
 

 

Introduction 
 
More than two decades ago S1P was first sug-
gested to be an intracellular second messenger 
for Ca2+ mobilization in the field of signal trans-
duction [1]. Around the same time Spiegel and 
colleagues [2] found that S1P induced a tran-

sient Ca2+ release from the intracellular Ca2+ 

store and stimulated DNA synthesis in Swiss 
3T3 fibroblasts. They previously observed that 
sphingosine, which had been suggested to be 
an endogenous inhibitor of protein kinase C [3], 
unexpectedly stimulated DNA synthesis, de-
pending on the concentration employed [4]. 
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Abstract:  Sphingosine-1-phosphate (S1P) is a plasma lipid mediator with multiple roles in mammalian development, 
physiology and pathophysiology. It is constitutively produced mostly by erythrocytes by the action of sphingosine 
kinase 1 (SphK1), resulting in high (~0.5 micromolar) steady-state plasma S1P content and steep S1P concentration 
gradient imposed between plasma/lymph/tissue interstitial fluid. S1P is also locally produced by activated platelets 
and tumor cells, in the latter case SphK1 is a downstream target of activated Ras mutant and hypoxia, and is fre-
quently upregulated especially in advanced stages of tumors. Most if not all of the S1P actions in vertebrates are 
mediated through evolutionarily conserved G protein-coupled S1P receptor family. Ubiquitously expressed mammal-
ian subtypes S1PR1, S1PR2 and S1PR3 mediate pleiotropic actions of S1P in diverse cell types, through coupling to 
distinctive repertoire of heterotrimeric G proteins. S1PR1 and S1PR3 mediate directed cell migration toward S1P 
through coupling to Gi and activating Rac, a Rho family small G protein essential for cell migration. Indeed, S1PR1 
expressed in lymphocytes directs their egress from lymph nodes into lymph and recirculation, serving as the target for 
downregulation by the immunosuppressant FTY720 (fingolimod). S1PR1 in endothelial cells plays an essential role in 
vascular maturation in embryonic stage, and mediates angiogenic and vascular protective roles of S1P which include 
eNOS activation and maintenance of barrier integrity. It is likely that S1PR1 and SphK1 expressed in host endothelial 
cells and tumor cells act in concert in a paracrine loop to contribute to tumor angiogenesis, tumor invasion and pro-
gression. In sharp contrast, S1PR2 mediates S1P inhibition of Rac at the site downstream of G12/13-mediated Rho 
activation, thus identified as the first G protein-coupled receptor that negatively regulates Rac and cell migration. 
S1PR2 could also mediate inhibition of Akt and cell proliferation/survival signaling via Rho-ROCK-PTEN pathway. 
S1PR2 expressed in tumor cells mediates inhibition of cell migration and invasion in vitro and metastasis in vivo. 
Moreover, S1PR2 expressed in host endothelial cells and tumor-infiltrating myeloid cells in concert mediates potent 
inhibition of tumor angiogenesis and tumor growth in vivo, with inhibition of VEGF expression and MMP9 activity. 
These recent findings provide further basis for S1P receptor subtype-specific, novel therapeutic tactics for individual-
ized treatment of patients with cancer.  
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They showed that sphingosine was phosphory-
lated by sphingosine kinase (SphK) to become 
S1P before exerting mitogenic effect. Indeed, 
platelet-derived growth factor (PDGF) and serum 
mitogens induced a transient activation of SphK 
in cultured fibroblasts, leading to a proposal 
that S1P generated intracellularly acted as a 
second messenger for mitogenesis [5].  
 
Igarashi and colleagues reported, on the other 
hand, that S1P potently inhibited B16 mela-
noma cell migration and invasion of Matrigel 
[6]. They suggested that S1P acted via a puta-
tive cell surface receptor rather than as a sec-
ond messenger, based upon their observations 
including effectiveness of immobilized S1P and 
detection of saturable high affinity cell surface 
binding sites for S1P [7].  
 
These pioneering works disclosed two distinct, 
major aspects of S1P actions, i.e. stimulation of 
cell proliferation and inhibition of cell migration, 
which are now proven to exert stimulatory and 
inhibitory effects, respectively, in tumor progres-
sion via different subtypes of the G protein-
coupled S1P receptors.  
 
It is now well established that the S1P signaling 
system plays crucial roles in mammalian devel-
opment and physiology, maintaining homeosta-
sis of such diverse systems as cardiovascular, 
immune, respiratory, endocrine, reproductive 
and nervous systems, and liver, kidney, bone 
and so on; it is also implicated in human dis-
eases including cancer and atherosclerosis, the 
two leading causes of death in developed coun-
tries, among many others [8-19]. The S1P sig-
naling system consists of S1P synthesizing and 
degrading enzymes, transmembrane S1P trans-
porters and S1P carrier proteins in the plasma, 
in addition to five members of the G protein-
coupled S1P receptor subtypes and down-
stream intracellular signaling molecules. S1P 
could also act on intracellular targets, which at 
present are yet to be fully elucidated [12, 14 
and references therein]. 
 
In this review, we will briefly overview basic ar-
chitectures of the S1P signaling through three 
ubiquitously expressed S1P receptor (S1PR) 
subtypes, and then focus on S1PRs in tumor 
cells, S1PRs in host cells in the context of tumor 
angiogenesis. We will also overview molecular 
mechanisms for overexpression of sphingosine 
kinase 1 (SphK1) in tumor cells and its roles in 
tumor progression, which include sustained 

activation of Akt, stabilization of HIF1α and S1P 
production. 
 
Identification of the G protein-coupled receptor 
(GPCR) family for S1P and LPA 
 
The lysosphingolipid S1P shows structural simi-
larity to lysophosphatidic acid (LPA), which is a 
classical plasma lipid mediator with pleiotropic 
activities [20-26]. Moolenaar and colleagues 
first demonstrated that LPA stimulated DNA 
synthesis and phosphoinositide hydrolysis with 
cellular Ca2+ mobilization in pertussis toxin-
sensitive and -insensitive manners, respectively, 
in fibroblasts [23]. Their observations and other 
studies also indicated that a transient intracellu-
lar Ca2+ mobilization at the G0/G1 interface was 
neither required nor sufficient as a mitogenic 
signal in fibroblasts and other cell types [23, 27-
31]. In N1E-115 neuronal cells LPA induced 
neurite retraction in a C3 toxin-sensitive, Rho-
dependent manner [32]. Exogenously added 
S1P, but not its microinjection, was also shown 
to induce neurite retraction and Ca2+ mobiliza-
tion, with the latter showing homologous desen-
sitization but not cross-desensitization to LPA 
[33]. In guinea pig atrial myocytes S1P but not 
LPA activated IK(Ach) in a pertussis toxin-sensitive 
manner [25]. These observations strongly sug-
gested the existence of distinct, yet closely re-
lated, GPCRs for S1P and LPA.  
 
In an attempt to explore a novel signaling sys-
tem in the vasculature our group cloned a puta-
tive GPCR from rat aortic cDNA library [34]. This 
clone, designated as AGR16(=EDG5/H218/
S1PR2), was abundantly expressed in vascular 
smooth muscle cells but showed no similarity to 
any known GPCR except for EDG1(=S1PR1), 
which was reported by Hla and Maciag [35] as 
an mRNA upregulated in differentiating human 
umbilical vein endothelial cells (HUVECs) in re-
sponse to a phorbol ester. Chun and colleagues 
identified vzg-1(=EDG2/LPA1), which has a sub-
stantial homology with EDG1 and EDG5, as a 
GPCR specific for LPA [36]. After this discovery, 
EDG1, EDG5, and another closely related one 
(S1PR3/EDG3), were identified as receptors 
specific for S1P by several laboratories includ-
ing our laboratory [37-44],  

 
Distinct signaling mechanisms of S1PR1, 
S1PR2 and S1PR3 
 
S1PR1, S1PR2 and S1PR3 are ubiquitously 
expressed S1P receptor subtypes that are re-
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sponsible for mediating diverse actions of S1P 
in a variety of cell types, through overlapping yet 
distinctive intracellular signaling mechanisms 
(Figure 1) [36-47, 48-55 for review]. The expres-
sion of the other two S1P receptors S1PR4 and 
S1PR5 are relatively restricted to the immune 
and the nervous system, respectively [8]. 
 
S1PR1 couples exclusively to Gi to activate Ras/
ERK and PI 3-kinase/Akt pathways, leading to 
mitogenic and prosurvival signaling, and also to 
activate Rho family small GTPase Rac, which is 
essential for cell migration and cellular cortical 
actin assembly known as lamellipodia or mem-
brane ruffling. S1PR1 thus mediates directed 
cell migration or chemotaxis toward S1P. S1PR1 

could also activate phospholipase C (PLC) and 
consequent Ca2+ mobilization via Gi [38-40, 44, 
45, 48-55].  
 
Differently from S1PR1, S1PR2 couples to multi-
ple heterotrimeric G proteins, among which 
G12/13 coupling to RhoA activation is most 
prominent [41, 44, 45, 47-59]. S1PR2 exerts, at 
the site downstream of G12/13-RhoA, a potent 
inhibitory effect on Rac via stimulation of Rac 
GAP activity, with consequent inhibition of cell 
migration toward chemotactic growth factors 
and chemokines [45, 48-59].  S1PR2-mediated, 
G12/13-coupled RhoA activation also exerts po-
tent inhibition of Akt [60, 62], but not ERK, lead-
ing to inhibition, rather than stimulation, of cell 

Figure 1.  S1P receptor subtype-specific heterotrimeric G protein coupling and intracellular signaling mechanisms. 
S1PR1 couples exclusively to Gi to activate Ras-ERK and PI 3-kinase-Akt/Rac pathways, leading to stimulation of 
chemotaxis and cell proliferation. S1PR2 couples to multiple G proteins, especially to G12/13 to induce potent Rho 
activation, leading to inhibition of Rac and cell migration, and also inhibition of cell proliferation via inhibition of Akt. 
S1PR3 activates Gq-PLC-Ca2+ pathway, and Gi-Ras-ERK and -PI 3-kinase-Akt/Rac pathways. S1PR3- G12/13 –Rho path-
way becomes evident only when Gi is inhibited by pertussis toxin. 
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proliferation [62, 63]. This inhibition of Akt and 
cell proliferation via S1PR2 is likely achieved by 
Rho kinase-mediated phosphorylation and acti-
vation of PTEN [60-62]. However, S1PR2-
mediated inhibition of cell migration is inde-
pendent of Rho kinase in CHO cells and B16 
melanoma cells [45, 56, 59], and is observed in 
PTEN-deficient glioma cells [13, 64]. S1PR2 
also mediates S1P stimulation of PLC and Ca2+ 
mobilization via Gq, and activation of Ras/ERK 
and PI 3-kinase pathways via Gi [41, 45, 47-56]. 
 
S1PR3, which also couples to multiple G pro-
teins, potently activates PLC/Ca2+ signaling 
pathway via Gq, in addition to Ras/ERK, PI 3-
kinase and Rac via Gi, mediating mitogenic/
prosurvival and chemotactic effects of S1P [42-
56, 59]. S1PR3 also couples to G12/13-Rho, al-
though to a lesser extent as compared to 
S1PR2 [45, 59].  
 
Since S1PR1, S1PR2 and S1PR3 are widely 
expressed in various types of cells, an inte-
grated outcome of S1P signaling in a given cell 
type largely depends upon relative expression 
levels of the S1P receptor subtypes (see below). 
In addition, ever growing numbers of examples 
of cross talks between S1P receptor signaling 
and growth factor or cytokine receptor signaling 
have been reported. For example, under certain 
conditions S1PR3 activation leads to activation 
of TGFβ signaling pathway and fibrosis [18, 65]. 
Update information regarding detailed cross 
talk mechanisms is available in recently pub-
lished excellent reviews [8, 12, 13, 66]. 

 
Sphingolipid metabolizing enzymes and S1P 
transporters 
 
S1P is generated through phosphorylation of 
sphingosine by sphingosine kinases SphK1 [67] 
and SphK2 [68], which share a conserved cata-
lytic domain, but are distinct in other aspects 
including their structures of non-catalytic do-
mains and expression patterns. S1P is either 
dephosphorylated by S1P phosphatases (SPPs) 
[69, 70] to regenerate sphingosine, or degraded 
by S1P lyase (SPL) to ethanolamine phosphate 
and hexadecenal [71, 72], the latter reaction 
serving as the exit from sphingolipid metabolic 
pathway (Figure 2).  
 
SphKs, SPPs and SPL play important roles not 
only for production and degradation of S1P but 
also for controlling cellular levels of sphingolip-

ids including sphingosine and its metabolic pre-
cursor ceramide. These sphingolipid species 
exert growth inhibitory and proapoptotic effects 
upon elevation of their cellular levels, through 
multiple mechanisms including activation of 
protein phosphatases and inhibition of Akt, 
which leads to activation of apoptotic signaling 
pathways [73-75].  
 
In the mammalian body, there is a steep S1P 
concentration gradient across the capillary wall 
[76, 77]: the plasma S1P concentration is 
around 500 nM, which is considered to be 
markedly higher than that in tissue interstitial 
fluid. The vast majority of plasma S1P derives 
from red blood cells [78, 79], which have a 
moderate level of SphK1 but lack S1P degrad-
ing enzymes [80], thus function as a huge S1P 
reservoir and supplier of S1P in blood. Indeed, 
anemia causes a reduction in the plasma S1P 
level. Release of S1P from erythrocytes strictly 
requires acceptor plasma proteins, mostly HDL 
and albumin [79, 81]. A high concentration of 
plasma S1P, derived from erythrocytes, is cru-
cial in maintaining vascular integrity, which is 
achieved by endothelial S1PR1-mediated en-
forcement of adherence junctions [82, 83]. En-
dothelial cells and activated platelets also con-
tribute to plasma S1P [84, 85], although to 
lesser extents. Nevertheless, S1P generated by 
activated platelets contributes to serum S1P, 
which is approximately twice as much as that in 
plasma.  
 
The major part of plasma S1P is bound to HDL 
(~60%), albumin (~30%) and other plasma pro-
teins, with only a few percentages of total S1P 
circulating in a free form [15, 79, 81, 86]. It is 
known that the major determinants of total 
plasma S1P concentration are the plasma HDL 
and albumin levels [15]. Many of beneficial ef-
fects of HDL, including activation of eNOS, 
maintenance of endothelial integrity and NO-
dependent functions, and protection of cardio-
myocytes after ischemia/reperfusion injury, are 
attributed to HDL-bound S1P [15].  
 
S1P is secreted out of erythrocytes via a trans-
membrane S1P transporter, whose molecular 
identity is yet to be established [87]. In a zebraf-
ish mutant miles apart (but not in mammals), 
deletion of S1PR2 results in an anomaly termed 
cardia bifida (two primordial heart tissues re-
maining separated) [88]. Deletion of Spns2, the 
first physiologically relevant S1P transporter 
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identified in vertebrates, which belongs to the 
major facilitator superfamily type transporter, 
gives rise to the same phenotype [89, 90]. It is 
not known at present whether erythrocyte S1P 
transporter is a homologue of Spns2.  
 
S1P in the lymph is produced exclusively by lym-
phatic endothelial cells [91]. There is an in-
creasing concentration gradient of S1P as fol-
lows: lymphoid organ tissue interstitial 
fluid<lymph<plasma. S1PR1 expressed in lym-

phocytes mediates their egress from thymus, 
bone marrow and secondary lymphoid organs 
into lymph and peripheral blood, thus allowing 
their recirculation that is necessary for immuno-
surveillance and adaptive immunity [92-94]. 
S1PR1 is also implicated in innate immunity 
[16, 95]. 
 
SphK1 knockout (KO) mice were phenotypically 
normal except for 60% reductions in plasma 
and serum S1P concentrations as compared to 

Figure 2. Sphingolipid metabolism in various subcellular compartments. Ceramide (Cer) is produced either by de novo 
synthesis from palmitoyl CoA (palmCoA) and L-serine with sequential enzymatic reactions in endoplasmic reticulum 
(ER) or through degradation of sphingomyelin (SM) by the action of sphingomyelinases in the plasma membrane and 
intracellular membranes including lysosomes. Cer is deacylated by ceramidase to yield sphingosine (Sph), which is 
then phosphorylated by SphK1/2 to generate S1P. S1P is exported through a plasma membrane S1P transporter, 
leading to activation of the G protein-coupled S1P receptor subtypes (S1PR1~S1PR5). S1P could be either dephos-
phorylated by S1P phosphatase1/2 (SPP) back to Sph or degraded to ethanolamine-phosphate (Eth-P) and hexadece-
nal (hxdcnl) by S1P lyase (SPL) to leave sphingolipid metabolic pathway. SphK1 is present in both cytosolic and mem-
brane-bound fractions, both being enzymatically active. SPPs and SPL are located in ER. Intracellular transfer of Cer 
from ER to Golgi is facilitated by transfer proteins such as CERT, and both Cer and SM traffic between membrane 
compartments via vesicular transport [172, 173]. PE, phosphatidylethanolamine. 
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WT mice, without significant decrease in tissue 
S1P levels [96]. SphK2KO mice were also phe-
notypically normal, except that they failed to 
show lymphopenia after administration of 
FTY720, which is a potent immunosuppressant 
that acts after being phosphorylated in vivo to 
cause retention of lymphocytes in secondary 
lymphoid organs via downregulation of S1PR1 
expressed in lymphocytes (see below) [97]. 
These results indicate that SphK1 is the major 
isozyme responsible for production of plasma 
and serum S1P, and that SphK2 could compen-
sate for SphK1 in its absence, and that SphK2 
but not SphK1 is responsible for phosphorylat-
ing FTY720.  
 
SphK1-/-SphK2-/- double knockout mice, which 
have no detectable level of S1P, are embryonic 
lethal around embryonic day E11.5 with defects 
in vascular and neural development [98], indi-
cating that S1P is produced exclusively by 
SphK1 and SphK2 in vivo. It is remarkable that 
severely SphK-deficient Sphk1-/-Sphk2+/- mice 
are viable with normal phenotype, except for 
female infertility due to marked accumulation of 
sphingosine and dihydrosphingosine in decid-
uum [99]. S1P levels in uterus and deciduum in 
Sphk1-/-Sphk2+/- mice were comparable to WT 
mice.  
 
SPL-null mice show markedly high levels of S1P 
in tissue and serum with accumulation of cera-
mide and long chain bases, and also general-
ized derangements in lipid metabolism, result-
ing in multi-organ abnormalities with vacuolar 
changes and inclusion bodies, severe lym-
phopenia, granulocytosis and monocytosis, 
leading to early lethality after weaning [100, 
101].  
 
S1PR2 is a chemorepellant receptor whereas 
S1PR1 and S1PR3 are chemotactic receptors  
 
Cell migration is a process essential for morpho-
genesis, angiogenesis, immune surveillance, 
inflammation, tumor cell invasion and metasta-
sis. It is regulated through receptor-mediated 
processes in response to a variety of ligands, 
which are either soluble, bound to extracellular 
matrix or expressed on cell surface.  
 
One of outstanding biological activities of S1P is 
the ability to regulate cell migration either nega-
tively or positively, which was first recognized to 
be apparently cell type-dependent. S1P potently 

inhibits cell migration in a variety of tumor cells 
including B16 melanoma, breast cancer, and 
glioblastoma cells [6, 7, 56, 58, 64, 102, 103], 
as well as vascular smooth muscle cells [104, 
105] and neutrophils [106]. By contrast, S1P 
induces chemotaxis in vascular endothelial cells 
[107-109], murine embryonic fibroblasts [110], 
and T and B lymphocytes [111, 112].  
 
Chinese hamster ovary (CHO) cells are an excel-
lent model for studying mechanism of cell mi-
gration [45, 48-50, 55, 59]. They vigorously ex-
hibit stimulation or inhibition of cell migration, 
depending on stimuli. CHO cells overexpressing 
either S1PR1 or S1PR3 showed pertussis toxin-
sensitive, Gi- and PI 3-kinase-dependent stimu-
lated cell migration toward S1P, with character-
istic bell-shaped dose-response curves in a Boy-
den chamber assay. In contrast, S1PR2-
expressing cells or vector control cells did not 
show a change in cell migration response to 
S1P. All of the four cell types showed compara-
ble extents of stimulated cell migration in re-
sponse to their chemoattractant insulin-like 
growth factor-1 (IGF-1), which was dependent 
upon PI 3-kinase but not Gi. Importantly, CHO 
cells overexpressing S1PR2, but not S1PR1 or 
S1PR3, showed S1P dose-dependent inhibition 
of cell migration toward IGF-1 [45]. Rho family 
GTPases Rac, Rho and Cdc42 stimulate actin 
polymerization to induce lamellipodia, stress 
fibers and filopodia, respectively [113]. The 
chemoattractant receptors S1PR1 and S1PR3 
mediated Rac activation, whereas chemorepel-
lant receptor S1PR2 did not. S1PR2 and S1PR3 
but not S1PR1 mediated activation of RhoA. 
S1PR1 ~ S1PR3 did not alter Cdc42 activity. 
The chemoattractant IGF1 induced activation of 
Rac but not Rho or Cdc42. S1PR2 but not 
S1PR1 or S1PR3 inhibited IGF-1-stimulated Rac 
activation. The expression of either a dominant 
negative (DN) Rac mutant N17Rac or DN Cdc42 
mutant N17Cdc42, but not DN Rho mutant 
N19RhoA inhibited chemotaxis toward IGF-1. 
N17Rac and N17Cdc42 but not N19RhoA also 
inhibited S1PR1- and S1PR3-mediated chemo-
taxis. Thus, stimulated Rac activity and probably 
basal Cdc42 activity are required for chemotaxis 
toward IGF-1 and S1P [45]. We also found that 
S1PR2-mediated inhibition of Rac activity and 
cell migration in response to IGF-1 were abol-
ished either by expression of DN N19Rho, inacti-
vation of Rho by pretreatment with C3 toxin, or 
interfering of S1PR2-G12/13 coupling by expres-
sion of the peptide with a sequence of G12α C-
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terminus or G13α C-terminus [45, 59]. Rho 
kinase inhibitors, which completely abolished 
formation of stress fibers and focal adhesions in 
response to S1P, failed to prevent S1P inhibi-
tion of Rac and cell migration [45, 59]. These 
results indicate that S1P engagement of S1PR2 
results in inhibition of Rac and cell migration at 
the site downstream of G12/13 and Rho activa-
tion but not Rho kinase. Rho-dependent, Rho 
kinase-independent inhibition of Rac seems to 
involve stimulation of Rac GTPase activating 
protein (GAP) [45], but not PTEN (unpublished 
observation) or inhibition of PI 3-kinase [45]. 
Interestingly, S1PR3 chemotactic receptor, 
which couples to both Gi and G12/13, functions 
as a migration inhibitory receptor just like 
S1PR2 when Gi is inhibited by pertussis toxin 
[59].   
 
Consistent with the findings obtained in the 
CHO cell expression system, S1PR1 was pre-
dominantly expressed in HUVECs, in which S1P 
induced Rac activation and chemotaxis in a per-
tussis toxin-sensitive manner [105, 107, 114-
116]. Enforced expression of S1PR2 in endothe-
lial cells dampened or inhibited the stimulatory 
effect of S1P on cell migration and tube forma-
tion on Matrigel [57, 62]. On the other hand, 
S1PR2 was abundantly expressed in rat aortic 
smooth muscle (RASM) cells [34, 105], in which 
S1P potently stimulated RhoA with concomitant 
inhibition of Rac and cell migration in response 
to PDGF [105]. Enforced expression of S1PR1 in 
RASM cells attenuated S1P inhibition of cell 
migration [105]. 
 
S1PR2 in tumor cells mediates potent inhibition 
of cell migration, invasion and metastasis, 
whereas S1PR1 and S1PR3 mediate their 
stimulation 
 
By adopting B16 melanoma cells which abun-
dantly expressed endogenous S1PR2 as a 
model system, we provided the first evidence 
that endogenous S1PR2 was responsible for 
S1P inhibition of cell migration and invasion of 
Matrigel [56]. B16 cells showed a high basal 
Rac activity under a serum-deprived condition 
as compared to CHO cells. S1P dose-
dependently and markedly suppressed Rac ac-
tivity, cell migration and invasion. The inhibitory 
effects of S1P on Rac and cell migration were 
completely abolished by an S1PR2-selective 
antagonist JTE-013. In addition, pretreatment 
with C3 toxin or the expression of a DN N19Rho, 

but not Rho kinase inhibitors, abolished S1P 
inhibition of B16 cell migration, indicating that 
endogenous S1PR2 mediated inhibition of Rac 
and cell migration via a Rho-dependent, but Rho 
kinase-independent manner, just like S1PR2 
overexpressing CHO cells [45]. Overexpression 
of S1PR2 sensitized B16 melanoma cells to 
S1P-induced inhibition of Rac activity and cell 
migration [56]. 
 
Differently from S1PR2, overexpression of either 
S1PR1 or S1PR3 in B16 melanoma cells 
blunted the inhibitory effects of S1P on Rac ac-
tivity and cell migration with rightward shifts of 
the dose response curves. In these cell types 
blockade of endogenous S1PR2 by JTE-013 
resulted in S1P dose-dependent stimulation of 
chemotaxis toward S1P [56].  
 
Importantly, S1PR2 mediates S1P inhibition of 
hematogenous metastasis of B16 nelanoma 
cells in a S1P dose-dependent manner [58]. Tail 
vein injection of B16 cells resulted in the forma-
tion of metastatic nodules in the lung three 
weeks later. Pretreatment of B16 cells with S1P 
for just 5 min prior to intravenous injection 
potently reduced the number of nodules in a 
dose-dependent manner, with the maximal 40 
% inhibition obtained at 10-7 M S1P, suggesting 
that the inhibitory mechanism involved an early 
phase of metastasis process [58]. Indeed, stud-
ies with fluorescent dye-labeled B16 cells dem-
onstrated that tumor microembolus formation in 
pulmonary capillaries after intravenous injection 
was significantly inhibited when tumor cells 
were pretreated with S1P (Yamaguchi et al., 
unpublished observation). The expression of 
N17Rac in B16 cells, which persisted for at least 
several days, also potently inhibited metastasis 
by 80% with a reduction in tumor microembolus 
formation. The expression of N17Rac also inhib-
ited B16 cell proliferation in vitro, although to a 
much lesser extent (18% inhibition) as com-
pared to its effect on metastasis, whereas S1P 
did not show any detectable inhibition on B16 
cell proliferation in vitro. The inhibitory effect of 
S1P on metastasis was also observed (40% 
inhibition) when it was administered intraperito-
neally to mice 30 min before injection of B16 
cells and afterward once every day (10 micro-
grams/day), indicating a possible involvement 
of host cell S1PR2 and also an inhibitory S1P 
target late in the metastatic process as well 
[58]. The combination of S1P pretreatment of 
B16 cells and systemic S1P administration into 
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mice resulted in a greater than 60% inhibition.  
 
S1PR2 overexpression markedly sensitized B16 
cells to S1P-induced inhibition of hematogenous 
metastasis, with a maximal 80% inhibition [58]. 
Conversely, overexpression of S1PR1 in B16 
cells resulted in marked enhancement of me-
tastasis by in vitro pretreatment of B16 cells 
with S1P at a relatively low concentration range 
[58]. Aggravation of metastasis with S1P pre-
treatment was also observed for B16 cells over-
expressing S1PR3 (Yamaguchi et al., unpub-
lished observation). These composite results 
provided the first molecular basis for S1PR2-
selective agonists and S1PR1- and S1PR3-
selective antagonists as promising anti-cancer 
therapeutics in the future [58].  
 
S1PR2-mediated inhibition of tumor cell migra-
tion has also been demonstrated in glioblas-
toma cells in the presence and absence of 
PTEN [13, 60, 64]. In gastric cancer cells, which 
express S1PR2 and S1PR3, S1P inhibition of 
cell migration is strictly related to a higher en-
dogenous expression level of S1PR2 over 
S1PR3; when S1PR2 expression level is higher 
than that of S1PR3, then S1P inhibits cell mi-
gration, and vice versa [117]. The stimulatory 
action on cell migration and invasion of S1PR1 
and S1PR3 is also evident for thyroid cancer, 
ovarian cancer and Wilms tumor cells, when 
their actions overcome inhibitory effects of 
S1PR2 [118-120].  

 
Endothelial S1PR1 mediates angiogenic activity  
 
In cultured endothelial cells (ECs) S1P induced 
proangiogenic cellular responses including 
stimulation of cell proliferation, migration and 
morphogenic capillary-like tube formation in 
Matrigel, in pertussis toxin-sensitive manners. 
S1P enhanced angiogenesis in vivo in corneal 
micropocket assay and Matrigel plug assay [82, 
107-109, 114-116]. In accordance with the 
original observation [35] that endothelial 
morphogenic activity was associated with 
upregulation of S1PR1/EDG1 expression, angio-
genic effects of S1P on endothelial cells were 
mediated via S1PR1. S1PR1-selective antago-
nist inhibited endothelial cell tube formation in 
vitro and angiogenesis in vivo [121]. S1PR3 
also shows proangiogenic activities [114, 116]. 
In a mouse model of subcutaneous tumor im-
plantation, host S1PR1 was upregulated in tu-
mor microvessels. Intratumoral injections of 

S1PR1-specific siRNA every three days into LLC 
tumors, which itself did not express S1PR1, in-
hibited tumor angiogenesis and tumor growth in 
vivo [122]. Tumor angiogenesis and tumor 
growth were inhibited by FTY720, the functional 
antagonist for S1PR1 (see below) [123-125]. 
 
S1PR1KO mice were embryonic lethal between 
embryonic days E13.5 and E14.5, not because 
of defective angiogenesis, but because of defec-
tive maturation of blood vessels with impaired 
mural cell coverage and consequent massive 
hemorrhage [110]. This phenotype of defective 
vascular maturation was reproduced in mice 
with vascular endothelial cell-specific condi-
tional deletion of S1PR1 [126]. The investiga-
tion into the interaction between vascular endo-
thelial and mural cells revealed that endothelial 
S1PR1 was required for Rac-dependent, N-
cadherin-mediated adhesion between the two 
cell types [127]. S1PR1/S1PR2/S1PR3 triple 
KO mice showed more severe phenotype in vas-
cular formation as compared to S1PR1KO mice 
[128].  
 
Endothelial and myeloid S1PR2 mediates anti-
angiogenic and tumor suppressive activities 
 
The observation that S1PR2-selective antago-
nist JTE-013 [56] markedly stimulated in vivo 
angiogenesis in Matrigel plug assay [57] sug-
gested that S1PR2 might play an inhibitory role 
in angiogenesis. We created S1PR2KO (S1P2-/- ) 
and S1PR2KO/LacZ knock-in (S1P2LacZ/LacZ) 
mice to understand in depth the role of host 
S1PR2 in tumor angiogenesis and tumor growth 
in vivo [62].  
 
Subcutaneously inoculated Lewis lung carci-
noma (LLC) and B16BL6 melanoma grew much 
more rapidly in S1PR2KO mice as compared to 
those inoculated in wild type (WT) littermates. 
LLC tumors in littermate mice that were het-
erozygous for S1PR2 allele grew at a rate be-
tween those of WT and KO mice (unpublished 
observation). Tumors grown in S1PR2KO mice 
showed twice as much tumor microvessels as 
those grown in WT littermates, with enhanced 
maturity, namely increased mural cell coverage 
and perfusion in vivo. The numbers of proliferat-
ing tumor cells, which were abundant in areas 
close to tumor microvessels, were also greater 
in S1PR2KO mice. Analysis on tumor-bearing 
S1PR2+/LacZ mice demonstrated increased ex-
pression of S1PR2 in tumor microvessels, both 
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in endothelial and smooth muscle cells, as well 
as tumor-infiltrating cells outside of vessels. 
Lung microvasculature endothelial cells ob-
tained from S1PR2KO and WT littermates 
showed that S1PR2 in WT endothelial cells me-
diated inhibition of cell proliferation, migration 
and morphogenic tube formation. When inocu-
lated into mice together with LLC and B16BL6 
cells, S1PR2KO endothelial cells greatly stimu-
lated tumor growth with enhanced angiogenesis 
as compared to WT endothelial cells. These re-
sults indicate that S1PR2 expressed on host 
endothelial cells inhibits tumor angiogenesis in 
a cell-autonomous manner. 
 
Accumulating evidence indicates that bone mar-
row-derived, tumor-infiltrating myeloid cells play 
crucial roles in tumor development. These cells, 
including tumor-associated/educated macro-
phages and CD11b+ population, are responsible 
for production of proangiogenic growth factors 
including VEGF-A and activation of matrix metal-
loproteases (MMPs), which allow liberation of 
matrix-bound proangiogenic factors and growth 
factors for tumor cells, and also provides a suit-
able environment for tumor cell invasion, thus 
leading to stimulation of angiogenesis, invasion 
and metastasis [129]. We characterized tumor-
infiltrating, S1PR2 expressing cells by bone mar-
row transplantation experiments with GFP trans-
genic and S1PR2+/LacZ mice and found that the 
majority of these cells were bone marrow-
derived myeloid lineage cells, which included 
CD11b+ cell population that expressed S1PR2, 
by using double staining for β-galactosidase 
activity and CD11b immunoreactivity. Bone mar-
row-derived S1PR2 expressing cells were not 
detected in the tumor microvessel wall, neither 
in endothelial nor smooth muscle layer. As com-
pared to tumors grown in WT mice that had re-
ceived bone marrow transplantation from 
S1PR2WT mice as a donor, tumors grown in WT 
mice that had received bone marrow transplan-
tation from S1PR2KO mice showed greatly in-
creased numbers of tumor infiltrating myeloid 
cells, which suggested their enhanced recruit-
ment from the bone marrow to tumors. Notably, 
WT mice that had been reconstituted with 
S1PR2KO bone marrow showed significantly 
stimulated tumor angiogenesis and rapid tumor 
growth. Studies on bone marrow-derived macro-
phages revealed that S1PR2 was expressed on 
these cells and mediated inhibition by S1P`of 
cell migration, expression of VEGF-A and other 
proangiogenic factors. Indeed, tumors grown in 

S1PR2KO mice showed increased expression of 
VEGF-A, bFGF and TGFβ, and MMP9 activity as 
compared to WT littermates.  
 
These results indicate that host S1PR2 has a 
unique tumor-suppressive activity: S1PR2 ex-
pressed in bone marrow-derived, tumor-
infiltrating myeloid cells and vascular endothe-
lial cells in concert mediates inhibition of tumor 
angiogenesis and tumor growth [62]. 
 
SphK1 could be involved in tumor progression, 
rather than tumor initiation 
 
Spiegel and colleagues first demonstrated that 
overexpression of SphK1 in NIH3T3 fibroblasts 
and HEK293 cells resulted in reduced serum-
dependence and increased rate of cell prolifera-
tion, with increased survival under serum-
deprived condition or against ceramide chal-
lenge, implicating the involvement of SphK1 in 
cancer development [130]. 
 
It was then reported that overexpression of 
SphK1 in NIH3T3 fibroblasts resulted in full 
transformation with the ability to form tumors in 
NOD/SCID mice, which led to a proposal that 
SphK1 was an oncogene capable of inducing 
tumor initiation [131]. They also showed that 
phosphorylation of SphK1 at Ser225 by ERK1/2 
was required for translocation to the plasma 
membrane and also for transformation [132, 
133].  A mutant SphK1, SphK1S225A, which was 
enzymatically active but defective in ERK1/2-
dependent phosphorylation, failed to show ei-
ther plasma membrane localization or transfor-
mation, whereas the addition of a myristoyla-
tion/palmitylation motif to SphK1S225A conferred 
constitutive plasma membrane location and 
recovery of transforming activity in soft agar 
colony formation [133].  
 
These observations obtained in NIH3T3 cells 
may not be generalized, however, as in 3T3-L1 
cells the overexpression of a myristoylated 
SphK1 construct, which showed plasma mem-
brane localization, resulted in a potent inhibi-
tion, rather than stimulation, of cell prolifera-
tion, whereas overexpression of WT SphK1, 
which distributed in both cytosol and perinu-
clear membrane structures, did stimulate cell 
proliferation [134]. Differently from widely ac-
cepted concept of oncogene (active mutant) vs. 
proto-oncogene (WT) paradigm, SphK1 is consti-
tutively active in its WT form, and mutation in 
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SphK1 gene or SphK1 gene amplification in 
cancer has not been reported to date, raising 
the question whether SphK1 represents an on-
cogene [13, 135].  
 
Accumulating evidence indicates that SphK1 
could be involved in the process of tumor pro-
gression, rather than tumor initiation, through 
multiple mechanisms as discussed below. The 
mechanisms include amplification of HIF1-
dependent responses, paracrine stimulation of 
endothelial S1PR1-dependent angiogenesis, 
paracrine/autocrine stimulation of tumor cell 
invasion, and intracellular roles of SphK1 as a 
sphingolipid metabolizing enzyme and as a sig-
naling molecule that interacts with an intracellu-
lar target.  

 
Multistep carcinogenesis and hypoxia leads to 
overexpression and activation of SphK1 in tu-
mor cells 
 
The expression levels of SphK1 mRNA and pro-
tein are elevated in a variety of tumor cells and 
tumor tissues of mouse and human origin, with 
positive correlations observed between the 
SphK1 expression levels and either the extents 
of resistance to chemotherapeutic agents or 
radiation, advanced stages or poor prognosis 
[13, 136-144]. Immunohistochemical analysis 
shows cytosolic localization of SphK1 protein in 
SphK1 overexpressing tumor tissues [143, 
145]. SphK1 gene amplification in tumors has 
not been reported thus far. The underlying 
mechanism for SphK1 overexpression in tumor 
tissue as compared to normal tissue has not 
been fully addressed until recently. 
 
Several lines of evidence indicate that either an 
activating mutation of a proto-oncogene or inac-
tivation of a tumor suppressor gene could lead 
to SphK1 overexpression. First, the expression 
of a constitutively active mutant of Ras induces 
transcriptional upregulation of SphK1 [131]. 
Similarly, an activating mutation of RET, which is 
responsible for papillary thyroid carcinoma and 
multiple endocrine neoplasia (MEN) type 2, also 
induces upregulation of SphK1 mRNA and pro-
tein levels [146]. Second, the expression of v-
Src stabilizes SphK1 mRNA, leading to SphK1 
mRNA upregulation and protein overexpression 
[147]. Third, degradation of SphK1 is depend-
ent upon p53 function, and loss of function of 
p53, which is frequently observed in human 
cancer, results in reduced rate of SphK1 degra-

dation and upregulation of SphK1 protein level 
[148]. It is therefore reasonable to postulate 
that increased expression of SphK1 in tumor 
cells may be at least in part a consequence of 
multistep carcinogenesis.  
 
SphK1 overexpression could also result from 
activation of GPCRs or growth factor receptor/
tyrosine kinases. For example, engagement of 
LPA receptor-1 strongly induces overexpression 
of SphK1 through a mechanism involving trans-
activation of EGF receptor signaling and S1PR3 
upregulation [149]. In addition, it is known that 
engagement of GPCRs and growth factor recep-
tors induce a rapid and transient activation of 
SphK1 activity [5, 12-14]. 
 
Another crucial event that leads to upregulation 
of SphK1 in tumor cells is hypoxia, which in-
duces SphK1 transcriptional upregulation in a 
hypoxia inducible factor (HIF)-dependent man-
ner [150, 151]. SphK1 gene has two HIF-
responsive elements (HREs) in its promoter re-
gion, through which both HIF1α and HIF2α con-
tribute to stimulate SphK1 gene transcription. 
Indeed, conditioned media from hypoxia-treated 
tumor cells induced angiogenic responses in 
human umbilical vein endothelial cells in a 
S1PR1/S1PR3-dependent manner [150]. In 
addition to hypoxia-induced transcriptional 
upregulation of SphK1 gene expression, hypoxia 
induces stimulation of SphK1 activity upon re-
oxygenation through a reactive oxygen species 
(ROS)-dependent mechanism, which is reported 
to involve Akt-mediated phosphorylation and 
functional regulation of GSK3β with down-
stream signaling [152]. Consistent with this, 
cardiac hypoxia/reperfusion injury is alleviated 
in SphK1 transgenic mice [18] and aggravated 
in SphK1KO mice, as compared to littermate 
WT mice [10], and the protective effect of 
SphK1 is mimicked by S1P and HDL. 
 
Overexpression of SphK1 in tumor cells could 
enhance tumor angiogenesis and tumor cell 
invasion through multiple mechanisms involving 
HIF1 and S1PR1  
 
It is of note that SphK1, which is upregulated in 
a HIF1α-dependent mechanism, in turn stabi-
lizes HIF1α [152, 153]. The SphK1-dependent 
stabilization of HIF1α levels is mediated by the 
Akt/GSK3β signaling pathway that prevents von 
Hippel-Lindau protein-mediated proteasomal 
degradation of SphK1. The pharmacological and 
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RNA silencing inhibition of SphK1 activity pre-
vents the accumulation of HIF1α and its tran-
scriptional activity [152, 153].  
 
These composite findings strongly suggest that 
SphK1 and HIF1α constitute a feed-forward 
amplification loop under hypoxia, resulting in 
further enhancement of HIF1α-dependent re-
sponses, which include increased expression of 
glucose transporter and glycolytic enzymes for 
metabolic adaptation to hypoxia, and induction 
of angiogenic growth factors such as VEGF-A 
and many others that are involved in tumor pro-
gression and metastasis (Figure 3). This amplifi-
cation loop likely functions in normoxic condi-
tion as well, since both SphK1 and HIF1α are 
upregulated by growth factor stimulation via a 

Ras-dependent mechanism under normoxia 
[154]. At present it is not known whether S1P 
receptors are involved in SphK1-induced, Akt-
dependent stabilization of HIF1α. Since Akt is a 
dominant downstream signaling molecule of Gi-
coupled receptors S1PR1 and S1PR3, it is likely 
that tumor-expressing S1PR1/3 participate in 
the HIF1α-mediated signaling of tumor progres-
sion, through autocrine/paracrine stimulation of 
the receptors.  
 
In addition to HIF1α-dependent production of 
angiogenic growth factors in SphK1-
overexpressing tumor cells, SphK1-catalyzed 
production of S1P in tumor cells leads to S1P 
release into cell exterior through a transmem-
brane S1P transporter, which enables 

Figure 3. Hypoxia, activating Ras mutation and p53 deletion in concert upregulate SphK1 expression level and activ-
ity, leading to Akt-dependent growth promoting/anti-apoptotic signaling and autocrine/paracrine activation of S1PR1 
signaling. SphK1 in turn stabilizes HIF1α. Thus, HIF1α and SphK1 likely constitute a feed-forward amplification loop 
that could lead to sustained tumor progression.  
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paracrine/autocrine activation of Gi-coupled 
S1P receptors, S1PR1 and S1PR3, in both host 
endothelial cells and tumor cells. Indeed, a re-
cent study by Obeid and colleagues [155] dem-
onstrated for the first time that S1P secreted 
from SphK1-overexpressing HEK cells and tu-
mor cells induced vascular and lymphatic endo-
thelial cell migration and tube formation in a co-
culture system. It is also reported in U-118MG 
glioblastoma cells that overexpression of S1PR1 
and S1PR3, but not S1PR2, resulted in potent 
activation of urokinase type plasminogen activa-
tor (uPA), which is involved in tumor cell inva-
sion [156]. Inhibition of SphK1 by either a phar-
macological SphK inhibitor or RNA silencing 
potently inhibited uPA activation and invasion 
[156].  
 
Recent studies [123-125, 157] demonstrate 
that anti-S1P monoclonal antibody and FTY720, 
both being functional inhibitors of S1PR1 signal-
ing, effectively inhibit angiogenesis and tumor 
cell proliferation in vivo. These observations 
strongly suggest that autocrine/paracrine S1P 
signaling through S1PR1 plays a significant role 
in these processes.  
 
Overexpression of SphK1 in tumor cells could 
confer resistance to chemotherapeutics through 
reduction in ceramide level and potentiation of 
Akt activity 
 
Overexpression of SphK1 confers not only accel-
eration of cell proliferation but also resistance 
to proapoptotic stimuli, which include serum 
deprivation, ceramide toxicity and chemothera-
peutic agents [130]. It is widely recognized that 
ceramide, which is located upstream of SphK1-
catalyzed reaction in the sphingolipid metabolic 
pathway, accumulates in cells in response to 
apoptosis-inducing stimuli, such as chemothera-
peutic agents and radiation, and mediates cell 
growth arrest and apoptosis [73, 74, 136, 158]. 
Underlying mechanisms for ceramide-mediated 
induction of apoptosis may involve inhibition of 
Akt activity through enhanced dephosphoryla-
tion of Ser473 [159]. It is reported recently by 
Banno and colleagues [160] that resistance to 
oxaliplatin was well correlated with high 
SphK1/2 expression levels and low ceramide 
level. Oxaliplatin stimulated neutral sphingo-
myelinase in sensitive cells, resulting in produc-
tion of ceramide, inhibition of Akt and induction 
of apoptotic signaling. By contrast, resistant 
cells showed a high basal Akt activity, which 

was inhibited by oxaliplatin only when either 
SphK1 or SphK2 was pharmacologically inhib-
ited or knocked down by RNA interference. Inhi-
bition of Akt was associated with an increase in 
ceramide synthesis via salvage pathway, fol-
lowed by apoptosis. These results suggest that 
SphK1 overexpression confers resistance to 
oxaliplatin through mechanisms involving sup-
pression of the ceramide level and potentiation 
of Akt activation [160]. They further provided 
evidence that oxaliplatin induces upregulation 
of p53 when SphK1/2 expression and Akt activ-
ity were suppressed [160]. Consistent with this, 
it was previously demonstrated that Akt phos-
phorylates and activates MDM2, which leads to 
ubiquitination and degradation of p53 [161], 
whereas p53 and caspases are involved in deg-
radation of Akt [162].  
 
In addition to ceramide reduction and Akt acti-
vation, SphK1 could directly interact with an 
intracellular target protein to exert anti-
apoptotic effect. Upon TNFα stimulation, SphK1 
directly interacts with TNF receptor associated 
factor 2 (TRAF2), leading to SphK1 activation 
and production of S1P, which are required for 
NF-kB activation and inhibition of apoptosis 
[163, 164]. 

 
SphK1 deletion could inhibit tumor formation 
through accumulation of sphingosine rather 
than reduced S1P production  
 
The inhibition of SphK1 by either RNA silencing 
or SphK inhibitors leads to inhibition of cell pro-
liferation and induction of apoptosis. The effect 
of SphK1 deletion on tumor formation was ex-
amined in two different mouse tumor models 
using SphK1KO mice [143, 145]. In both mod-
els development of adenoma and adenocarci-
noma was inhibited in SphK1KO mice, although 
underlying mechanism may not be identical. 
 
In azoxymethane- and dextran sulfate-induced 
colon carcinogenesis model, in which chronic 
inflammation is involved as a mechanism un-
derlying cancer development, adenocarcinoma 
lesion in WT mice showed a several fold in-
crease in the SphK1 mRNA expression and two-
fold elevation in the S1P level [143]. Adenoma 
and adenocarcinoma did develop in SphK1KO 
mice, however, their numbers were both 50% 
reduced as compared to WT littermates, with 
reduced numbers of cells in S phase (60%) and 
increased numbers of apoptotic cells (200%) as 
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compared to WT tumors [143]. In addition, 
mRNA levels of inflammation related genes, 
TNFα and COX2, were elevated in WT cancer 
tissues by 5 to 10-fold, respectively, whereas in 
cancer tissues in SphK1KO mice COX2 mRNA 
level was elevated by only 3-fold and TNFα 
mRNA was not elevated. The tissue levels of 
S1P or other sphingolipids in tumor and normal 
mucosa of SphK1KO mice were not addressed. 
 
In ApcMin/+ mouse model of intestinal adenoma-
tous polyposis, polyp lesions showed increases 
in the levels of S1P and sphingosine, with no 
change in that of ceramide [145]. Differently 
from azoxymethane model, ApcMin/+Sphk1-/- 
mice showed a 50% reduction in polyp size, but 
not polyp numbers, as compared to ApcMin/

+Sphk1+/+ mice. Interestingly, the S1P levels in 
polyp lesion and normal mucosa in ApcMin/

+Sphk1-/- mice were comparable to those in Ap-
cMin/+Sphk1+/+ mice, respectively, whereas the 
sphingosine level in tumors of ApcMin/+Sphk1-/- 
mice was 150% of that in ApcMin/+Sphk1+/+ 
mice. It was suggested that a marked reduction 
in proliferating cells in polyps of ApcMin/+Sphk1-/- 
mice were due to increased level of sphingos-
ine, which was associated with reduced expres-
sion of CDK4 and myc; genetic studies indi-
cated that S1PR1 ~ S1PR3 were not likely in-
volved in adenoma development. An increase in 
the tissue sphingosine level, but not a reduction 
in the S1P level, was also observed in deciduum 
of severely SphK-deficient Sphk1-/-Sphk2+/- fe-
male mice, which led to lamellar body formation 
reminiscent of sphingolipidosis, decreased cell 
proliferation, increased apoptosis and infertility 
[99]. 
 
Further studies are required to fully elucidate 
molecular mechanisms for SphK1-dependent 
tumor progression. In addition, generalized 
overexpression of SphK1 in vivo does not nec-
essarily stimulate tumor formation (our unpub-
lished observations). 

  
Targeting S1P receptors and SphK1 as anti-
cancer treatments 
 
Targeting the angiogenic and tumor promoting 
S1P signaling would be promising as an anti-
cancer treatment. Anti-S1P monoclonal anti-
body (Sphingomab) sequesters S1P from bind-
ing to cell surface receptors. It is reported to 
effectively inhibit tumor growth in xenograft and 
allograft mouse models, through inhibition of 

tumor angiogenesis, and also through direct 
inhibitory effects on tumor cells, in which the 
antibody competed against S1P effects includ-
ing stimulation of cell proliferation, prevention 
of apoptosis and production of proangiogenic 
cytokines [157; 165 for review]. Because the 
antibody, which specifically binds S1P with a 
high affinity, is reported to trigger S1P release 
from erythrocytes [79], which constitute a large 
reservoir of plasma S1P, the antibody dose that 
is required to effectively reduce plasma S1P 
concentration would be high in clinical settings. 
Delineating suitable antibody delivery system 
that bypass bloodstream to target primary and 
metastatic tumor tissue would improve cost 
performance status. Since anti-S1P antibody 
should reduce availability of S1P for anti-
angiogenic and tumor suppressive S1P receptor 
S1PR2 as well, addition of selective inhibitors of 
S1PR1 and S1PR3 is expected to potentiate the 
effectiveness of the antibody in inhibiting angio-
genesis and tumor cell migration and invasion. 
 
FTY720, an analogue of sphingosine, acts after 
SphK2-mediated phosphorylation as an S1P 
analogue in vivo, with two opposing actions: it 
could act as an agonist for S1PR1, S1PR3, 
S1PR4 and S1PR5 but not S1PR2, and also as 
a functional antagonist for S1PR1. The latter 
action is due to internalization, ubiquitination 
and proteasomal degradation of S1PR1 [166]. 
Thus, FTY720 acts as a potent immunosuppres-
sant through downregulation of S1PR1 in lym-
phocytes to inhibit lymphocyte egress from lym-
phoid organs and recirculation [91-94, 167]. 
FTY720 also suppresses angiogenic activity of 
S1P through downregulation of S1PR1 in endo-
thelial cells [166]. Pretreatment of HUVECs with 
nanomolar concentrations of FTY720 or FTY720
-phosphate downregulated S1PR1 and inhibited 
endothelial cell migration and Ca2+ mobilization 
in response to S1P. FTY720 potently inhibited 
angiogenesis in corneal micropocket assay, sub-
cutaneously implanted chamber assay, and tu-
mor angiogenesis, tumor growth and metastasis 
in vivo [123-125]. These results are consistent 
with the notion that S1PR1 expressed in endo-
thelial cells is involved in stimulation of tumor 
angiogenesis and metastasis. In addition to its 
inhibitory effect on endothelial cells via down-
regulation of S1PR1 at nanomolar concentra-
tions, it is reported that micromolar concentra-
tions of FTY720 directly induced apoptosis of a 
breast cancer cell line [123]. It is also reported 
in ovarian cancer cells that FTY720 induced 
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autophagy and necrosis [168]. These observa-
tions may be related to recently reported novel 
actions of FTY720, which include inhibition of 
SphK1 [169] and autotaxin, the latter being 
phospholipase D in the plasma responsible for 
lysophosphatidic acid production [170]. Since 
FTY720 is a potent immunosuppressant, it is a 
concern that this effect might reduce immu-
nological anti-tumor activity. Infectious compli-
cations should also be carefully watched. An-
other concern is endothelial dysfunction after 
prolonged usage of the anti-S1P antibody or 
FTY720 because S1P maintains vascular barrier 
integrity and supports eNOS activity via S1PR1 
and S1PR3. 
 
Inhibitors of SphK1 for clinical use are currently 
under intensive investigation [13]. Upon enter-
ing bloodstream, SphK1 inhibitors would get 
into erythrocytes to inhibit SphK1 therein, be-
fore being delivered to tumor tissues, which 
could reduce plasma S1P level to alter vascular 
barrier integrity and anti-atherogenic effects of 
HDL. Tumor-directed drug delivery system for 
SphK1 inhibitors would reduce such adverse 
effects. Very recently, the first phase I trial of 
SphK1 inhibitor L-threo-dihydrosphingosine 
(Safingol) has been conducted [171]. 
 
Another promising strategy of anti-cancer treat-
ment that inhibits tumor angiogenesis, tumor 
growth and metastasis is to potentiate S1PR2 
tumor suppressive signaling. A combination of a 
S1PR2-selective agonist with a S1PR1-selective 
antagonist [121] is expected to be more potent 
than either alone. 

 
Conclusion 
 
Recent studies unequivocally demonstrate the 
existence of the tumor suppressive S1P signal-
ing that is mediated through G12/13-coupled 
S1PR2 in tumor cells, endothelial cells and 
bone marrow-derived myeloid cells. S1PR2 
negatively regulates tumor angiogenesis, tumor 
growth and metastasis, counteracting Gi-
coupled S1PR1/S1PR3 signaling, which medi-
ates tumor angiogenesis and tumor promotion. 
Selective activation of S1PR2 in combination 
with selective blockade of S1PR1/S1PR3 could 
be an effective anti-cancer therapeutic strategy 
targeting S1P signaling system, with possibly a 
reduced side effect.  
 
In tumor cells, hypoxia induces HIF1α-

dependent transcription of SphK1 with conse-
quent increases in its mRNA and protein levels, 
and also its post-translational activation. Onco-
genic mutations, including activating Ras muta-
tion and p53 deletion, also contribute to 
upregulation of SphK1 protein levels and activ-
ity. These mechanisms in concert lead to SphK1 
overexpression that is occasionally observed in 
tumor cells. SphK1 thus upregulated in tumor 
cells in turn stabilizes HIF1α through Akt–
dependent regulation of GSK3β, providing tu-
mor cells a feed-forward amplification loop for 
HIF1α–dependent processes, which include 
upregulation of angiogenic growth factors, glu-
cose transporters, glycolysis enzymes and many 
others. SphK1 overexpressed in tumor cells also 
acts to protect Akt from ceramide-induced deac-
tivation, thus conferring resistance to proapop-
totic stresses such as chemotherapeutics and 
irradiation. These multiple mechanisms, which 
brings about elevated production and release of 
S1P and consequent activation of S1PR1 on 
tumor cells and endothelial cells through 
autocrine/paracrine mechanisms, in concert 
lead to tumor promotion, rather than tumor ini-
tiation. Significance and precise molecular 
mechanisms for SphK1 overexpression in tumor 
biology, as well as S1PR subtype-targeted, se-
lective therapeutic tactics deserve further inves-
tigation. 
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