
 

 

Introduction 
 
The balance between survival and death is of 
such importance that the cell spends consider-
able energy maintaining it.  Nowhere else is the 
maintenance of this balance more fraught with 
risk than in the cancer cell.  The birth and death 
of a cancer cell hinges on the function of sev-
eral ancient, highly conserved cell death path-
ways; apoptosis, necrosis, and autophagy.  For 
cells to generate tumors, there are often accom-
panying defects in the progression of cell death 
that can eventually result in neoplasia.  This is 
the basis for cancer therapies that attempt to 
rescind a cancer cell’s longevity, and has been 
one of the most important goals of research.  
The approach has been to target the cell death 
pathways, particularly apoptosis, to render a 
cancer cell once again sensitive to regulated 
cell death.   
 
To identify the best target for enhancing cell 
death in cancer cells, we must first understand 

the defects in the cell death pathways that gen-
erate cancer cell tumorigenesis and treatment 
resistance.  Many cancer therapies aim to in-
duce cell death in order to curb tumor growth.  
However, the presence of genetic defects in 
cancer cells limits the clinical efficacy of these 
death-inducing agents.  Therefore, more fo-
cused individualized therapy is needed to ad-
dress these defects to improve clinical out-
come.  
 
Although much is known about apoptosis, other 
death pathways have only recently gained atten-
tion as potential targets of therapy.  Because 
defects in cell death pathways are nearly ubiqui-
tous among cancers, targeting the cell death 
components can be used as a comprehensive 
treatment strategy for a broad range of cancers.  
However, understanding the differences be-
tween the cell death pathway defects in each 
type of cancer can offer a more tailored ap-
proach to choosing treatments to enhance cell 
death that is specific and effective. 
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In this review, we will discuss what is known 
about the molecular pathways that lead to a 
cell’s demise, and how this knowledge can be 
used to maximize a patient’s response to their 
cancer treatment.  First, we will present a sum-
mary of the cell death pathways apoptosis, 
autophagy, and necrosis.  We will then explore 
the genetic components that participate in each 
of these processes, and the manner in which 
defects of these components may lead to tu-
morigenesis, treatment resistance, and disease 
relapse.  We will review the drugs in develop-
ment that attempt to restore a cancer cell’s sus-
ceptibility to cell death, and the results of clini-
cal trials that have evaluated a treatment’s 
safety and efficacy.  The complexity of cell death 
will be discussed with an emphasis on the mas-
ter regulator of cell survival, p53.  We will briefly 
review studies that suggest that cancer stem 
cells lead to disease relapse because of an ac-
quired resistance to apoptosis that is likely due 
to the accumulation of mutations over time.  
Lastly, we will argue that targeted treatment 
strategies must take into consideration the type 
of cell death, the type of cancer, and the micro-
environment, so that cell death resistance can 
be effectively lowered.   
 
Apoptosis 
 
Apoptosis is composed of two separate path-
ways: intrinsic and extrinsic (Figure 1). In the 
older, intrinsic pathway, DNA damage induces 
release of cytochrome C from the intermem-
brane space. The Apoptotic protease activating 
factor 1 (APAF-1) activates caspase-9 through 
cleavage, and caspase-9 generates a signaling 
cascade of caspase cleavage that results in 
direct DNA fragmentation [1-3]. The intrinsic 
pathway is antagonized by the mitochondrial 
anti-apoptotic proteins Bcl-2 and Bcl-xL, which 
inhibit the pro-apoptotic proteins Bax and Bak 
(Figure 1). The extrinsic pathway begins with 
ligand binding to the Fas or the TNF-related 
apoptosis-inducing ligand (TRAIL) death recep-
tors, which causes formation of the death-
inducing signaling complex (DISC).  Once acti-
vated, caspase-8 activates effector caspases 
such as caspase-3.  Inhibition of the extrinsic 
pathway occurs through cellular FLICE-inhibitory 
protein (cFLIP) function, which is a procaspase-
8/-10 homolog that prevents caspase-8 recruit-
ment to the DISC [4].  These two apoptotic path-
ways converge at the level of the effector cas-
pases, leading to apoptotic death.  Apoptotic 
cell death is regulated by the Inhibitors of apop-

tosis proteins (IAPs).  The most well-known 
member of this family is the x-linked IAP (XIAP), 
which inhibits caspase-3 and -9.  XIAP is itself 
inhibited by the second mitochondria-derived 
activator of caspases (Smac), a pro-apoptotic 
gene (Figure 1).   
 
Intrinsic pathway defects in apoptosis 
 
Cancers limit an apoptotic response by overex-
pressing anti-apoptotic proteins or causing de-
fects in pro-apoptotic proteins.  Overexpression 
of the anti-apoptotic protein Bcl-2 is present in 
patients with follicular cell lymphoma [5].  More-
over, constitutively increased levels of Bcl-2 or 
Bcl-xL have been associated with more aggres-
sive malignant phenotypes and/or drug resis-
tance to various chemotherapeutic agents in 
acute lymphoblastic leukemia cell culture [6, 7], 
prostate cancer [8], and the NCI 60 human can-
cer cell lines [9]. Another anti-apoptotic protein, 
Survivin, has been shown to be the fourth most 
common transcribed protein in the genome of 
human cancers [10], and increased levels in 
primary neuroblastoma cell lines were associ-
ated with worsened prognosis [11].  
 
Decreased expression of pro-apoptotic proteins 
also enhances tumorigenesis.  Frameshift muta-
tions in the Bcl-2-associated X protein (Bax) 
gene are present in some mismatch repair-
deficient colon cancer cell lines and malignant 
hematopoetic cell lines [12, 13]. Cells from 
APAF-1 knockout mice are resistant to apop-
tosis induced by chemotherapeutic agents such 
as etoposide and dexamethasone [14].  
 
Lung malignancies often have many defects in 
the intrinsic apoptotic pathway that affect both 
tumorigenesis and response to therapy. Lung 
tumor cell lines (e.g., non-small cell lung cancer) 
were found to express in vitro caspase-9S [15], 
a truncated form of pro-caspase-9, which binds 
to and inhibits APAF-1 [16]. The high expression 
of heat shock proteins (HSPs), which interfere 
with apoptotic signaling, has also been ob-
served in many cancers [17]. Changes in the 
components of the intrinsic pathway, such as 
cytochrome C, have been observed in patients 
with acute myeloid leukemia and correlated 
with reduced patient sensitivity to induction 
chemotherapy [18].  
 
Drugs targeting the intrinsic pathway 
 
Many drugs are currently in development that 
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target and induce apoptosis at various stages of 
the intrinsic pathway (Figure 1, Table 1). The 
first class of drugs being developed is anti-
sense oligonucleotides targeting anti-apoptotic 
genes. Clinical trials have tested the effect of 
oblimersen, a Bcl-2 inhibitor, in Waldenstrom’s 
macroglobulinemia, Non-Hodgkin’s lymphoma, 
multiple myeloma, breast, prostate, esophageal, 
and gastric cancer [19-27]. Treatment with 
oblimersen reduced Bcl-2 mRNA and protein 
levels in breast cancer cell lines, but could not 
decrease Bcl-2 levels and increase doxorubicin 
efficacy in phase I/II trials on breast cancer pa-
tients [28, 29]. Another phase II clinical trial 
showed that oblimersen in combination with 
carboplatin and etoposide did not confer a sig-
nificant benefit when treating advanced-stage 
small-cell lung cancer [30].  Another anti-sense 
oligonucleotide that has been tested is 
AEG35156, which targets XIAP. Because pa-

tients with Acute myeloid leukemia (AML) were 
found to overexpress caspase-3 and -9, 
AEG35156 was tested for its therapeutic effi-
cacy. In phase I/II clinical trials, 47% of patients 
had complete remission (bone marrow <5% 
myeloblasts with normal maturation, peripheral 
blood counts: Hgb≥11 g/dL; Plt≥100 x 109; 
Neutrophils≥1 x 109; Blasts 0%) with the high-
est doses of AEG35156 in combination with 
idarubicin and cytarabine (Table 1) [31]. There-
fore, these results suggest that further testing is 
needed to clarify the roles of anti-sense oligonu-
cleotides in the treatment of cancer, especially 
in view of the considerable toxicity that has 
been reported (Table 1). 
 
The second class of drugs is small molecule 
inhibitors. Gossypol, called AT-101 in its oral 
tablet form, binds to the anti-apoptotic proteins 
Bcl-2, Bcl-x, and MCL1 and inhibits their binding 

Figure 1.  The intrinsic and extrinsic pathways of apoptosis.  The extrinsic pathway is highlighted in blue and the in-
trinsic pathway is highlighted in green.  Synthetic inhibitors are highlighted in yellow.  Abbreviations: Apaf-1, apoptotic 
protease activating factor 1; Casp, caspase; BAK, BCL-2 homologous antagonist/killer; BAX, BCL-2-associated X pro-
tein; BCL-2, B-cell leukemia/lymphoma 2; BCL-XL, B-cell leukemia/lymphoma XL; CytC, cytochrome C; DIABLO, direct 
IAP binding protein with low PI; FADD, Fas-associated protein with death domain; FLIP, FLICE-like inhibitory protein; 
TNFa, tumor necrosis factor a; TRAIL-RI, TNF-related apoptosis-inducing ligand receptor 1; TRAIL-R2, TNF-related 
apoptosis-inducing ligand receptor 1; SMAC, second mitochondria-derived activator of caspases; XIAP, X-linked inhibi-
tor of apoptosis protein. 
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to pro-apoptotic targets. Preclinical testing of in 
vitro and in vivo models of B-cell lymphoma 
showed that gossypol promotes apoptosis when 
used in combination with several different 
chemotherapies including carfilzomib, eto-
poside, and doxorubicin [32].  In a phase I/II 
study, when patients with prostate cancer were 
treated with escalating doses of AT-101, 2 of 
the enrolled patients with hormone-refractory 
prostate cancer had at least a 50% reduction in 
levels of prostate-specific antigen (n=23) [33]. 
Another small molecule inhibitor of the anti-

apoptotic Bcl-2 family proteins is obatoclax me-
sylate, which was cytotoxic to melanoma cell 
lines when used in combination with an ER 
stress inducer such as tunicamycin or thapsigar-
gin [34]. In phase I trials, obatoclax had modest 
improvement in patients with advanced CLL and 
other mylodysplastic disorders [35, 36]. A third 
small molecule is the ABT-737, which binds to 
and inhibits function of Bcl-2 and Bcl-x by work-
ing in conjunction with doxorubicin to cause an 
apoptotic response in HL-60 leukemic cells 
[37].  Geldanamycine, a small molecule inhibi-

Table 1. Summary of clinical trials for the intrinsic apoptotic pathway 

CR criteria (International Working Group criteria, [128]) must last >4 weeks: bone marrow <5% myeloblasts with normal maturation, 
peripheral blood counts (Hgb≥11 g/dL; Plt≥100 x 109; Neutrophils≥1 x 109; Blasts 0%). Abbreviations: AST, alanine aminotrans-
ferase; AST, aspartate aminotransferase; CR, complete remission; D, docetaxel; O, oblimerson; OS, overall survival; PFS, progression
-free survival; PSA, prostate-specific antigen; RECIST, response evaluation criteria in solid tumors; TTP, time to progression. 
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tor, inhibits HSPs, which can interfere with 
apoptosis and have anti-tumor effects [38]. Its 
less hepatotoxic analogue, tanespimycin (17-
AAG) plus trastuzumab in phase I clinical trials 
was well tolerated and demonstrated antitumor 
activity in patients with HER-2+ breast cancer 
[22]. These results suggest that small molecule 
inhibitors of anti-apoptotic proteins have poten-
tial in combination with other therapies for a 
wide range of cancers. 
 
Other drugs that target the intrinsic apoptotic 
pathway include Smac mimetics, which inhibit 
XIAP and sensitize prostate cancer cell lines to 
apoptotic cell death in vitro [39]. In combination 
with multiple chemotherapeutic agents, Smac 
mimetics increased apoptotic responses in mul-
tiple tumor cell lines in vitro including mela-
noma, NSCLC, breast cancer, and neuroblas-
toma. 
 
Extrinsic pathway defects in apoptosis 
 
Because the death receptors are the gateway to 
the extrinsic apoptotic pathway, it is of little sur-
prise that reduced ligand binding has been im-
plicated as the mechanism of resistance to 
apoptotic cell death in multiple cancers.  For 
example, the decreased expression of the Fas 
receptor resulted in increased resistance to the 
signaling effects of TRAIL and TNF-alpha in 

U937 cell lines or human monocytic cell lines 
[40].  Loss of cell surface expression of TRAIL-
R1 and TRAIL-R2 on breast cancer cell lines 
correlated with decreased sensitivity to TRAIL 
[41]. The overexpression of decoy TRAIL recep-
tors is another means for cancers to bypass Fas
- or TRAIL-induced apoptosis. Decoy receptors 
bind to Fas or TRAIL ligands, effectively decreas-
ing signal transduction of the extrinsic pathway.  
For example, overexpression of decoy receptor 
3 leads to decreased Fas-mediated apoptosis in 
B-cell lymphoma and diffuse large B-cell lym-
phoma cell lines [42]. 
 
In addition to abnormal expression of cell death 
and decoy receptors, defective signaling from 
the death receptor to caspase-8 can function-
ally block signal transduction at the receptor 
level (Figure 1).  For instance, mutated variants 
of caspase-8 can prevent the recruitment of 
normal caspase-8 to the DISC, thus acting as 
dominant-negative forms [4]. Mutated caspase-
8, while infrequent, has been linked to in-
creased bladder cancer incidence, according to 
a hospital-based case control study [43]. Cas-
pase-8 can also be functionally silenced by the 
hypermethylation of gene regulatory sequences, 
which has been noted in a number of biopsied 
tumor samples including neuroblastoma [44], 
Ewing’s sarcoma [45], and  glioblastoma multi-
forme [46].  

Table 2. Summary of clinical trials for the extrinsic apoptotic pathway 

Abbreviations: NSCLC, non-small cell lung cancer; PFS, progression-free survival; RECIST, response evaluation criteria in solid tu-
mors.  
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Drugs targeting the extrinsic pathway 
 
Current therapeutic strategies targeting the ex-
trinsic pathway are based on two primary ap-
proaches: TRAIL-receptor recombinant ligands 
and agonist antibodies (Figure 1). Recombinant 
human TRAIL (rhTRAIL) has been developed for 
clinical investigation as a soluble zinc-
coordinated homotrimer. The mechanism of 
action remains unclear, but it can trigger apop-
tosis in a p53-independent manner in 50% of 
cancer cell lines and has little if any effect on 
non-malignant cells. Other recombinant ligands 
include recombinant human Fas, APO010, and 
golnerminogene pradenovec, a replication defi-
cient adenovector that expresses tumor necro-
sis factor (TNF)a under a radiation-inducible 

promoter [47, 48]. 
 
Monoclonal antibodies are available for both 
the TRAIL-R1 (mapatumumab) and TRAIL-R2 
(lexatumumab, drozitumab) receptors. These 
antibodies have been tested in vitro and in 
Phase I and II clinical trials [49-55]. In ovarian 
cell cultures, it was shown that cells treated 
with paclitaxel and carboplatin in combination 
with mapatumumab enhanced cytotoxicity to 
treated tumor cells [56]. It has been shown in 
phase I clinical trials that mapatumumab in 
combination with paclitaxel and carboplatin 
demonstrated increased anticancer activity and 
clinical benefit for the majority of the patients 
enrolled on the trial [49].  Lexatumumab treat-
ment in combination with radiation increased 

Figure 2.  The molecular mechanism of autophagy and its role in cell death and survival.  Autophagy is mediated 
through mTOR- and Beclin-1-dependent pathways.  The effects of autophagy on cell death are highlighted in blue and 
the effect of autophagy on cell survival is highlighted in red.  Synthetic inhibitors are highlighted in yellow.  Auto-
phagosomes are highlighted in blue. Abbreviations: AKT, protein kinase B; BAD, Bcl-xL/Bcl-2-associated death pro-
moter; BCL-2, B-cell leukemia/lymphoma 2; BCL-XL, B-cell leukemia/lymphoma XL; BIF1, Endophilin B1; FIP200, 
focal adhesion kinase family-interacting protein of 200 kD; IL-3, interleukin 3; IL-3R, interleukin 3 receptor; IKK, I 
kappa beta kinase; JNK1, jun NH2-terminal kinase 1;MTOR, mammalian target of rapamycin; NFkB, nuclear factor 
kappa beta; PI3K, phosphoinositide 3-kinase; TNFa, tumor necrosis factor a; TRAIL-RI, TNF-related apoptosis-inducing 
ligand receptor 1; TRAIL-R2, TNF-related apoptosis-inducing ligand receptor 1; ULK1, unc-51-like kinase 1; UVRAG, UV 
radiation resistance-associated gene protein. 
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long-term tumor control in a nude mouse model 
[57]. In vitro, drozitumab treatment induced 
apoptosis in a panel of breast cancer cell lines 
but was had no effect in normal human primary 
osteoblasts, fibroblasts, or mammary epithelial 
cells. Drozitumab treatment led to the complete 
regression of advanced mammary tumors in a 
murine model [58]. Lexatumumab has been 
tested in phase I clinical trials, but its efficacy 
has yet to be determined in phase II trials [54]. 
Although these antibodies were found to have 
substantial pro-apoptotic activity in vitro, few 
significant objective responses have been noted 
to date.  
 
These results emphasize that identifying the 
specific location of the defects in a cell death 
pathway has a profound impact on treatment. 
For example, in malignancies with a known cas-
pase-9 mutation that renders treatment resis-
tance, targeting the intrinsic apoptotic pathway 
may show minimal benefit because the pathway 
itself converges on caspase-9.  Therefore, fur-
ther studies to understand the effects of cell 
death pathway drugs and the character of the 
cell death pathway defects are needed to de-
sign the most optimal treatment. 
 
Autophagy 
 
Autophagy is a cell death pathway that recycles 
cell components and degrades proteins (Figure 
2).  Autophagy is stimulated by starvation, cyto-
kines, caspase inhibition (discussed in further 
detail below), and drug treatment (e.g., rapamy-
cin/sirolimus).  In yeast, autophagy is an adap-
tive mechanism to changes in the availability of 
energy sources.  In mammals, however, the role 
of autophagy is much more varied, ranging from 
cell survival, cell death, immunity (pathogen 
clearance and antigen presentation), and to 
disease states such as cancer and neurodegen-
eration [59, 60].  There are multiple types of 
autophagy that are distinguished by bulk degra-
dation or subcellular compartment-specific deg-
radation.  Bulk degradation occurs via macro-
autophagy, which is the classically described 
process that occurs following nutritional depri-
vation in yeast.  Macroautophagy is character-
ized by the formation of double membrane vesi-
cles that arise from an unknown source to en-
gulf the cytosol [59, 60].  Following fusion with a 
lysosome to form an autophagolysosome, the 
contents of the vesicles are enzymatically de-
graded.  Subcellular compartment-specific auto-

phagy includes chaperone-mediated autophagy 
(CMA), which occurs in response to serum with-
drawal, cytoplasmic to vacuole yeast targeting 
(CVT) autophagy, pexophagy (autophagy of per-
oxisomes that occurs in yeast and mammals), 
and mitophagy.  Mitophagy is the autophagy of 
damaged mitochondria that especially occurs in 
response to starvation. This process begins with 
the release of intermembrane mitochondrial 
proteins that activate the process, unless mito-
chondrial permeabilization is blocked (i.e., in 
response to cyclosporine A treatment) [60].   
 
Autophagy is largely regulated by mammalian 
target of rapamycin (mTOR) and Beclin-1.  Auto-
phagosome formation is governed by the 
Atg13/Ulk1/FIP200 complex [61]. mTOR is an 
important regulator of protein synthesis, ribo-
some biogenesis, and autophagy in mammalian 
cells [62, 63].  Activation of the PI3K/Akt/mTOR 
pathway inhibits the Atg13/Ulk1/FIP200 com-
plex through phosphorylation of the Autophagy-
related protein 13 (Atg13), which destabilizes 
the complex.  Beclin-1 is a tumor suppressor 
that activates autophagy when bound to the UV 
irradiation resistance-associated gene (UVRAG) 
and endophilin B1 (Bif1) (Figure 2).  
 
Autophagy was initially characterized as a pro-
survival factor due to its ability to maintain ATP 
levels during nutrient deprivation due to cellular 
component recycling (Figure 2).  In addition, 
cells from Bak/Bax-deficient mice, which have 
reduced apoptosis, require autophagy induction 
to sustain their energetic requirements follow-
ing IL-3 withdrawal [64].  In addition, it is specu-
lated that mitophagy, which is a subtype of 
autophagy, enhances survival of the cell by de-
grading damaged mitochondria before the re-
lease of pro-apoptotic factors from the mito-
chondria and the accumulation of ROS lead to 
DNA damage [65].  
 
Although early studies have described auto-
phagy in dying cells, it was unclear whether this 
was a part of the cell death mechanism or a 
terminal survival attempt by the cell.  However, 
recent studies confirm that autophagy also 
plays a role in cell death [66, 67].  There are 
multiple models for the mechanism of auto-
phagy-dependent cell death.  The first is that 
overabundant autophagy results in cell death 
[60] (Figure 2).  The second model is that auto-
phagy activates apoptosis, which was described 
in Drosophila and during HIV infection following 
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engagement of the HIV glycoprotein Env and the 
CXCR4 receptor.  In the third model, autophagy 
selectively degrades survival factors to reduce 
cell viability [60].  An example of this was shown 
in an elegant study using mouse L929 cells.  
When treated with a caspase inhibitor, these 
cells showed increased autophagic cell death, 
which required Beclin-1 and Atg7 and was medi-
ated by JNK and RIP signaling.  In this form of 
autophagy, catalase was selectively degraded 
by autophagy, leading to ROS accumulation, cell 
membrane damage, and cell death [67].  These 
results suggested that autophagy could lead to 
cell death via a caspase-independent mecha-
nism.  Another survival factor, IKK, which facili-
tates nuclear translocation of NFkB, can be se-
lectively degraded via autophagy in vitro [60].  
These results suggest that autophagy plays an 
important role in regulated cell death as well as 
cell survival.  
 
Autophagy defects in cancer 
 
Interestingly, the level of autophagy in cancer 
cells depends on the context of disease.  Ad-
vanced tumors have increased autophagy in 
areas of high metabolic stress, likely due to the 
increased energetic requirements and adapta-
bility required in this environment [61].  How-
ever, early data suggested that autophagy-
related genes were tumor suppressors. Monoal-
lelic deletions of the Beclin-1 locus were fre-
quently observed in human breast, ovarian, and 
prostate cancer cell lines [68-70].  Heterozy-
gous gene disruption of Beclin-1 in mice re-
sulted in decreased autophagy and increased 
cellular proliferation of breast and hepatocellu-
lar carcinoma, suggesting that Beclin-1 is a hap-
loinsufficient tumor suppressor [5, 71]. Beclin-
binding molecules such as UVRAG and Bif-1 are 
also associated with tumorigenesis. UVRAG lo-
calizes to the chromosome region 11q13.  Mu-
tations in this region were associated with the 
development of gastric and colon cancer 
through analysis of patient biopsies [72-75]. In 
addition, reduced Bif-1 expression was noted in 
tissues samples from patients with gastric carci-
noma [76], invasive urinary bladder, and gall-
bladder cancer [77].  A homozygous deletion of 
the Bif-1 gene was also identified in patients 
with mantle cell lymphoma [78].  These data 
implicate components of autophagy in the sup-
pression of tumorigenesis. 
 
When Beclin-1 is bound by Bcl-2, autophagy is 

inhibited. Furthermore, increased autophagy 
was accompanied by increased cell death when 
the Bcl-2-binding domain was deleted [71].  
Although the pro-survival properties of Bcl-2 
were previously attributed solely to apoptotic 
pathway inhibition, downregulation of Bcl-2 also 
results in caspase-independent cell death in 
human leukemic HL60 cell lines [79].  Further-
more, the silencing of Bcl-2 in breast cancer cell 
lines with RNA-interference has been shown to 
promote autophagic cell death [80].  These data 
demonstrate the cross-talk that exists between 
the cell death pathways. 
 
Because Bcl-2 functions as a direct inhibitor of 
autophagy, promoting the dissociation of Beclin-
1 from Bcl-2 represents one of the novel thera-
peutic to enhancing autophagic cell death in 
cancer patients.  Recently, it was found that c-
Jun N-terminal kinase (JNK) phosphorylates Bcl-
2 to release Beclin-1 from the inhibitory effects 
of Bcl-2 [81]. Intriguingly, only the endoplasmic 
reticulum-localized Bcl-2 featured a JNK-
dependent regulation of Beclin-1 [81, 82]. 
Therefore, the spatial dependence of autophagy 
regulation by Bcl-2 has become an attractive 
topic in the research on autophagy and cancer. 
Targeting Bcl-2 to increase autophagy levels in 
cancer cells might therefore be achieved by the 
activation of JNK or the competitive antagonism 
of the Bcl-2-binding/BH3 domain of Beclin-1 by 
BH3-mimetics. Use of these strategies may pre-
vent the inhibition of Beclin-1 and activate auto-
phagy in cancer cells.  
 
While pro-survival factors including mTOR, 
PI3K/Akt, and Bcl-2 inhibit autophagy, tumor 
suppressors including p53 and LKB1 stimulate 
autophagy [83]. Specifically, low nutrient levels 
inhibit mTOR and activate autophagy via LKB1/
AMP-activated protein kinase (AMPK) [71, 84, 
85]. Factors involved in this signaling pathway 
appear to be closely linked to tumorigenesis. 
For instance, mutated LKB1 was recently found 
to enhance tumor metastasis and aggression in 
lung cancer cell line and lung cancer tumor 
specimen biopsied from patients [86]. LKB1 is 
somatically mutated in approximately one third 
of the NSCLC patient population. Genetically-
engineered mouse models of NSCLC with a 
LKB1 mutation gained metastatic potential and 
exhibited histologic changes corresponding to 
adenocarcinoma, and squamous cell carcinoma 
in vivo [87].  Therefore, multiple upstream regu-
lators of autophagy perform tumor-suppressing 
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functions that may be of interest in the thera-
peutic elevation of autophagy in cancer cells.  
  
Drugs targeting autophagy 
 
Temozolomide is a drug that has been shown to 
induce autophagic cell death (Table 3). The cy-
totoxicity of temozolomide is mediated by the 
formation of O6 methylguanine in DNA, leading 
to thymine mispairing in the subsequent replica-
tion cycle and resultant cell cycle arrest in G2/
M, as demonstrated in glioblastoma cell lines 
[88].  Phase II trials of temozolomide in combi-
nation with thalidomide or cisplatin for patients 
with melanoma or malignant glioma showed a 
modest 6 month progression-free survival (PFS) 
(15% and 28%, respectively) [89, 90].  However, 
Phase III trials demonstrated that temozolomide 
with radiation therapy offered significant benefit 
to glioblastoma patients [91].  Adding temo-
zolomide to radiotherapy increased the median 
survival and the two-year survival in newly diag-
nosed patients with glioblastoma (11% vs. 2% in 
patients treated with radiation alone) (Table 3) 
[91]. 

Rapamycin and rapalogs (RAD001, CCI-779, 
AP23573) are mTOR inhibitors (Table 3).  Si-
lencing of mTOR with a siRNA stimulates auto-
phagy and thereby reduces tumor cell viability. 
Targeting the autophagy gene Beclin-1 with 
siRNA suppressed the cytotoxicity of rapamycin 
in rapamycin-sensitive malignant glioma cell 
lines, implicating autophagic cell death as the 
primary mediator of the antitumor effects [92].  
Phase I studies showed that of 34 patients en-
rolled with malignant glioma with prior chemo-
therapy and radiation therapy, 2 patients had a 
partial response and 13 patients achieved sta-
ble disease with the mTOR inhibitors and 
geftinib treatment regimen [93, 94].  A phase III 
clinical trial showed that mTOR inhibitors signifi-
cantly improved the clinical outcomes of pa-
tients with mantle cell lymphoma (4.8 mo PFS 
vs. 19 mo in the control) [95].  
 
Arsenic trioxide (AT) could effectively treat multi-
ple malignancies in vitro including multiple mye-
loma, lymphoma, leukemia, and neuroblastoma 
cell lines [96-99]. Furthermore, AT induced both 
apoptosis and autophagy in vitro in human cell 

Table 3. Summary of clinical trials for the autophagy pathway 

Abbreviations: mTOR, mammalian target of rapamycin; OS, overall survival; PFS, progression-free survival; R, Radiation therapy; T, 
Temozolomide. 
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lines of T-lymphocytic leukemia and myelodys-
plastic syndrome.  The addition of an autophagy 
inhibitor (3-methyl adenine) to malignant leuke-
mia cells overexpressing Beclin-1 also sup-
pressed the increased autophagic death in 
treated cells [100].  AT is especially noteworthy 
because it can induce autophagic cell death in 
malignant gliomas, which are resistant to many 
commonly used therapies [88]. In addition, it 
has a low side effect profile. A Phase II trial ar-
senic trioxide, interferon alpha, and zidovudine 
treatment regimen showed a 100% response in 
patients with T-cell leukemia/lymphoma (ATL) 
(n=10) [101], suggesting that combination 
therapies with AT have significantly improved 
clinical outcomes in comparison with prior treat-
ment regimens. 

 
Necrosis 
 
Necrosis is regulated by poly(ADP-ribose) poly-
merase 1 (PARP-1), a DNA repair protein (Figure 

3).  Hyperactivation of PARP-1 by DNA damage 
through alkylating agents such as doxorubicin or 
ROS accumulation can deplete cytosolic nicoti-
namide adenine dincucleotide (NAD) and trigger 
necrosis.  Receptor-interacting serine/threonine 
kinases 1 and 3 (RIP1, RIP3) have also been 
found to regulate necrosis by forming a complex 
with FADD that was found to be caspase-
independent. Recent evidence also showed that 
RIP1 activation led to apoptosis in the absence 
of RIP3, suggesting that RIP3 is required to acti-
vate nectrotic cell death [102-104]. 
 
Necrotic defects in cancer 
 
Traditionally, necrotic cell death is inhibited in 
cancer patients to sensitize tumors to chemo-
therapy. One way that this occurs is via PARP 
inhibition, which potentiates DNA-damaging 
chemotherapy in mouse models [105].  Be-
cause PARP functions in DNA repair, PARP in-
hibitors, combined with standard chemother-

Figure 3.  The molecular mechanism of necrosis.  Drug treatment that results in DNA damage is highlighted in  yellow.   
Abbreviations: ATP, adenosine triphosphate; FADD, Fas-associated protein with death domain; JNK1, jun NH2-
terminal kinase 1; NAD, nicotinamide adenine dinucleotide; PARP-1, poly(ADP-ribose) polymerase 1; RIP1, receptor 
interacting protein 1; RIP3, receptor interacting protein 3; TNFa, tumor necrosis factor a; TRADD, tumor necrosis fac-
tor receptor type 1-associated death domain protein; TRAIL-RI, TNF-related apoptosis-inducing ligand receptor 1; 
TRAIL-R2, TNF-related apoptosis-inducing ligand receptor 1. 
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apy, are thought to promote apoptotic cell death 
while inhibiting necrotic cell death.  Because 
hyperactivation of PARP-1 induces necrosis, 
PARP-1 function may be desirable in the cellular 
context of other defective cell death pathways 
[106].  In vitro studies have shown that PARP-1 
activation induced JNK signaling through RIP1 
and TRAF2, which led to mitochondrial depolari-
zation and permeabilization and finally, caspase
-independent cell death [107, 108].  Interest-
ingly, patients with inactivated Retinoblastoma 
protein do not benefit from PARP inhibition, as 
the basis of chemotherapy in this context is in-
creased necrotic cell death [106].  This re-
search suggests that the activity of PARP-1 sig-
naling impacts greatly upon the sensitivity of 
cells to induced death.  In the future, cancer 
patients may benefit from screening for PARP 
mutations, as this might influence the patient’s 
response to treatment.   
 
Stimulation of death receptors with TNF or other 
agonists also induced necrosis through the 
kinase activity of RIP1. Although RIP1 is essen-
tial for programmed necrosis, it can also influ-
ence NF–kB, as well as apoptotic pathways 
[109]. Its interaction with RIP3 appears to de-
termine which cell death pathway is utilized. 
Very recent findings have shown RIP3 overex-
pression led to necrosis, whereas a lack of RIP3 
triggers RIP1-mediated apoptosis [102].  More-
over, in vivo studies in mice confirmed that RIP3 
promotes programmed necrosis with viral infec-
tion, suggesting a role for RIP3 in cancer treat-
ment [110]. Therefore, a better understanding 
of the interaction and the outcomes of RIP1 and 
RIP3 mutations may be the key to harnessing 
necrosis as an additional therapeutic force in 
cancers, using increased in necrotic cell death 
to aid in treatment. 
 
Drugs targeting necrosis 
 
DNA-alkylating agents (Figure 3) cause necrotic 
cell death with equal efficacy in cells with or 
without functional apoptosis, a process that is 
likely mediated by PARP-1 activation [111]. Ne-
crosis is also activated by photodynamic treat-
ment (PDT); PDT selectively targets abnormal 
cells while preserving normal surrounding tis-
sues. The preferential accumulation of certain 
photosensitizing compounds in tumor cells and 
the ability to treat only the defined tumor make 
PDT a promising therapeutic approach. In vitro 
studies have shown that measuring the size of 

DNA fragments or screening the different forms 
of cytokeratin-18 (caspase-cleaved versus non-
cleaved) in plasma samples discriminates be-
tween apoptotic and necrotic/non-apoptotic cell 
death, respectively [112, 113].  Increased ne-
crotic death in breast cancer patients is associ-
ated with better survival [114], and patients 
with endometrial tumors predominantly express 
the non-cleaved form of cytokeratin-18 after 
treatment with chemotherapy [115].  These 
data suggest that there is a therapeutic basis 
for enhancing necrosis in certain cancer types, 
such as breast cancer. 
 
Cross-talk and regulation of the cell death path-
ways 
 
p53 is a critical regulator of cell cycle check-
points, senescence, and apoptosis. Therefore, it 
is no surprise that nearly 50% of all human can-
cers harbor mutated or deleted p53. However, 
p53 may also positively or negatively regulate 
autophagy, suggesting a more complex role of 
p53 in cancer than previously suspected [116]. 
The fundamental regulation of autophagy by 
p53 lies in its localization: nuclear p53 leads to 
autophagy and autophagic cell death, while cy-
toplasmic p53 hinders it.  
 
The critical role of p53 in the treatment of can-
cer was also demonstrated with the surprising 
finding that p53 expression levels were a prog-
nostic indicator in a subset of patients with 
glioblastoma multiforme that were treated with 
radiation treatment and temozolomide chemo-
therapy [117].  Patients were sorted to include 
those with decreased expression of the DNA 
repair protein O6-methylguanine-DNA methyl-
transferase (MGMT), which has been associated 
with increased sensitivity to temozolomide treat-
ment [118].  Interestingly, patients that had 
both low MGMT expression and low p53 expres-
sion showed significantly improved PFS 
(p=0.015) and overall survival (OS) (p=-.047) 
when compared to those with high p53 expres-
sion [117].  A study in mice with intracranial 
glioblastoma multiforme xenografts revealed 
that the best treatment responses were ob-
tained with concurrent temozolomide and radia-
tion treatment, rather than sequential treatment 
[119].  These results suggest that the level of 
p53 expression has a major impact on the sus-
ceptibility of cancer cells to treatment and is an 
additional factor to consider when designing a 
treatment protocol.    
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These data emphasize that the complex net-
work involving autophagy, apoptosis, and p53 is 
still unclear and needs further research.  p53 is 
thus a prime example of the growing need for 
awareness of cross talk between cell death 
pathways as well as careful understanding of 
the cellular environment, stress, cancer staging, 
and other factors that must be considered to 
prescribe the best therapy.   

 
Apoptosis resistance in cancer stem cells 
 
Cancer stem cells (CSCs) are a self-renewing 
population that have unlimited proliferation po-
tential.  Once cells disseminate from the pri-
mary tumor, they can persist prior to causing 
cancer metastasis, a stage called cancer dor-
mancy [120, 121].  Studies suggest that CSCs 
may be the chemotherapy- and radiation treat-
ment-resistant cells that represent the nidus for 
relapsed or refractory disease, as well as metas-
tasis [2, 120]. CSCs are likely derived from early 
progenitor cells or stem cells and were first 
identified in hematological malignancies such 
as AML, but have since been demonstrated in a 
number of cancer types.  Therefore, this popula-
tion is a possible Holy Grail of cancer therapy 
and intense investigation is currently underway 
to identify markers for the targeted eradication 
of these cells.   
 
Because of the resistance of CSCs to treatment, 
it is hypothesized that they are also resistant to 
regulated cell death.  Studies suggest that this 
occurs through defects in the cell death path-
ways as well as through regulation of extrinsic 
factors such as cytokine, chemokine, and adhe-
sion signaling, which controls renewal and dif-
ferentiation.  CD34+ hematopoietic stem cells 
had decreased sensitivity to the extrinsic apop-
totic pathway and showed decreased levels of 
caspase-8 mRNA in favor of a splice variant that 
could not activate the downstream effector cas-
pase cascade [122]. Jurkat lymphoma and 
MCF7 breast cancer cell lines that were positive 
for CD133, a stem cell-associated marker, had 
decreased TRAIL-induced sensitivity to apop-
tosis that could be recovered by reducing FLIP 
expression [123].  Lastly, two studies in 
glioblastoma patient-derived stem cells ex-
pressed CD133 and had increased resistance 
to chemotherapy and TRAIL-induced apoptosis, 
likely due to promoter hypermethylation of cas-
pase-8 [124].  In addition, expression of the anti
-apoptotic genes Bcl-2, Bcl-xL, IAP, and FLIP 

were increased.  Resistance to radiation treat-
ment was also observed in primary glioblastoma 
cells harvested by surgical biopsy, but sensitivity 
to treatment could be recovered with activation 
of the caspase cascade because of XIAP inhibi-
tion [125].  These results emphasize that it is 
not enough to target cell death pathways in can-
cer cells, but that it is also important to identify 
the target sub-population in which treatment 
will have the most potent outcome.   
 
Discussion and Implications 
 
We have discussed the primary modes of cell 
death and defects that are prevalent in various 
cancers.  Understanding these defects repre-
sents the next big step for cancer research.  It is 
important to keep in mind that although the 
majority of cancers harbor defects in the apop-
totic pathway, the severity and scope of these 
defects can greatly influence the treatment out-
comes.  Because cancer cells rapidly mutate, 
there is a high possibility that multiple muta-
tions exist in the same apoptotic pathway, par-
ticularly in treatment-resistant CSCs.  Screening 
for these mutations can determine whether or 
not a targeted therapy should be implemented. 
For instance, in cases of multiple defects in the 
apoptosis pathway, a shift in treatment focus to 
alternative death pathways such as autophagy 
or necrosis may prove effective.  
 
Because there is a growing appreciation for the 
complexity of cross-talk between the death 
pathways, cell death components must be ex-
amined in a broader context.  For example, p53 
mutations are extremely prevalent in cancers 
and commonly associated with its role in apop-
tosis, but there is growing evidence for the role 
of p53 in autophagy and necrosis as well.  Many 
other proteins, from Bcl-2 to the death-
associated protein kinase (DAPK) are becoming 
important players in other death pathways, and 
as we gain better insight into these connections,  
our therapies will improve as well.   As the cata-
log of defects in these pathways grows, we will 
have greater tools to fight cancer, not only with 
new targets for therapy, but also with more per-
sonalized therapy. However, we must also be 
more aware of the tremendous complexity in-
volved in cellular death.   
 
To incorporate this complexity, efforts have 
been made not only to increase the number of 
molecular targets, but also to more effectively 
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use the cancer treatments available.  One strat-
egy, called cyclotherapy, attempts to circumvent 
the toxicity of current chemotherapy regimens 
to normal cells by using low doses of kinase 
inhibitors first to reversibly arrest growth in nor-
mal cells while restoring apoptosis to cancer 
cells.  Chemotherapeutic agents are then used 
[63].  In addition, the development of simple 
and complex computational models to design 
dosing schedules for cell phase-specific chemo-
therapy drugs also minimizes toxicity and opti-
mizes the molecular targets of the therapy 
[126].  This is especially important when multi-
ple drugs are being administered, one of which 
arrests cells in a cell cycle phase that enhances 
the efficacy of action of the second drug [63].  
For example, the protein kinase inhibitor UCN-
01 causes three times as much G1-S-mediated 
apoptosis when it is administered before 
fluorouracil than after it [126, 127].  In addition, 
models that incorporate drug resistance that is 
both genetically based and cell cycle-mediated 
enhance the individualization of cancer treat-
ment dosing regimens. 
 
Although individualized therapy is not a novel 
concept, only recently has this model been ap-
plied to the field of oncology. The Food and Drug 
Administration approval of several drugs target-
ing specific molecules required for pathogene-
sis (notably trastuzumab, cetuximab, erlotinib 
and bevacizumab) has given credibility to indi-
vidualized cancer therapy. Trastuzumab targets 
the human epidermal growth factor receptor 2 
(HER2) in breast cancer and is effective only in 
the context of HER2 receptor overexpression. 
Similarly, epidermal growth factor (EGF) inhibi-
tors erlotinib and cetuximab are most effective 
on tumors with EGF receptor (EGFR) mutations 
and amplification. Bevacizumab blocks vascular 
endothelial growth factor (VEGF), thereby re-
stricting angiogenesis and metastasis, and thus 
has limited utility in non-metastatic settings.  In 
treating malignancies today, it has become im-
perative to understand the individual patient’s 
cancer in order to determine an optimal ther-
apy. The power of this paradigm shift is most 
apparent in the current protocol to treat breast 
cancer, which prioritizes a patient’s HER2 and 
ER/PR status because of the predictive value of 
these factors in disease management and prog-
nosis.  This approach applied to all disease is 
the future of medicine, and is the goal that we 
must align ourselves with to have the surest 
chance of advancing disease therapy. 

Conclusion 
 
Inducing apoptosis has long been a central goal 
of chemotherapy and radiation treatment. How-
ever, the rise of molecular targets in autophagy 
and necrosis allow for potentially greater flexibil-
ity when approaching cancers.  The future of 
cancer therapy requires an understanding of 
molecular and genetic defects that lower the 
efficacy of current therapeutics to enhance cell 
death. We have discussed recent advances 
made on the contribution of cell death pathway 
defects to cancer resistance, as well as current 
drugs and clinical targeting of these defects to 
recover cell death.  The key to sustainable and 
efficacious cancer therapy lies in a personalized 
approach, one that maximizes the specificity 
and efficacy of treatment for each type of can-
cer. We believe that continually refining our un-
derstanding of the nexus between cell death 
and cancer further tailors the ability to manage 
and predict the course of disease, constituting 
the future of personalized medicine.   
 
List of Abbreviations: AIF: Apoptosis-inducing factor; 
AMPK: AMP-activated protein kinase; APAF-1: Apop-
totic protease activating factor 1; AT: Arsenic trioxide; 
ATL: T-cell leukemia/lymphoma; BH3: Bcl-2 homology 
3; Bif1:  Endophilin B1; cFLIP: Cellular FLICE-
inhibitory protein; CMA: Chaperone-mediated auto-
phagy; CSC: Cancer stem cell; CVT: Cytoplasmic to 
vacuole yeast targeting; DAPK: Death-associated 
protein kinase; DISC: Death-inducing signaling com-
plex; EGF: Epidermal growth factor; EGFR: Epidermal 
growth factor receptor; FADD: Fas-associated protein 
with death domain; FLICE: FADD-like IL-1 b-converting 
enzyme; FLIP: FLICE-inhibitory protein; HER2: Human 
epidermal growth factor receptor 2; HSP: Heat shock 
proteins; IAP: Inhibitors of apoptosis protein; JNK: c-
Jun N-terminal kinase; MDR: Multidrug-resistant;  
MGMT: O6-methylguanine-DNA methyltransferase; 
mTOR: Mammalian target of rapamycin; NAD: nicoti-
namide adenine dinucleotide; NSCLC: Non-small cell 
lung cancer; PARP-1: poly(ADP-ribose) polymerase 1; 
PDT: Photodynamic treatment; PFS: Progression-free 
survival; rhTRAIL: Recombinant human TNF-related 
apoptosis-inducing ligand; RIP: Receptor-interacting 
serine/threonine kinases; Smac: Second mitochon-
dria-derived activator of caspases; TNFa: Tumor ne-
crosis factor a; TRAIL: TNF-related apoptosis-inducing 
ligand; TRAIL-R: TNF-related apoptosis-inducing 
ligand receptor; UVRAG: UV irradiation resistance-
associated gene; VEGF: Vascular endothelial growth 
factor; XIAP: X-linked inhibitors of apoptosis protein. 
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