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Alterations in TGFβ signaling during  
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Abstract: During prostate cancer progression, TGF-β acts as both a tumor suppressor and tumor promoter. TGF-β 
inhibits cell proliferation in normal and early-stage prostate cancer cells, but during later stages of the disease 
the cancer cells develop resistance to inhibitory effects on cell proliferation. In these cells, TGF-β promotes cancer 
progression due to its effects on epithelial to mesenchymal transition (EMT), cell migration and invasion, and im-
mune suppression. The intracellular mechanisms involved in the development of resistance to TGF-β effects on cell 
proliferation are largely unknown. In this review, we summarized the roles of several intracellular proteins including 
PTEN, Id1 and JunD, which may play a role in this transition. The role of Ski/SnoN proteins in inhibition of Smad2/3 
signaling is highlighted.
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Introduction

The transforming growth factor beta (TGF-β) 
superfamily is a large family of growth factors 
named after the first member TGF-β1 and are 
similar in structure [1]. TGF-β superfamily li- 
gands and receptors are widely expressed in 
invertebrate and vertebrate species and they 
play roles in dorso-ventral patterning, meso-
derm induction and patterning, limb bud forma-
tion, bone and cartilage formation, and neuron 
differentiation [1]. Furthermore, TGF-β super-
family is essential in the development of a vari-
ety of tissues and organs [1, 2]. The transform-
ing growth factor-β (TGF-β) superfamily also 
regulates processes at the tissue and organism 
level such as development, wound healing, fi- 
brosis, and angiogenesis [3, 4]. At the cellular 
level, TGF-β superfamily signaling is involved  
in regulating intracellular processes involved in 
cell proliferation, differentiation, motility, adhe-
sion, and apoptosis [3, 4]. The TGF-β superfam-
ily of ligands includes Bone morphogenetic pro-
teins (BMPs), Growth and differentiation factors 
(GDFs), Anti-Müllerian hormone (AMH), Activin, 
Nodal and TGF-βs [5]. For this review, we will 
discuss the complex network of TGF-β signal- 
ing pathway intersecting with several signaling 

molecules and their involvement in prostate 
cancer development and progression.

The TGF-β family consists of three isoforms, 
TGF-β1, TGF-β2 and TGF-β3 which exhibit 70- 
80% homology in most organisms [6, 7]. All 
three isoforms bind to the same membrane 
receptors and exhibit similar biological func-
tions in cell based in vitro assays; however, dif-
ferences in the potency of individual isoforms  
in these assays have been reported [8-11]. In 
addition, studies from knockout mice have sh- 
own that the three isoforms exhibit specific 
non-redundant biological functions in vivo [12-
15]. TGF-β signaling is one of the most studied 
pathways in molecular biology and has several 
growth and development roles in nonmalig- 
nant and malignant cells [1, 16]. TGF-β signals 
through membrane serine/threonine kinase re- 
ceptors, TGFβRI and TGFβRII. TGF-β binds to 
specific TGF-βRII which then recruits and phos-
phorylates TGFβRI leading to the activation of 
TGF-βRI [17]. Next, activated TGF-βRI recruits 
and phosphorylates SMAD2 and SMAD3 pro-
teins. Activated Smad2/Smad3 form complex-
es with the cytosolic SMAD4 and these com-
plexes are translocated to the nucleus to re- 
gulate target gene expression [17]. Conversely, 
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inhibitory SMADs, SMAD6/7, negatively regu-
late SMAD2/3 activity and nuclear transloca-
tion [18]. Activation of TGF-β leads to increased 
expression of SMAD7 which binds to TGFβRI to 
inhibit SMAD2/3 phosphorylation. In addition, 
SMAD7 induces proteasomal degradation of 
TGFβRI, TGFβRII and other SMAD proteins lead-
ing to attenuation of TGFβ signaling [19].

TGFβ in prostate cancer

Functional development of epithelial tissues 
depends on cell proliferation followed by func-
tional differentiation. Transforming growth fa- 
ctor-β (TGF-β) family plays critical roles in 
embryonic development and differentiation of 
glandular epithelial tissues including mamma-
ry, prostate, salivary and sebaceous glands 
[20-22]. During prostate development, para-
crine signaling between epithelial and mesen-
chymal cells, involving TGF-β family members 
and androgen receptor (AR), instructs prostate 
morphogenesis [23]. In the adults, prostate epi-
thelial component is comprised of a bilayer of 
two major cell types, luminal and basal cells. 
The luminal cells exhibit columnar morphology 
and represent the exocrine component of the 
epithelium, express androgen receptor (AR) 
and secrete prostate specific antigen (PSA). 
The basal cells are flattened cells which are 
located above the basal membrane and ex- 
press low or undetectable AR [24]. Once termi-
nally differentiated, luminal epithelial cells do 
not undergo cell proliferation. TGF-β plays a  
significant role in inhibition of cell proliferation 
and maintenance of differentiated function and 
morphology in in these cells [25-27]. TGF-β 
secreted by stromal cells inhibits proliferation 
and induces apoptosis of epithelial cells to 
maintain homeostasis [28, 29]. Loss of TGFβ 
effects on inhibition of cell proliferation results 
in increased cell division and de-differentiation 
of columnar epithelial cells leading to several 
lesions including carcinogenesis [30-32]. Pro- 
state cancer is the second most diagnosed 
type of cancer found in men in the United 
States [33]. The American Cancer Society pre-
dicts that 1 in every 9 men will be diagnosed 
with prostate cancer during their lifetimes. Ac- 
cording to American Cancer Society, 191,930 
men will be diagnosed, and 33,330 men will 
die of prostate cancer in US in 2021.

TGF-β plays a dual role in prostate cancer; it 
acts as a major anti-proliferative factor in the 

initial stages of prostate cancer, while in the 
advanced stages of prostate cancer it acquir- 
es pro-oncogenic and pro-metastatic proper-
ties [25-27]. TGF-β secreted by stromal cells in 
the normal prostate exerts significant inhibitory 
effects on the proliferation of epithelial cells 
[28, 29]. Prostate tumor cells develop resis-
tance to growth inhibitory effects of TGF-β [34] 
which leads to uncontrolled cell proliferation 
and plays a critical role in carcinogenesis [35-
37]. It has been shown that loss of TGF-β type II 
receptor expression correlates with increasing 
tumor aggressiveness in prostate cancer [38]. 
However, the loss of TGFβ receptors and/or 
other components of TGF-β signaling may only 
be partly responsible for the resistance of tu- 
mor cells to growth inhibitory effects of TGF-β. 
A significant fraction of prostate cancers be- 
come TGFβ-resistant without mutation, dele-
tion, or down-regulation of TGF-β receptors or 
Smad proteins or other downstream signaling 
molecules. The cellular and molecular mecha-
nisms involved in development of resistance to 
TGF-β effects on cell proliferation in the pres-
ence of otherwise normal TGF-β signaling are 
not well known. Concomitant with the switch of 
TGF-β from growth inhibitory to growth-pro- 
moting signal, expression of TGF-β ligands and 
receptors is known to be altered in prostate 
cancer relative to normal prostate cells and is 
further altered in more aggressive androgen-
refractory prostate cancer cells [38, 39]. In- 
deed, inhibition of TGF-β receptors led to 
decreased proliferation in murine model of 
HGPIN, suggesting that TGF-β act as tumor pro-
moter instead of tumor suppressor already in 
these cells [40]. The study of TGF-β signaling 
pathway has been considered as a potential 
therapeutic target to treat prostate cancer and 
TGF-β receptor inhibitors have been evaluated 
in preclinical in vivo models and in the clinical 
setting in prostate cancer patients [18]. How- 
ever, because of the dual role of TGF-β as both 
tumor suppressor and tumor promoter during 
different stages of disease, inhibition of its sig-
naling could be challenging in eliciting a thera-
peutic effect [18].

TGFβ signaling in cell proliferation

TGF-β is a pleiotropic cytokine whose signaling 
outcome is known to depend on the combina-
tion of available contributing factors and active 
pathways in each target tissue acting through 
both Smad dependent and independent mech-
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anisms. It has also been well established that 
extensive interactions exist between TGF-β sig-
naling pathway and other major signaling path-
ways including Wnt, Notch, Hedgehog, JNK, 
MAPK and AKT/PI3K [41-45]. TGFβ also regu-
lates non-SMAD signaling pathways, such as, 
RhoA, MAPK, m-TOR, RAS, PI3K/AKT, c-Src, 
protein phosphatase 2A/p70s6K [6, 46] as we- 
ll as the actin cytoskeleton effector cofilin [47, 
48]. TGF-β signaling also intersects with sever-
al transcription factors, such as GL1, SOX4, 
Tieg3/Klf11, Id and AP-1 proteins [11, 49-52]. 
TGF-β inhibits proliferation and induces ap- 
optosis in normal prostate epithelial cells and 
in the early stages of prostate cancer cells. 
When activated SMAD cascade leads to G1 cell 
cycle arrest as a consequence of up-regulation 
of cyclin-dependent kinase inhibitors [17, 18] 
and down-regulation of Id1 [53] and c-Myc [54, 
55] in target cells [56].

In advanced prostate cancer, the cancer cells 
become resistant to inhibitory effects of TGF- 
β on cell cycle arrest and cell proliferation  
presumably as a consequence of disruption  
of functional distribution of action between 
SMAD-dependent and Smad-independent sig-
naling. As a result, TGF-β switches from a tumor 
suppressor to a tumor promoter allowing pros-
tate cancer progression to metastasis [48]. 
Therefore, it is critical to determine the role  
of Smad-independent signaling pathways and 
other transcriptional regulators in development 
of resistance to inhibitory TGF-β on cell prolif-
eration in prostate cancer cells. As described 
below, studies from our laboratory and others 
have shown that Id, AP-1 transcriptional regula-
tors, Ski/SnoN, and PTEN proteins may play a 
significant role in the development of resis-
tance to TGF-β effects on cell proliferation in 
prostate and other epithelial cancers.

Role of Id-1 in TGFβ effects on cell prolifera-
tion

Id-1 (inhibitor of differentiation or DNA binding) 
protein belong to the helix-loop-helix (HLH) tran-
scription factor family [57]. This family of pro-
teins (Id-1, Id2, Id3, and Id4) lack a DNA binding 
domain, and thus function as dominant nega-
tive inhibitors of basic HLH (bHLH) transcrip-
tional factors. They make dimers with other 
bHLH transcription factors, thereby inhibiting 
their effects on a wide variety of cellular func-

tions [57]. Id proteins are critical in both devel-
opmental processes and cell cycle regulation 
that ultimately balances cell growth and cell 
differentiation [58-60]. These proteins tightly 
regulate the expression of cell cycle regulators, 
and its expression is usually positively regulat-
ed in undifferentiated, highly proliferative, em- 
bryonic or cancer cells [61, 62]. While all mem-
bers of the Id family are expressed in many tis-
sues and organs, they are differentially regu-
lated, and they show distinctive expression 
patterns during the specific differentiation pro-
cesses during normal development. For exam-
ple, distributions of Id-1, -2, and -3 proteins 
show similar expression patterns in developing 
neuroblasts, while 1d-4 shows a unique pat-
tern of distribution in migrating neurons [63-
65]. Numerous studies have demonstrated 
specific roles of Id proteins in several contexts. 
Of all the Id family of proteins, Id-1 has been 
shown to be highly linked to cell proliferation 
and survival, cellular senescence, and tumori-
genesis [60-62] while Id-4 has been shown to 
inhibit cell proliferation and act as a tumor  
suppressor [66]. Several studies have shown 
that Id-1 promotes cell proliferation and cell 
cycle progression through inactivation of tu- 
mor suppressors or cell cycle inhibitors includ-
ing p16, p21, and p21 and activation of growth 
promoting pathways in mammalian cells [58, 
67, 68]. Among several signaling mechanisms, 
TGF-β signaling pathway has been indicated  
as responsible for the action of Id-1 in promot-
ing cell survival, differentiation, triggering epi-
thelial-mesenchymal transition (EMT) in pre-
malignant prostate epithelial progenitors, thus 
ultimately leading to tumorigenesis [69, 70]. 
We and others have confirmed an association 
between Id-1 and TGF-β signaling. Previous 
studies indicate TGF-β1 as an upstream effec-
tor of Id-1 expression in normal prostate  
epithelial cells, whereby its downregulation 
induced by TGF-β1 is mediated by Smad3 sig-
naling in breast and colorectal cancer cells, by 
binding directly to the Id1 promoter [70, 71]. 
While TGF-β functions as a tumor suppressor  
in normal epithelial cell, thereby maintaining 
the context of the cells; during early cancer 
development, TGF-β switches its mechanisms 
thereby promoting cellular proliferation, and 
ultimately cancer progression [5, 11, 72, 73]. 
We previously demonstrated the inhibitory 
effects of TGF-β stimulus on normal prostate 
epithelial cell proliferation and early-stage 
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prostate cancer cell lines, whereas later stage 
prostate cancer cells developed resistance to 
TGF-β stimuli [5]. Results from our further  
studies indicate a robust correlation between 
Id-1 down-regulation and TGF-β-induced inhibi-
tion of cell proliferation [5]. In these studies,  
we demonstrated that treatment with TGF-β 
decreased Id-1 protein levels in normal pros-
tate and prostate cancer cells representing 
early-stage of development while TGF-β signifi-
cantly increased Id1 and Id3 expression and 
induced migratory capabilities in more aggres-
sive forms of prostate cancer cells [5]. These 
results demonstrated that a loss of downregu-
lation of Id1 by TGF-β leads to development of 
resistance to inhibitory effects of TGF-β on cell 
proliferation. Stimulatory role of Id1 in pros- 
tate cancer cells was confirmed by significant 
reduction in cell proliferation in both DU145 
and PC3 cells after knockdown of endogenous 
Id1 protein [5]. Several studies have demon-
strated the function of Id-1 and have confirm- 
ed that increased Id-1 expression is associat- 
ed with cell proliferation, immortalization, inva-
sion, and aggressive malignant phenotype in 
several human cell lines [69, 74, 75]. Its over- 
expression has been found in many types of 
human cancers, most of them of the epithelia 
origin; thus its expression levels has been indi-
cated as a marker for malignant progression  
in over 20 types of human cancers suggesting 
its role as an oncogene [69, 74, 75]. For exam-
ple, a study on the expression of Id-1 in human 
prostate cancer demonstrated that 100% of 
prostate cancer specimens were found to 
express Id-1 at significant levels, while only 
20% cases of benign prostate hyperplasia and 
0% of normal prostate specimens were posi- 
tive for 1d-1 expression [76]. Similar results 
have been reported in many other cancer  
types as well [77, 78].

Role of PTEN in TGFβ effects on cell prolifera-
tion

Phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN) is a well-known tumor 
suppressor gene, frequently mutated in variety 
human cancers [79-81]. An in-depth collection 
of studies by several groups have demonstrat-
ed that PTEN regulates cell growth, apoptosis, 
and cell proliferation [79, 80]. PTEN acts as a 
tumor suppressor gene through its inhibition  
of phosphatidylinosito-3-kinase (PI3K)/AKT sig-
naling pathway thus inhibiting cellular growth 

and survival [81-84]. PTEN activity is lost by 
mutations, deletions, or promoter methylation 
silencing at high frequency in many primary and 
metastatic human cancers [81, 83]. PTEN func-
tion can be compromised by genetic mutations, 
which can result in either a heterozygous loss 
usually detected in up to 60% of localized PCa 
or a homozygous loss normally linked to metas-
tasis and androgen-independent progression 
[80, 85, 86]. The loss of function of the PTEN 
tumor suppressor, resulting in dysregulated ac- 
tivation of the PI3K/AKT signaling network, is 
recognized as one of the most common driving 
events in human cancers including prostate 
cancer development [80, 82, 87]. In fact, up to 
70% of men with prostate cancer are estimat- 
ed to have lost a copy of the PTEN gene at the 
time of diagnosis [88]. Activating mutations of 
the PI3-kinase pathway and loss of PTEN are 
extremely common in advanced cancer tumor 
progression [89], and has been previously 
shown that PTEN mutations in prostate can-
cers have led to higher basal levels of phos-
phorylated AKT (pAKTSer473) and increased sur-
vival of cells [87, 89, 90]. Numerous groups 
have employed studies to examine the role of 
PTEN’s activity in prostate cancer progression 
with signaling molecules/pathways, including 
TGF-β signaling mechanisms. The loss of PTEN 
expression in human cancer had been indicat-
ed to contribute to TGF-β’s role as a tumor 
enhancer with specific effects on cellular motil-
ity and invasion [91]. Previous studies de- 
monstrated that specifically TGF-β3 isoform 
increased the invasiveness of endometrial car-
cinoma cells via a PI3-kinase-dependent path-
way, which were distinct from TGF-β1 [11]. Si- 
milarly, our previous studies indicated TGF-β3 
with more potent effects on inducing migratory 
and invasive behaviors in metastatic PCa cells 
compared to TGF-β1 effects [11]. Furthermore, 
these effects on migration and invasion in 
these cells are dependent on both TGF-βRI 
(TGF-β Receptor I) and Smad-3 and are medi-
ated via the PI3-kinase pathway [11, 72, 92-94]. 
We also investigated the effects of TGF-β on 
PTEN expression in prostate cancer cells to 
determine whether PTEN play a role in TGF-β-
induced effects on proliferation, migration,  
and activation of PI3-kinase/AKT pathway. Our 
recent studies have shown that TGF-β increas-
es the stability of PTEN protein in normal and 
early stage prostate cancer cells which plays a 
role in its inhibitory effects on cell proliferation 
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while the lack of PTEN in metastatic prostate 
cancer cells resulted in enhanced TGF-β eff- 
ects on cell migration [92]. These extensive 
studies have provided strong evidence for a 
role of PTEN in changing roles of TGF-β during 
different stages of prostate cancer.

Role of JunD in TGFβ effects on cell prolifera-
tion

Previous reports have shown that additional 
intracellular proteins influence TGF-β effects on 
cellular proliferation including a number of tran-
scription factors [95-97] including AP-1 (acti-
vating protein-1) proteins [7, 98]. The AP-1 fam-
ily is composed of dimer combinations primarily 
formed between the Jun (JunB, c-Jun, and JunD) 
and Fos (FosB, c-Fos, Fra1, and Fra2) protein 
family [4, 99]. Members of AP-1 transcription 
(TF) family regulate cellular proliferation, sur-
vival, apoptosis inflammation, differentiation, 
locomotion and are often implicated as onco-
genic cancer drivers [99-101]. In prostate can-
cer, AP-1 proteins are associated with disease 
recurrence and more aggressive clinical out-
comes [102-105]. Among these proteins, there 
is a growing body of evidence that Jun proteins, 
specifically JunD, plays a major role in the con-
trol of cell proliferation and cell death by regu-
lating the expression of cell cycle regulators 
[106-108]. In our previous studies, selective 
knockdown by siRNA or knockout of JunD by 
CRISPR/Cas9 in prostate cancer cells resulted 
in significant inhibition of cell proliferation while 
knockdown of cJun and JunB had very little, if 
any, effect on cell proliferation [99]. We also 
demonstrated that the essential role of JunD in 
PCa cell proliferation is dependent on its regu-
lation of several genes required for the progres-
sion of the cell cycle including Id1 and c-MYC 
[54, 99]. Other studies have also shown that 
inhibition of JunD resulted in prostate tumor 
cell death and ultimately inhibition of tumor 
development [109].

Interestingly, our studies also uncovered that 
TGF-β effects on cell proliferation in prostate 
epithelial cells are dependent on down-regula-
tion of JunD in these cells [99]. While TGF-β 
have no effect on JunD mRNA levels, it caused 
a significant decrease in JunD protein levels in 
cell lines derived from normal epithelial cells 
(RWPE-1, PZ-HPV7) and DU145 cells. This re- 
duction in JunD levels correlated with inhibitory 

effects of TGF-β on cell proliferation [99]. On 
the other hand, TGFβ failed to cause reduction 
in JunD protein levels in PC3 cells which corre-
lated with lack of its inhibitory effects on cell 
proliferation. Furthermore, we demonstrated 
that TGF-β leads to specific proteasomal de- 
gradation of JunD protein and this reduction in 
JunD protein levels is a pre-requisite for inhibi-
tory effects of TGF-β on cell proliferation [99].

Role of Ski/SnoN proteins during cancer 
progression

Activation of TGF-β receptors via ligand binding 
leads to the phosphorylation of Smad proteins, 
specifically Smad2/3, which then interact with 
Smad4, translocate into the nucleus, and ulti-
mately regulate the expression of target ge- 
nes [11, 72, 73, 110, 111]. Smad signaling  
is subject to multi-levels positive and negative 
regulation that target both the receptors and 
the intracellular mediators [112]. Among the 
negative regulators of Smad2/3 function, 
Sloan-Kettering Institute (Ski) protein family 
members suppress TGF-β signaling [73, 112]. 
Ski and Ski-related novel protein N (SnoN) are 
important negative regulator of TGF-β signal- 
ing through their ability to interact with and 
repress Smad proteins by binding to the 
N-terminus of R-Smads and SMAD4, thereby 
blocking the complex formation and transcrip-
tional activity, ultimately suppressing TGF-β  
signaling [112-115]. In a negative feedback 
manner TGF-β, induces Ski and SnoN proteins 
to regulate or normalize its signaling and then 
downregulates these proteins by degradation 
via the ubiquitin-protease pathway which allow 
TGF-β effects on cellular mechanisms to be 
tightly regulated [115-117]. Ski and (SnoN) are 
proto-oncogenes and are expressed in all tis-
sues at low levels [73, 112] and regulate grow- 
th and differentiation of several cell types. 
Overexpression of Ski and SnoN inhibits TGF-β-
induced growth arrest and induces oncogenic 
transformation [112, 114, 118]. Moreover, the 
upregulation of Ski and/or SnoN expression is 
associated with tumor development and has 
been detected in several cancers including 
breast cancer, melanoma, pancreatic cancer, 
colorectal cancer, and prostate cancer [119-
125]. This is due to these cells becoming  
resistant to TGF-β despite its presence. For 
example, increased expression of Ski proteins 
have been observed in human pancreatic can-
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cer and is correlated with poor survival [118] 
and inhibition of Ski proteins in pancreatic 
tumor cells enhances TGF-β-signaling and pro-
mote TGF-β1-mediated p21 expression and 
growth inhibition [118].

Our previous studies showed expression of 
higher Ski protein levels in prostate cancer 
cells, while these levels were low in cell lines 
derived from normal cells [110]. We also sh- 
owed that Ski proteins are higher in metastatic 
prostate cancer cells lines and correlated with 
high levels in prostate cancer patient tissues 
[110]. Furthermore, its down-regulation enhan- 
ced TGF-β signaling in prostate cancer cells 
and is required for TGFβ1-dependent phosphor-
ylation of Smad3 and TGF-β effects on cell pro-
liferation [110]. In addition, we also demon-
strated that Ski proteins that are normally low 
in expression in normal prostate cell lines are 
increased when cultured in the presence of 
MG132, a proteasomal inhibitor, indicating th- 
at TGF-β-induced degradation of Ski is mediat-
ed by the proteasome pathway in prostate can-
cer cells and this degradation is required for 
increased Smad2 and Smad3 phosphorylation 
in response to TGF-β [110].

Conclusions

TGF-β signaling pathway serves as a regulator 
of cell proliferation, differentiation, survival, 
apoptosis, and several other cellular process-
es. These biological effects in the target cells 
depend upon the cellular context and a com-
plex interaction between both smad-dependent 
and smad-independent signaling pathways. In 
normal prostate epithelial cells, TGF-β inhibits 
cell proliferation and is required for mainte-
nance of differentiated phenotype. During pros-
tate cancer progression, cancer cells develop 
resistance to the inhibitory effects of TGF-β on 
cell proliferation as an early event in carcino-
genesis. These cells usually maintain essential 
components of TGF-β signaling which are later 
employed for its tumor promoting activities. 
The intracellular mechanisms involved in the 
development of resistance to inhibitory effects 
of TGF-β on cell proliferation remain largely 
unknown. Recent studies from our laboratory 
and others have shown that several intracel- 
lular proteins including Ski/SnoN, PTEN, Id1, 
c-Myc and JunD play critical roles in TGF-β in- 
duced inhibition of cell proliferation. Our stud-

ies have shown that JunD plays an essential 
role in cell proliferation by upregulating the 
expression of several genes involved in cell 
cycle progression including 1d1 and c-Myc. 
TGF-β induces proteasomal degradation of 
JunD protein as a major mechanism in its in- 
hibitory effects on cell proliferation and TGF-β 
fails to induce degradation of JunD in cells 
which have become resistant to its growth 
inhibitory effects. While these studies provide 
tremendous insights in cellular mechanisms 
involved in prostate cancer development, addi-
tional studies are required to discover thera-
peutics that may mitigate prostate cancer in  
its early stages of development.
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