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Abstract: The nuclear matrix protein Scaffold Attachment Factor B1 (SAFB1, SAFB) can act in prostate cancer (PCa) 
as an androgen receptor (AR) co-repressor that functions through epigenetic silencing of AR targets, such as pros-
tate specific antigen (PSA, KLK3). Genomic profiling of SAFB1-silenced PCa cells indicated that SAFB1 may play a 
role in modulating intracrine androgen levels through the regulation of UDP-glucuronosyltransferase (UGT) genes, 
which inactivate steroid hormones. Gene silencing of SAFB1 resulted in increased levels of free dihydrotesteros-
terone (DHT), and increased resistance to the AR inhibitor enzalutamide. SAFB1 silencing suppressed expression 
of the UDP-glucuronosyltransferase family 2 member B15 gene (UGT2B15) and the closely related UGT2B17 gene, 
which encode proteins that irreversibly inactivate testosterone (T) and DHT. Analysis of human data indicated that 
genomic loss at the SAFB locus, or down-regulation of expression of the SAFB gene, is associated with aggressive 
PCa. These findings identify SAFB1 as an important regulator of androgen catabolism in PCa and suggest that loss 
or inactivation of this protein may promote AR activity by retention of active androgen in tumor cells. 
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tration resistance

Introduction

The role of androgen and androgen receptor 
(AR) has been extensively studied in the con-
text of prostate cancer (PCa). Standard medical 
treatment for aggressive PCa is androgen 
deprivation therapy (ADT), which is directed 
toward inhibition of the androgen axis. The 
classical model of disease progression is the 
re-emergence of AR activity even after (1) ADT 
and (2) resistance to next-generation AR and 
androgen synthesis inhibitors in castration 
resistant prostate cancer (CRPC). The AR is a 
key driver of progression to castration-resis-
tance [1-7]. CRPC tumors frequently exhibit 
hyper-activated AR signaling, leading to the 
transcription of downstream target genes and 
tumor growth despite extremely low levels of 
circulating androgen in the patient. AR activa-
tion in CRPC arises from gene amplification 
(increased gene copy number, leading to in- 

creased mRNA expression), mutations within 
the AR ligand-binding domain (leading to ligand 
independence), and expression of AR splice 
variants that do not include a ligand-binding 
domain, but which are transcriptionally active 
[8].

We previously demonstrated that a chromatin-
associated nuclear matrix protein, scaffold at- 
tachment factor B1 (SAFB1, SAFB), regulates 
AR activity and AR levels in in PCa [9]. SAFB1 
was shown to be an AR co-regulator operating 
in concert with the serine-threonine kinase 
mammalian sterile STE20-like kinase 1 (MST1) 
and the enhancer of Zeste homolog 2/poly-
comb repressive complex2 (EZH2/PRC2) com-
plex. Consistent with a trend toward decreased 
SAFB1 levels seen in human PCa specimens 
during disease progression, SAFB1 knockdown 
resulted in an aggressive phenotype and a tol-
erance for low androgen culture medium, con-
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sistent with a role for SAFB1 as a tumor sup-
pressor via inhibition of the AR axis [10]. Here 
we addressed the question of the physiologi- 
cal consequences of SAFB1 loss and report  
for the first time that SAFB1 plays a role in 
androgen catabolism, potentially impacting tu- 
mor-resident androgen levels during disease 
progression. 

Materials and methods

Cell culture 

The PCa cell lines used in this study were pur-
chased from American Type Culture Collection 
(ATCC). LNCaP and 22Rv1 were routinely cul-
tured in 75 cm2 and 25 cm2 tissue culture flasks 
(Greiner) at 37°C in a humidified atmosphere 
containing 5% CO2. Cell lines were cultured in 
Roswell Park Memorial Institute medium (RPMI) 
(Gibco), supplemented with 10% fetal bovine 
serum (FBS) (Hyclone), and 1% penicillin/strep-
tomycin (pen/strep) (Gibco). 

Treatment of cells with dihydrotestosterone 
(DHT) or Enzalutatmide (MDV3100)

Full media was then replaced with 10% Char- 
coal stripped serum media (Gibco) in 1X RPMI-
phenol red free media (Gibco) with 1% pen/
strep for 24 hours. Aliquots of 10-6 M DHT was 
dissolved in absolute ethanol and added to the 
media at a range of final concentration of 10 
nM for a further 24 hours. Experimental control 
conditions such as untreated and ethanol only 
(vehicle) were included in each experiment. 
MDV3100 (TRC Canada) was dissolved in 
DMSO and added to the media at a range of 
final concentration of 1-100 nM for a further 96 
hours. 

Stable knockdown of SAFB1

Stable gene knockdown was performed in both 
LNCaP and 22Rv1 cells using pre-validated 
shRNA from Mission Sigma-Aldrich. These pre-
designed shRNA targets the SAFB1 transcript 
(RefSeq: NM_002967). Gene knockdown was 
validated by qRT-PCR as well as western blot 
analysis of SAFB1 mRNA and protein expres- 
sion. 

shRNA hp1-sequence: sense strand-GCGCTAC-
CATTCTGACTTTAA; antisense strand-TTAAAGT-
CAGAATGGTAGCGC; shRNA hp2-sequence: se- 

nse strand-GCAGATTGTGTCGAAGACGAT; anti-
sense strand-ATCGTCTTCGACACAATCTGC.

Clonal selection was performed in a 96-well 
plate was based using an instruction provided 
by company (Corning). 

Transient transfection

In a 6-well plate, 0.5 million cells were plated in 
full media for 24 hours. For androgen deple-
tion, 10% charcoal stripped media was used to 
replace the full media and then a mix of 5 μg  
of vector construct and lipofectamine 3000 
(Thermofisher Scientific) was added according 
to manufacturer’s protocol. 

Preparation of whole cell lysate

Whole cell lysates from LNCaP and 22Rv1 cells 
were prepared by lysis using 1X RIPA buffer 
SDS lysis buffer (Thermofisher Scientific). The 
cells lysates were incubated on ice for 5 min-
utes. The samples were then centrifuged at 
~16,000×g for 15 minutes to pellet the cell 
debris. 

Cytoplasmic and nuclear fractionation

Cytoplasmic and nuclear extracts were pre-
pared as described [38]. 

Protein quantification

Protein concentrations of whole cell lysates in 
RIPA buffer or Cytoplasmic and Nuclear buffer 
were determined by a colorimetric assay follow-
ing 1:10 dilution of protein in water. Protein 
quantification was performed according to  
the manufacturer’s protocol and absorbance 
were read at 595 nm on SpectraMax 96 well 
microplate reader (Molecular Devices) on the 
SoftMax Pro software (Molecular Devices).

Western immunoblotting

SDS-Polyacrylamide Gel Electrophoresis (SDS-
PAGE) was used to separate proteins for 
Western immunoblot analysis. Polyacrylamide 
gels were purchased pre-cast 10 well- 4-20% 
Mini-PROTEAN III system (BioRad). Gels were 
run in 1X Tris/Glycine/SDS buffer (BioRad). The 
membranes were de-stained by washing in 1X 
PBST (0.1% Tween-20) prior to membrane 
blocking with 5% Nonfat-Dried Milk bovine 
(Sigma-Aldrich) at room temperature for 1 hour. 
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Primary antibody incubations were performed 
at an appropriate dilution in 5% Nonfat-Dried 
Milk bovine diluted in 1X PBS and 0.1% Tween-
20 (PBST, Sigma-Aldrich). The ECL Western 
Blotting Substrate (Thermofisher Scientific) or 
SuperSignal West Femto (Thermofisher Scien- 
tific) detection system was used to allow the 
development of luminescence on antibody bo- 
und proteins. Membranes were exposed to 
X-ray films (Kodak) and autoradiographs were 
developed using Compact X4 film processor 
(Xograph). Primary Antibodies used for this 
study include SAFB1 (Sigma-Aldrich Mouse) 
1:1000, AR (N-20, rabbit), UGT2B15 (Abcam, 
rabbit): 1:100, GAPDH-HRP conjugated (Cell 
Signaling) 1:1000.

Measurement of DHT depletion rate

The media from the cells were then collected at 
the time points 5 min, 2, 4, 6, 8 hours. The DHT 
from the media were separated by organic ex- 
traction (ethyl acetate) (90% + recovery rate). 
The non-metabolized radiolabeled DHT that 
was present within the organic layer were mea-
sured by scintillation detector as counts per 
minute (CPM). CPM was normalized to the 5 
min time point and reported as % Free DHT.

Quantitative real time polymerase chain reac-
tion

Total RNA was extracted from cultured cells 
using the RNAeasy isolation kit (Qiagen) follow-
ing the manufacturer’s protocol. RNA concen-
trations were measured using a NanoDrop ND- 
1000 spectrophotometer (Thermofisher Scien- 
tific) and RNA samples stored at -80°C until 
ready for use. For reverse transcription, first 
strand cDNA was synthesized from total RNA  
by reverse transcription using the iScript Re- 
verse Transcriptase kit (Bio-Rad). Data analysis 
was performed using the comparative Ct me- 
thod normalized against β-actin expression. 
Experiments were performed in triplicate and 
statistical analysis was performed using stu-
dent’s t-test (Microsoft Excel). All effects at 
P<0.05 were reported as significant.

Primers

ABCA1-F-ACCCACCCTATGAACAACATGA; ABCA1-
R-GAGTCGGGTAACGGAAACAGG; CYPA5-F-AAT- 
GTTTTGTCCTATCGTCAGGG; CYPA5-R-AGACCTT- 
CGATTTGTGAAGACAG; DHRS8-F-CCTGCTTCTC- 

CCGTTACTGAT; DHSR8-R-GATTTCGCCGGTGAC- 
TGATTT; UGT2B11-F-TCAGACATTCGAAAAGATA- 
GC; UGT2B11-R-ATCTTTACAGAAGTTTCTAAATAT
GTCATAT; UGT2B15-F-CTTCTGAAAATTCTCGATA- 
GATGGAT; UGT2B15-R-CATCTTTACAGAGCTTGT- 
TACTGTAGTCAT; UGT2B17-F-TTTATGAAAATGTT- 
CGATAGATGGAC; UGT2B17-R-CATCTTCACAGA- 
GCTTTATATTATAGTCAG; UGT2B28-F-ACC GTT 
TGT GTA CAG TCT CT; UGT2B28-R-CAT TGT CTC 
AAA TAA TGT AGT G; SAFB1-F-TGGGGATGGGCA- 
GGAGGATGTGGAG; SAFB1-R-ATGGTGAAGTCAG- 
ATGATGACGT; Beta-actin-F-CCCTGGCACCCAG- 
CAC; Beta-actin-R-GCCGATCCACACGGAGTAC.

Statistical analysis

Data were represented as mean ± SEM wher-
ever necessary. Student’s t test (2-tailed) was 
used between the data pairs where it is appro-
priate. Either exact p value or a p value of 0.05 
or less was considered significant and have 
been used. Significance of differential expres-
sion was calculated by Wilcoxon Rank-Sum 
test.

Results

A role for SAFB1 in androgen metabolism

Our previous findings indicate that SAFB1 is 
involved in the repression of cell and tumor 
growth, suppression of cell motility, resistance 
to anoikis, and growth in a hormone depleted 
environment [9]. In that study, the clinical sig-
nificance of SAFB1 loss in PCa was also investi-
gated, which revealed a significant decrease in 
SAFB1 protein staining intensity with disease 
progression (benign, locally confined and meta-
static prostate cancer) [9]. Analysis of data 
from Grasso et al. [1] comparing copy number 
alterations (CNA) at the SAFB1 and AR loci 
demonstrate a gain of AR and loss of SAFB1 
copy number in metastatic vs organ-primary 
PCa s (Figure 1A, left), consistent with our pre-
vious findings. Quantitative analysis of SAFB1 
genomic loss showed a significant decrease of 
SAFB1 CNA (P<0.0001) in metastases (Figure 
1A, right). These clinical data support an asso-
ciation between SAFB1 loss and disease pro- 
gression.

To further characterize the relationship betwe- 
en SAFB1 and aggressive disease, we perfor- 
med gene expression profiling in LNCaP cells  
to determine the functional consequences of 
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SAFB1 loss. DNA microarray analysis of LNCaP 
cells stably silenced for SAFB1 revealed 922 
differentially expressed genes (DEGs), of which 
481 were upregulated and 441 were downre- 
gulated by SAFB1 depletion. The DEGs were 
selected based on the critera of a false discov-
ery rate (FDR) <0.05 and a fold-change ≥ 1.5. 
We employed the DAVID (Database for Anno- 
tation, Visualization and Integrated Discovery) 
Gene Ontology (GO) tool [11, 12], using a 
P-value <0.05 to generate enrichement scores. 
In DAVID, the GO-BP FAT terms are used to 
report enrichment results [http://david.abcc.
ncifcrf.gov]. The cellular processes represent-
ed by the DEGs were identified as enrichment 
scores calculated for cellular processes for the 
481 upregulated genes (RED) and the 441 
downregulated genes (BLUE) (Figure 1B). The 
biological processes most enriched for upregu-
lated DEGs were: chromatin assembly, nucleo-
some assembly, chromatin silencing and epi-
genetic regulation. The upregulated biological 
processes are consistent with known roles of 
the scaffold attachment factor (SAF) family of 
proteins in the regulation of gene expression 
regulation and chromatin organization [13].  
The biological pathways most enriched for the 
downregulated DEGs were glucuronidate me- 
tabolic processes, steroid hormone metabo- 
lic processes, and neuron differentiation. This 
finding is in agreement with our experimental 
findings [9] demonstrating that SAFB1 silencing 
conferred better cell growth in hormone-deplet-
ed media. 

The DEGs identified as either up- or downregu-
lated within each of the GO biological process-
es are listed in Table 1. Reviewing this list, we 
selected downregulated genes related to gluc-
uronidate metabolism and steroid hormone 
metabolism for futher study of the role of 
SAFB1 in hormone regulation. Plotting the 
genes altered by SAFB1 depletion (RED) with- 
in the classic steroid hormone synthesis path-
way (BLACK) showed that SAFB1 depletion sup-
pressed the expression of genes encoding en- 

zymes involved in the catabolism of active 
androgen metabolites. In contrast, SAFB1 de- 
pletion did not alter the expression of genes 
encoding enzymes that promote the synthesis 
of androgen metabolites (Figure 1C). To con- 
firm this finding, quantitative real-time PCR was 
used to measure mRNA expression of the 
genes altered by SAFB1 depletion in LNCaP 
cells (RED). A series of genes relevant to ste- 
roid catabolism was confirmed to be downregu-
lated by SAFB1 depletion (RED): UDP-glucuro- 
nosyltransferase 2B11 (UGT2B11), UGT2B15, 
UGT2B17, UGT2B28, Cytochrome P450 3A5 
(CYP3A5), ATP Binding Cassette Subfamily A 
Member (ABCA1) (P<0.005) and Type 11 hydr- 
oxysteroid (17-β) dehydrogenase (HSD17B11/
DHRS8) (P<0.05) (Figure 1D). Sulfotransferase 
2B1 (SULT2B1) did not show any significant dif-
ference between SAFB1-depleted and control 
cells (not shown). UGT2B11, UGT2B15, UGT2- 
B17, UGT2B28 are enzymes that covalently 
modify their substrates with glucuronic acid, 
thereby inactivating the targets and making 
them more hydrophilic and suitable for excre-
tion [14]. UGT2B17 [14, 15] can conjugate tes-
tosterone (T), dihydrotestosterone (DHT), and- 
rostanediol, and androsterone, while UGT2B15 
[15, 16] can conjugate T, DHT, and androstane-
diol. These findings revealed that suppression 
of SAFB1 expression results in down-regulation 
of genes involved in androgen degradation.

SAFB1 silencing suppresses androgen-inacti-
vating genes UGT2B15 and UGT2B17 

In order to confirm the effects on UGT2B15 and 
UGT2B17, SAFB1 was silenced using lentiviral-
mediated RNA interference with two indepen-
dent small hairpin RNAs (shRNA) in AR-postive 
LNCaP (hormone-dependent) and 22Rv1 (cas-
tration-resistant) cell lines. A heat-map of the 
50 most up-regulated DEGs and 50 most down-
regulated DEGs from the SAFB1 depletion in 
LNCaP cells is shown in Figure 2A. A notable 
finding is that all of the members of the UGT2B 
family of enzymes expressed in the prostate, 

Figure 1. Significant downregulation of SAFB1 in mCRPC may lead to a dysfunction in the steroid hormone metabo-
lism pathway. (A) Copy number alteration in the Grasso et al. 2012 cohort [23] stratified by patients categorized as 
primary or mCRPC (LEFT) and the numerical normalized intensity of SAFB1 copy number alteration as a box-plot 
(RIGHT). (B) DNA microarray analysis of LNCaP cells stably knockdown for SAFB1 generated 922 DEGs, these genes 
were used for GO Enrichment analysis of biological processes that are induced (RED) and repressed (BLUE) by 
SAFB1 knockdown. (C) A diagram of genes involved in the classical steroid synthesis is mapped (BLACK) while DEGs 
selected from pathways that are repressed by SAFB1 silencing in LNCaP cells (RED) (D) quantitative Real-time PCR 
validation analysis of genes repressed by SAFB1 silencing. The data are normalized to beta-actin, which was not 
altered in the LNCaP cells silenced for SAFB1. in LNCaP cells, mean + SEM (n=3) *P<0.05, **P<0.005
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Table 1. List of the up and downregulated DEGs genes altered by SAFB1 silencing in LNCaP for each GO-FAT biological process
Terms Up-regulated DEGs Down-regulated DEGs
chromatin assembly CENPN, HIST1H2BC, HIST1H2BD, HIST1H1C, HIST1H2BE, HIST1H2BF, HIST2H4A, 

HIST2H3C, HIST2H4B, TSPYL2, CDKN2A, HIST1H2BK, HIST2H2BE, HIST1H4B, 
HIST1H2BJ, HIST1H4E, HIST1H3D, HIST1H3F, HIST1H3H, HIST1H4H

NA

nucleosome assembly CENPN, HIST1H2BC, HIST1H2BD, HIST1H1C, HIST1H2BE, HIST1H2BF, HIST2H4A, 
HIST2H3C, HIST2H4B, TSPYL2, HIST1H2BK, HIST2H2BE, HIST1H4B, HIST1H2BJ, 
HIST1H4E, HIST1H3D, HIST1H3F, HIST1H3H, HIST1H4H

NA

type I interferon signaling pathway IFIT3, IRF9, HLA-H, IFIT1, IRF6, IFITM2, IFITM3, HLA-B, IFI35, GBP2, PSMB8, IFI6 NA

chromatin silencing at rDNA HIST1H4B, HIST1H4E, HIST1H3D, HIST1H3F, HIST2H4A, HIST2H3C, HIST1H3H, 
HIST2H4B, HIST1H4H

NA

regulation of gene expression, epigenetic HIST1H2AC, H2AFJ, HIST2H4A, HIST2H3C, HIST2H4B, MOV10, UHRF2, HIST1H4B, 
HIST1H2AI, HIST1H4E, ZC3H12A, HIST1H3D, TWISTNB, HIST1H3F, HIST1H3H, 
HIST1H4H

PHF19, H2AFY, FXR1

CENP-A containing nucleosome assembly CENPN, HIST1H4B, HIST1H4E, HIST2H4A, HIST2H4B, HIST1H4H NA

peroxisome organization PEX11A, PEX11B, TMEM135, PEX10 NA

fatty acid catabolic process MUT, AMACR, HSD17B4, PCCA, TWIST1, AUH NA

cell-cell adhesion RTN4, CAST, MPZL2, GCNT2, CADM1, PDLIM5, HLA-DRB3, CALD1, FKBP1A, SDC4, 
CHD7, CDKN2A, SH3GLB1, TTYH1, SMAGP, MAP2K5, ADAM9, COBLL1, TNFSF4, 
MYO1B, SWAP70, IL1RN, EFNB2, DUSP22, ELMO2, NCAM2, IGSF5, BTN3A1, 
ATP2C1, NLGN4X, HIST1H3D, SEMA4D, HIST1H3F, HIST1H3H, LCP1

ASS1, MAFB, ELF4, PCDH20, F2RL1, FSCN1, SOX4, CELSR3, CITED2, 
RPS26, PAK2, SERPINE2, NLGN4Y, CDH18, FAT1, RAC1, SDCBP, BCL6, 
NDRG1, HSPD1, LAMB1, CDH26, IGSF9, IL1RAPL1

glycoprotein biosynthetic process MGAT4B, OSTC, GCNT2, B3GALT4, DPY19L4, PARP10, VEGFB, PGM3, GALNT10, 
DSEL, BMPR1B, THBS1, GALNT11, B4GALT5

ST6GAL1, POMT1, CHST3, MAN1C1, ART1, MUC4, PHLDA1

regulation of protein kinase activity IBTK, TESC, FGR, SOCS2, SOCS1, TAOK3, DUSP22, TPD52L1, PKIB, SDC4, 
CAMK2N1, MAGED1, SPRY1, TSPYL2, CDKN1B, CDKN2A, AIDA, ADRA2A, EFNA5, 
SPRED1, THBS1, ADAM9, MVP, MAP2K5

GCG, ADCY1, MAP4K5, PAK2, ZAK, LRRTM4, PSMD10, MMD, H2AFY, 
UBE2C, PKIA, MAP2K6

cytoskeleton organization ABLIM1, COBL, ODAM, GPM6B, SDC4, SPRY1, ARPC3, ADRA2A, SKA2, NEFL, RASA1, 
COBLL1, MYO1B, SWAP70, ZMYM6, DPYSL3, MID1IP1, ELMO2, ATF5, MAST4, 
KRT19, CDKN1B, ATP2C1, CC2D2A, TMSB4X, EFNA5, MAP7, PDCD6IP, LCP1

KRT6C, PRPH, PALM, ZAK, F2RL1, RHOU, DSTN, CORO2A, FAT1, RAC1, 
TUBA3D, BCL6, TUBA3E, TUBA1A, TUBB3, TMEFF2, SGK1, CAP2, CRYAB, 
FSCN1, MAP1B, ARHGAP28, EPHA3, SEMA6A, SVIL, FHOD3, SDCBP, WDR1, 
HAUS8, ANTXR1

Terms Up-regulated DEGs Down-regulated DEGs

locomotion RTN4, GCNT2, FGR, JAG1, SDC4, SBDS, ADRA2A, RRAS, ZC3H12A, NOS3, THBS1, 
NEFL, MAP2K5, TWIST1, ADAM9, PLP2, SWAP70, ARID5B, EFNB2, PTPRR, ADIPOR1, 
ARTN, DPYSL3, SYNJ2BP, ANXA5, ELMO2, VEGFB, PRKD1, PARP9, SRGAP3, EFNA5, 
TMSB4X, SEMA4D, LAMC1, BMPR1B, LCP1, TP53INP1

ATP1B1, NRTN, NDN, OPRK1, STAT5A, F2RL1, ONECUT2, EPHB4, CITED2, 
GLIPR2, SERPINE2, HOXA5, FAT1, RAC1, ROBO3, LAMB1, ANGPT2, TUBB3, 
TMEFF2, ST6GAL1, SGK1, FSCN1, CELSR3, DPYSL4, FAM60A, EPHA3, 
SMO, LAMA1, SEMA6A, LAMA3, ID2, BTG1, RRAS2, SDCBP, FOXC2, SER-
PIND1, MERTK

steroid metabolic process APOL2, TNFSF4, HMGCS2, AMACR, EPHX2, ERLIN1, HSD17B4, ABCG1 CYP3A5, HMGCS1, FDPS, SULT2B1, ATP1A1, ABCA1, FDFT1, UGT2B17, 
SQLE, INSIG1, UGT2B15, WWOX, UGT2B7, BMP6, FABP6

mesenchyme development RTN4, GCNT2, ADIPOR1, JAG1, SEMA4D, TWIST1 GLIPR2, SMO, AMH, SEMA6A, NRTN, HOXA5, SDCBP, FOXC2, TEAD2, RBPJ, 
CITED2

cell morphogenesis ABLIM1, RTN4, COBL, GCNT2, FGR, PDLIM5, OCRL, RIMS1, MBP, COL4A3BP, 
GALNT11, NEFL, RASA1, TWIST1, EFNB2, NTNG1, ARTN, ADIPOR1, ATMIN, SCFD1, 
CC2D2A, CFDP1, EFNA5, SEMA4D, LAMC1, BMPR1B

PALM, ADCY1, SYT4, NDN, ONECUT2, RHOU, GLIPR2, RAC1, BCL6, ROBO3, 
LAMB1, SPATA6, IL1RAPL1, TUBB3, ST6GAL1, SGK1, CAP2, MAP1B, 
DPYSL4, CELSR3, S100A13, CAPRIN2, EPHA3, SMO, SEMA6A, SLITRK3, 
ID2, ST14, LRRN1, SDCBP, ANTXR1, RBPJ, MERTK

hormone metabolic process RDH11, MME, HSD17B4, DDO TTR, STC2, SAFB, UGT2B11, ATP1A1, DIO1, PCSK6, UGT2B7, BMP6
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neuron differentiation RTN4, COBL, CPEB3, PDLIM5, EFNB2, PTPRR, NTNG1, ARTN, DPYSL3, JAG1, SDC4, 
RIMS1, MBP, PRKD1, ATF5, NCAM2, TULP3, BTG2, NLGN4X, EFNA5, SEMA4D, 
BMPR1B, CHD5, NEFL

GPRIN1, IRX3, PALM, NRTN, ADCY1, SYT4, NDN, ONECUT2, MMD, SOX4, 
SERPINE2, PAK2, RAC1, BLOC1S1, BCL6, ROBO3, LAMB1, IL1RAPL1, 
TUBB3, PHLDA1, DFNA5, SGK1, MAP1B, CHST3, DPYSL4, CELSR3, CAP-
RIN2, EPHA3, SMO, SEMA6A, SLITRK3, ID2, LRRN1, RIT2, RBPJ, IGSF9, 
BMP6

neurogenesis RTN4, COBL, CPEB3, PDLIM5, JAG1, SDC4, RIMS1, MBP, CHD7, NEFL, CHD5, 
TWIST1, EFNB2, MPP5, NTNG1, PTPRR, ARTN, DPYSL3, PRKD1, ATF5, NCAM2, 
TULP3, BTG2, NLGN4X, EFNA5, SEMA4D, BMPR1B, BIN1

GPRIN1, IRX3, PALM, NRTN, ADCY1, NDN, SYT4, ONECUT2, MMD, SOX4, 
SERPINE2, PAK2, BCHE, SMARCD3, RAC1, BLOC1S1, BCL6, NDRG1, 
ROBO3, LAMB1, IL1RAPL1, TUBB3, PHLDA1, DFNA5, SGK1, MAP1B, 
CHST3, CELSR3, DPYSL4, CAPRIN2, EPHA3, SMO, SEMA6A, SLITRK3, 
ZNF217, ID2, LRRN1, WDR1, RIT2, RBPJ, IGSF9, BMP6

glucuronate metabolic process NA UGT2B17, UGT2B11, UGT2B10, UGT2B15, UGT2B28, UGT2B7, XYLB

endocrine pancreas development NA SMO, ONECUT2, SOX4, BMP6

Figure 2. SAFB1 silencing downregulates a family of UGT2B enzymes involved in catabolism of steroids. (A) Heatmap (n=3) depicts differential expression patterns 
of genes induced (RED) and repressed (BLUE) by SAFB1 silencing, scale of intensity shown to the left. In LNCaP and 22Rv1 using two independent shRNA specific 
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with the exception of UGT2B4, were among the 
50 most downregulated genes when SAFB1 
was knocked down. Among these family mem-
bers, UGT2B15 and UGT2B17 are well descri- 
bed as mediators of the irreversible glucuroni-
dation of active androgen substrates (primarily 
T and DHT) [17-19]. Covalent modification of T 
and DHT through the addition of glucuronic acid 
to the steroid substrate allows the product to 
be released into the circulation and readily 
excreted through bile or urine, thereby prevent-
ing ligand-dependent activation of the AR [14]. 
Genomic alterations of these enzymes has be- 
en shown to be associated with variations in 
circulating steroid levels in PCa patients [20, 
21]. Down-regulation of these genes would  
suppress androgen degradation pathways. 

Downregulation of UGT2B15 and UGT2B17 
mRNA expression (P<0.005) and visible reduc-
tion of UGT2B15 protein levels were seen in 
both cell lines (Figure 2B and 2D). Consistent 
with previous findings, AR mRNA and protein 
levels increased when SAFB1 was silenced 
(Figure 2C and 2E). Interestingly, SAFB1 silenc-
ing in 22Rv1 cells also increased levels of the 
75 kDa AR variant AR-V7, which is associated 
with CRPC. 

SAFB1 loss in aggressive prostate cancer and 
reduced clearance of androgen

Upregulation of the AR seen with SAFB1 silenc-
ing (Figure 2) suggests the potential for an 
association of SAFB1 loss/down-regulation wi- 
th poor prognosis and disease progression. We 
have reported an association between SAFB1 
loss and aggressive PCa. Next we sought to fur-
ther charaterize this phenotype by exploring 
SAFB1 loss and its effect on patient outcome, 
treatment resistance, and whether the accu-
mulation of the metabolite DHT was consistent 
with the data from SAFB1 silencing. To investi-
gate patient outcome, we employed disease-
free survival analysis of The Cancer Genome 
Atlas (TCGA) data [22]. Separation of patients 
with SAFB1 loss compared to wild type were 
analyzed for disease-free survival. Analysis of 

The Cancer Genome Atlas (TCGA) data [22] sh- 
owed a significant decrease in disease-free 
survival for patients with genomic loss at the 
SAFB locus (p=0.0186) (Figure 3A). Analysis of 
the SU2C/PCF dream team cohort of metastat-
ic PCa [23] showed that patients treated either 
with hormone suppression or taxanes showed 
a significant decrease in SAFB1 mRNA expr- 
ession in comparison to untreated patients 
(Figure 3B). These findings suggest the possi-
bility that SAFB1 silencing promotes treatment 
resistance. Consistent with this, in the pres-
ence of enzalutamide we observed increased 
growth of LNCaP cells silenced for SAFB1 com-
pared with control cells (Figure 3C), which ex- 
hibited a cytostatic response as described [24]. 

With SAFB1 silencing, UGT2B15/UGT2B17 
mRNA and UGT2B15 protein levels were re- 
duced, suggesting that androgen degradation 
was attenuated. Microarray expression experi-
ments also predict a decrease in the degrada-
tion of AR activating ligands in the context of 
SAFB1 down-regulation. Consequently, we me- 
asured the impact of SAFB1 depletion on levels 
of DHT through quantification of DHT by high-
pressure liquid chromatography (HPLC). Cells 
depleted of SAFB1 showed a significantly slow-
er rate of loss of radiolabeled DHT over time in 
comparison to control cells (Figure 3D), sug-
gesting a reduction in the capacity to catabo-
lize androgen. These results are consistent 
with observations that these cells grow even in 
low androgen environments [9] and are enzalu-
tamide resistant.

Potential AR co-factors in regulation of 
UGT2B15 and UGT2B17

In humans, glucuronidation is a critical pathway 
for the elimination of T and DHT and is mediat-
ed by the UDP glucuronosyltransferase (UGT) 
enzymes [25]. To evaluate mechanisms of regu-
lation of the androgen glucuronidating enzymes 
UGT2B15 and UGT2B17 by SAFB1, we exam-
ined UGT2B15 and UGT2B17 mRNA levels in 
LNCaP and 22Rv1 cells in response to DHT. 
DHT repressed UGT2B15 and UGT2B17 mRNA 

to SAFB1 were used and analyzed by quantitative real-time PCR. SAFB1, UGT2B15 and UGT2B17 mRNA expres-
sion levels were significantly decreased for both (B) LNCaP and (C) 22Rv1 cells. Western blot analysis also shows 
that SAFB1, UGT2B15 and AR protein level reduction in both (D) LNCaP and in (E) 22Rv1 there is also a reduction 
in AR-V. For (A), microarray cut-off log fold change ≥ 1.5 was classified as DEGs. For (B and C) mean ± SEM (n=3). 
*P<0.05, **P<0.005. 
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expression in both cell lines, although the 
response in the CRPC line 22Rv1 was sub- 
stantially greater than the hormone-sensitive 
LNCaP cells (Figure 4A and 4B). Consistent 
with this, 10 uM enzalutamide treatment up- 
regulated UGT2B15 and UGT2B17 mRNA levels 
(Figure 4C), indicating AR is an direct repressor 
for these two genes. To identify transcription 

factors that interact with AR that may regulate 
these genes, we conducted in silico analysis in 
the online database Swiss Regulon [26]. We 
identified transcription factors predicted to 
bind to the UGT2B15 and UGT2B17 proximal 
promoters within 500 bp to the transcriptional 
start site. We compared this list of transcrip- 
tion factors to a list of AR interacting proteins 

Figure 3. SAFB1 loss has a more aggressive phenotype associated with survival, treatment resistance, and in-
creased androgen stability. (A) Kaplan Meyer log-rank survival curves (n=449) from the TCGA cohorts [22] with 
respect to the absence or presence of CNA of SAFB1 for patients, no change (n=416) and deletion (n=33). (B) Meta-
static PCa patient clinical samples from SU2C/PCF Dream Team cohort [39] were used to measure SAFB1 RNA-seq 
expression for comparing patients receiving no treatment versus patients receiving Abiraterone and Enzalutamide 
(Rank-sum p-value: 0.0422) or Taxanes (Rank-sum p-value =0.0504). (C) Cell proliferation was measured in LNCaP 
sh control vs sh SAFB1 hp1 was compared after treatment with enzalutamide (control (0 μM), 1 μM, 10 μM, 100 μM) 
for 4 days. (D) Percent DHT was measured as the change of the collected radiolabeled DHT levels for varying time 
points (2, 4, 6 HR) measured for the control cells vs the shSAFB1 hp1. For (C), n=3 ± SEM. (*P<0.05, **P<0.005). 
For (D), n=3 ± SEM.
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curated by McGill University (http://andro-
gendb.mcgill.ca), along with other literature on 
AR interacting proteins [27-30]. Seven tran-
scription factors (CEBPA, ONECUT2, FOXA2, 
HOXA7, ARID5A, JUN and SOX9) were identified 
as interacting with AR and were predicted to 
bind to the UGT2B15 and/or the UGT2B17 pro-
moter (Figure 4D). These are candidate co-reg-
ulators of androgen catabolism in concert with 
SAFB1.

Discussion

This study identified the nuclear matrix protein 
SAFB1 as a potential regulator of androgen ca- 
tabolism in PCa through regulation of UGT2B15 
and UGT2B17 genes, which encode enzymes 
that inactivate androgens by glucuronidation. 
We showed previously that the consequences 
of SAFB1 silencing in LNCaP PCa cells include 
increased AR transcriptional activity, increased 
cell proliferation and migration, resistance to 
anoikis, increased growth in hormone-depleted 

media, and more rapid tumor growth in vivo  
[9]. Expression microarray profiling of SAFB1-
depleted cells revealed that major pathways 
downregulated following reduction in expres-
sion of SAFB1 were glucuronidate metabolic 
processes, steroid hormone metabolic proce- 
sses and neuron differentiation. Ranking of  
the 50 most down-regulated DEGs in SAFB1-
depleted cells revealed that the UGT2B gene 
family was very substantially repressed. 

Glucuronidation of T and DHT in humans is the 
most important catabolic pathway for inactiva-
tion and elimination of active androgens [31]. 
The importance of the role of UGT2B15 and 
UGT2B17 in regulation of androgen levels was 
demonstrated by Chouinard et al. [32]. These 
investigators have shown through transient 
silencing of UGT2B15 and UGT2B17 concur-
rently (5-fold mRNA reduction) in LNCaP using 
siRNA resulted in a marked reduction (75%) of 
glucuronidated DHT (DHT-G). In prostate cancer 
cell lines, there was a significant effect of active 

Figure 4. Regulation of UGT2B15 and UGT2B17 genes. (A) Hormone sensitive LNCaP and (B) hormone independent 
22Rv1 show significantly repressed UGT2B15 and UGT2B17 mRNA with 10 nM DHT treatment. (C) UGT2B15 and 
UGT2B17 mRNA expression levels are upregulated with 10 uM Enzalutamide treatment. (D) Analysis of probable 
AR co-regulatory proteins that may regulate UGT2B15 and UGT2B17 using predicted transcription factor analysis of 
UGT2B15 and UGT2B17 proximal promoter region and known AR interacting proteins.
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androgen metabolite degradation by the re- 
duction of these 2 important enzymes. We pre-
dicted that in SAFB1-depleted cells, where 
UGT2B15 and UGT2B17 mRNA levels are re- 
pressed, we would observe a marked increase 
in stable DHT levels. The measured levels of 
androgen from the SAFB1 silenced cells show- 
ed ~70% of free DHT remaining after 6 h, while 
in the LNCaP control cells only ~20% of free 
DHT remained at 6 h. We also observed that 
the SAFB1-depleted cells, which exhibit the 
concurrent effects of AR activation as well as 
an increase in free available DHT, are relative- 
ly resistant to the next generation therapeutic 
compound enzalutamide. 

A survey of the regulatory mechanisms of UGT- 
2B15 and UGT2B17 described in the literature 
indicate that AR is a negative regulator of these 
genes [31, 33-37]. Bao et al. have shown that 
the effects of AR repression of UGT2B15 and 
UGT2B17 mRNA expression are significant 
(70% and 62% reduction) [33]. Inhibitors of AR, 
flutamide and bicalutamide, were able to can-
cel out the repressive effects [25, 33]. These 
investigators also were able to show a direct 
interaction between AR and the UGT2B15 and 
UGT2B17 promoters using ChIP [34]. These 
observations demonstrated that androgens 
negatively regulate their own glucuronidation in 
PCa cells through AR ligand dependent activa-
tion. AR ligand dependent inhibition of UGT2B15 
and UGT2B17 expression has been studied as 
a process that mediates transformation of PCa 
cells toward a more malignant phenotype. Bao 
et al. probed AR-positive and AR-negative pros-
tate cancer cell lines for expression of UGT2B15 
and UGT2B17 and the AR negative cell lines 
PC3 and DU145 lacked expression of both 
genes [34]. These findings suggest AR is also 
an important positive regulator of the expres-
sion of UGT2B15 and UGT2B17, possibly as a 
feedback mechanism to control androgen lev-
els. However, we showed a major increase in 
UGT2B15 and UGT2B17 expression in response 
to enzalutamide, suggesting that the role of 
regulation of these genes by AR is still not 
entirely clear. 

In summary, we identify SAFB1 to be a media-
tor of androgen catabolism. This and other find-
ings support an important role for this protein 
in some forms of PCa where intracrine andro-
gen signaling is physiologically significant. We 

conclude that SAFB1 expression and activity 
are pertinent to progression to castration re- 
sistance. 
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