[156]. A clinical study investigated the survival 
rates of 542 patients with urothelial cancer 
receiving pembrolizumab (200 mg/3 weeks) 
after platinum chemotherapy [170]. Pembroli- 
zumab is a highly selective monoclonal anti-
body against programmed death 1 (PD-1) and 
can disrupt the association between PDL-1 and 
its ligand that can lead to hampering inhibitory 
signals in T cells [170]. The overall survival rate 
of patients was significantly increased by the 
pembrolizumab treatment (approximately 3 
months) compared to chemotherapy alone 
[170]. In recent studies, enfortumab vedotin 
(EV) and erdafintib have also been approved  
for patients who are diagnosed with platinum 
refractory advanced urinary cancer [171, 172]. 
Therapeutic therapies for bladder cancer will 
continue to grow as novel therapeutic targets 
are discovered. Currently, it is unknown wheth-
er any of the immune checkpoint inhibitors 
tested exert their therapeutic efficacy by mo- 
dulating the Hippo-YAP1 pathway in bladder 
cancer.
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