
 

 

Activation of fibroblasts in cancer stroma 
 
Fibroblasts are the most abundant cell type in 
connective tissues and form the structural 
framework of tissues through their secretion of 
ECM components [1]. Quiescent fibroblasts un-
dergo activation during wound healing and fibro-
sis, both conditions sharing the requirement for 
tissue remodelling, and become myofibroblasts 
(MFs), as originally described by Giulio Gabbiani 
in 1971 [1]. MFs acquire contractile stress fi-
bers, de novo express α-smooth muscle actin (α
-SMA) and the ED-A splice variant of fibronectin, 
and form cell–cell contacts through gap junc-
tions [2]. Upon completion of the wound healing 
process, activated fibroblasts undergo a particu-
lar type of programmed cell death, called nemo-
sis, and are removed by the granulation tissue 
[3,4].  
 
Considering that “tumors are wounds that do 
not heal” [5], CAFs share some similarities with 
MFs, including expression of SMA and ED-A fi-
bronectin, but greatly differ for their duration 
(they are not removed by apoptosis) and their 
activation is not reversible. CAFs are the most 
prominent cell type within the tumor stroma of 
many cancers, most notably breast, prostate 

and pancreatic carcinoma [6,7]. Recent studies 
underscore several subpopulations of stromal 
fibroblasts within different tumors. These popu-
lations share some properties collectively lead-
ing to their “activation state”, although their 
expression of acknowledged activation markers 
is only partial. The main activation markers are 
α-SMA and fibroblast specific protein (FSP), al-
though platelet-derived growth factor (PDGF) 
receptors-β and fibroblast activation protein 
(FAP) have been found overexpressed in stro-
mal fibroblasts of solid tumors [6,8,9]. Beside 
these molecular markers of fibroblasts activa-
tion, some other proteins expressed by stromal 
fibroblasts are recognised to have a prognostic 
value for solid tumors. In particular, a poor prog-
nosis has been associated with expression in 
CAFs of the hypoxia marker carbonic anidrase IX 
in human lung adenocarcinoma [10], or perio-
stin in cholangiocarcinoma [11], or p53 tumor 
suppressor in ductal carcinoma [12]. On the 
contrary expression in CAFs of Caveolin-1, PTEN 
or podoplanin correlates with a favourable prog-
nosis for several carcinomas [13,14,15]. In-
deed, recent studies have reported a tumor pro-
moter effect of p53 inactivation in the stromal 
fibroblasts, as well as that genetic inactivation 
of PTEN in CAFs accelerates both onset and 
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progression of breast carcinoma [16,17,13]. 
This large heterogeneity in marker expression 
for CAFs originating from different tumors may 
be explained by their possible diverse origin. 
Indeed, CAFs are variously reported to stem 
from resident local fibroblasts, bone marrow-
derived progenitor cells or trans-differentiating 
epithelial/endothelial cells through epigenetic 
transitions (see below) [18,19,20,21].  
 
The role of CAFs in tumor progression is multi-
faceted. Similarly to immune cells, which initially 
repress malignant growth, CAFs inhibit early 
stages of tumor progression, mainly through the 
formation of gap junctions between acti-
vated fibroblasts [19, 20]. Conversely, later on 
CAFs become activated by several tumor-
secreted factors and promote both tumor 
growth and progression. Two closely interactive 
pathways are established in the crosstalk be-
tween cancer and stromal cells: a) in the 
“efferent” pathway, cancer cells trigger a reac-
tive response in the stroma, and b) in the 
“afferent” pathway, the modified stromal cells in 

the surrounding microenvironment affect can-
cer cell responses [22,23] (Figure 1). The trans-
differentiation of CAFs, a process commonly 
called mesenchymal-mesenchymal transition 
(MMT) [6], is currently poorly understood. TGF-
β1 has been largely acknowledged to be one of 
the major tumor-cell derived factors affecting 
CAF activation [24]. Nevertheless other pro-
fibrotic factors can be released by cancer cells 
and act on CAFs inducing their activation, in-
cluding PDGF-α/β [25,26], basic fibroblast 
growth factor (b-FGF) [27] or interleukin (IL)-6 
[23]. Several data indicate that activation of 
CAFs is under a clear redox control. Tumor 
growth factor (TGF)-β1 causes an increase in 
reactive oxygen species (ROS) in CAFs, which is 
responsible for downregulation of gap junctions 
between CAFs, for their achievement of MF-
phenotype, as well as for their tumor promoting 
activity in skin tumors [28,29]. Antioxidant treat-
ments, or the micronutrient selenite, prevent 
CAF activation and their enhancement of tumor 
invasion [28]. In keeping, the activation of pros-
tate CAFs by tumor-secreted IL-6 is again redox-

Figure 1. Interplay between CAFs and tumor cells. Tumor progression needs a positive and reciprocal feedback be-
tween CAFs and cancer cells. Cancer cells induce and maintain the fibroblasts activated phenotype which, in turn, 
produce a series of growth factors and cytokines that sustain tumor progression by promoting ECM remodelling, cell 
proliferation, angiogenesis and EMT.  
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dependent [30], and the oxidative stress due to 
JunD genetic inactivation promotes myofibro-
blast differentiation and tumour spreading in 
breast adenocarcinoma [31]. Again antioxidant 
treatments blocks secretion by CAFs of matrix 
metalloproteases (MMPs) or stromal-derived 
factor (SDF)-1, thereby affecting the CAF 
“efferent” pathway. In resident human mam-
mary fibroblasts progressively converting into 
CAFs, SDF-1 and TGF-β1 have been involved in 
the acquisition of two autocrine signaling loops, 
which initiate and maintain the differentiation of 
fibroblasts into myofibroblasts and the concur-
rent tumor-promoting phenotype [32].   
 
Origins of CAFs  
 
A key unsolved question on CAFs is their possi-
ble multiple origin. It is becoming evident that 
CAFs origin can vary both between different tu-
mor hystotypes and within different areas of 

individual tumors. In keeping with the idea to 
develop an effective therapeutic stromal strat-
egy (see below), extensive information about 
the taxonomy of CAFs in different tumor is man-
datory.  
 
We can roughly classify the line of evidence 
about CAFs origin in: i) resident; ii) mesenchy-
mal stem cell (MSC)-derived; iii) mutational 
(Figure 2). 
 
Resident CAFs originate primarily by activation 
of local fibroblasts by cancer-derived growth 
factor. Indeed, tumor cells produce high levels 
of growth factors like as TGF-β, PDGF and bFGF 
that activate stromal cells including resting 
fibroblasts, as well as smooth muscle cells, peri-
cytes, adipocytes or inflammatory cells (Figure 
2). This trans-differentiation MMT process is 
accompanied by the expression of CAF-specific 
genes in fibroblasts [33,34] such as αSMA, 

Figure 2. Multiple origins of CAFs within tumor microenvironment. CAFs can stem from trans-differentiation of resting 
resident fibroblasts or pericytes within tumor microenvironment, through mesenchymal mesenchymal transition 
(MMT). Alternatively CAFs could derive from bone marrow mesenchymal stem cells (MSCs), or from epithelial normal 
or transformed cells via epithelial to mesenchymal trasnsition (EMT), or finally from endothelial cells via endothelial 
to mesenchymal transition (EndMT).   
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MMP1, MMP3, collagens etc [35,36]. An “in 
vivo” confirmation of this model come from data 
showing that human mammary fibroblasts con-
vert into CAFs during the course of tumor pro-
gression in a breast tumor xenograft model, and 
that this effect is due to autocrine activating 
signalling loops, mediated by TGF-β and SDF-1 
cytokines [37]. Again, Toullec reported that SDF-
1 is the key factor involved in activation of resi-
dent fibroblast of human adenocarcinoma [31]. 
 
A second kind of CAF source is represented by 
bone marrow–derived MSCs. MSCs are able to 
differentiate into bone, fat, cartilage and muscle 
cells in many physiological and pathological 
processes [38,39]. MSCs display homing and 
engraftment at injury sites in many conditions 
such as tissue repair, inflammation and neopla-
sia [40,41,42]. The recruitment of MSCs at tu-
mor sites, similarly to activation of inflammatory 
cells in tissue repair processes, is mediated by 
many cytokines and growth factor produced by 
tumor cells or by activated stroma such as 
VEGF, EGF, HGF, bFGF, PDGF and CCL2 
[43,44,45]. In vivo labeled MSCs have been 
shown to localize within tumor mass and to dif-
ferentiate into pericytes and CAFs, acquiring de 
novo expression of characteristic markers such 
as α-SMA, FAP, tenascin-c and thrombospondin-
1, markers phenotypically associated with ag-
gressiveness [46]. However, the role of re-
cruited MSCs within tumor microenvironment is 
still controversial. Indeed, MSCs have been both 
negatively or positively involved in tumor pro-
gression, through immunomodulatory and pro-
angiogenic properties, depending on of the 
source of MSC and the tumor model used [47].  
 
A third proposed source of CAFs origin are 
epithelial cells that, through an EMT process, 
achieve mesenchymal characteristic and be-
come fibroblasts [6,48]. This hypothesis arises 
from the evidence that epithelial cells exposed 
to MMP-driven oxidative stress undergo DNA 
oxidation and experience mutations, thereby 
undergoing to specialized EMT in which they 
transdifferentiate into activated myofibroblasts 
[6,49]. In addition, genetic studies mainly car-
ried out in breast cancers reported CAF somatic 
mutations in TP53 and PTEN, as well as gene 
copy number alteration at other loci in tumor 
stroma [50,51,52]. In keeping with this idea, 
p53 inactivation in stromal fibroblasts, as well 
as that genetic inactivation of PTEN in CAFs 
enhances tumor progression in breast carci-

noma models [16,17,13]. These studies collec-
tively elicit the idea that the tumor promoting 
activity of CAFs may be mainly based on these 
somatic mutations in key tumor suppressor 
genes. In addition, somatic alterations were 
consistently observed at a high frequency 
(>30%) in tumor juxtaposed fibroblasts [51,52]. 
On the contrary, more recent studies have 
stated that genetic alterations were detected 
only in cancer epithelial cells and not in the 
stroma [53], and copy number and loss of het-
erozygosity analysis of CAFs derived from breast 
and ovarian carcinomas showed that somatic 
genetic alterations in CAFs are extremely rare 
and cannot be the basis of the carcinoma-
promoting phenotypes of these cancers [54].  
 
In addition, CAFs may arise directly from carci-
noma cells through EMT [6,48], which allows 
cancer cells to adopt a mesenchymal cell phe-
notype, characterized by an enhanced migratory 
capacity and invasiveness [55]. EMT is induced 
by many factors (i.e. PDGF, TGFβ, EGF, etc) and 
is mediated by the activation of typical tran-
scription factors like Snail, Slug, Twist and 
FOXC2 [55,56]. Similarly, proliferating endothe-
lial cells might contribute to CAF via endothelial 
to mesenchymal transition (EndMT). This proc-
ess is characterized by the loss of endothelial 
markers like CD31, the expression of mesen-
chymal markers like FSP-1 and SMA under the 
stimulation of TGFβ , a growth factor abundantly 
present within tumor microenvironment [57].  
 
Although the relative contribution of each of 
these models in carcinogenesis needs to be 
further elucidated, it is worth notice that the 
models described above are not mutually exclu-
sive either for a given cancer type or for CAFs 
constituting the stroma of a single tumor.  
 
Role of CAFs in cancer progression 
 
Secretion of GFs, cytokines and proteases 
 
CAFs directly stimulate tumor cell proliferation 
by contributing various growth factors, hor-
mones and cytokines (Figure 1). Classical mito-
gens for epithelial cancer cells, such as hepato-
cyte growth factor (HGF), epidermal growth fac-
tor (EGF), b-FGF, as well as cytokines such as 
SDF-1 and IL-6, are all vastly expressed by CAFs 
contacting different tumor types. For example, 
CAFs obtained from lung cancer tissue pro-
duced HGF, thereby activating the c-Met path-



Cancer associated fibroblasts 

 
 
486                                                                                                            Am J Cancer Res 2011;1(4):482-497 

way in neighbouring cancer cells. Of note, the 
secretion of HGF by CAFs leads to resistance of 
lung cancer cells to conventional tyrosine 
kinase inhibitors against EGF receptor and 
blocking antibodies against HGF circumvent this 
acquired resistance [58]. In addition, HGF se-
creted by CAFs enhanced secretion of uPA and 
uPAR in breast cancer cells. SU11274, an in-
hibitor of c-Met decreased both the invasion of 
the cancer cells and secretion of urokinase type 
plasminogen activator (uPA) and its receptor 
(uPAR), thereby validating the anti-HGF treat-
ment plans for antimetastatic purposes [59]. It 
has also been reported that several GFs se-
creted by cancer cells themselves act on 
neighbouring CAFs leading them to activation 
and secretion of HGF [60]. In particular, cancer 
cells may affect HGF secretion by CAFs through 
interleukin IL-1β, IL-6 [23], prostaglandins [61], 
PDGF-β, or β-FGF. Interestingly, secretion of TGF
-β1 by cancer cells suppresses HGF expression 
in CAFs [62]. 
 
Beside growth factors, pro-inflammatory cyto-
kines, such as interleukins, interferons and 
members of the tumor necrosis factor family, 
are produced both by stromal and cancer cells, 
and exert tumor-modulating effects [4]. Expres-
sion by CAFs of cytokines and chemokines leads 
to immune cell infiltration that in turn promotes 
angiogenesis and metastasis [63]. Fibroblast-
derived SDF-1 enhanced invasiveness of pan-
creatic cancer cells, showing a synergy with IL-8 
in the promotion of a complete angiogenic re-
sponse in recruited endothelial cells [64]. SDF-1 
secreted by breast cancer CAFs has been in-
volved in mobilization of endothelial precursor 
cells from bone marrow, thereby inducing de 
novo angiogenesis, as well as in tumor growth 
through a paracrine effect on CXCR4 expressing 
cancer cells [65]. In addition, increased secre-
tion of CXCL14 chemokine by CAFs has been 
reported in prostate cancer stromal fibroblasts. 
CXCL14 increases both growth and migration of 
fibroblasts, which in turn increased their activity 
on tumor cells affecting their growth, angiogene-
sis and macrophage infiltration [66]. In a similar 
manner, CCL7 secreted by CAFs associated to 
oral squamous cell carcinoma leads to 
paracrine IL-1α secretion from cancer cells [67]. 
A recent paper demonstrated that CAFs associ-
ated to incipient neoplasia exhibit a pro-
inflammatory signature, leading them to mainly 
overexpress SDF-1, IL-6 and IL-1β, as well as to 
recruit proangiogenic macrophages and pro-

mote tumor growth. This gene set is under the 
transcriptional control of nuclear factor-κB (NF-
κB) and cyclooxygenase 2 (COX-2), thereby 
strengthening the link between CAFs and in-
flammatory mediators in tumor progression 
[68]. Furthermore, in breast adenocarcinoma 
CAFs have been found affected by oxidative 
stress-mediated activation of hypoxia-inducible 
factor-1 (HIF-1), which in turn activates the se-
cretion of SDF-1 [31]. Interestingly we have re-
cently reported that in prostate carcinoma CAF 
contact leads cancer cells to activate the same 
pro-inflammatory gene signature (NF-κB, COX-2 
and HIF-1), leading them to achieve a motile 
phenotype, and confirming that stromal and 
tumor cells share common key pathways during 
tumor progression [31].  
 
CAFs are also able to secrete plasminogen acti-
vators as well as several members of the MMP 
family. These enzymes may be exploited essen-
tially for two purposes: 1) direct degradation of 
ECM, obviously associated with tumor expan-
sion, invasion and angiogenesis, 2) cleavage of 
growth factors, pro-inflammatory cytokines and 
their receptors, commonly associated with their 
activation, or cleavage of cell adhesion mole-
cules, leading to increase motility and epithelial
–mesenchymal transition (EMT) [69,70]. Ex-
pression of tumor (MMP -1, -2 and -14) and 
stromal (MMP -9, -13 and -14) matrix metallo-
proteinases is mandatory for squamous cell 
carcinoma progression [71]. MMP-13 secreted 
by CAFs promotes tumor angiogenesis by re-
leasing vascular endothelial growth factor 
(VEGF) from ECM, thereby leading to increased 
invasion of squamous cell carcinoma or in mela-
noma [72]. We have recently reported that in 
prostate carcinoma CAFs secrete large amount 
of MMP-2 and MMP-9, which in turn induce a 
clear EMT in prostate carcinoma cells, likely 
through E-cadherin downregulation [23]. Cancer 
cells close the circuitry engaged with their CAFs 
through secretion of IL-6, the main responsible 
of activation of stroma fibroblasts in prostate 
cancers. Of note, sensitivity of CAFs to IL-6 has 
been associated with senescence, a known 
prognostic factor for prostate cancer aggressive-
ness [73].   
 
Beside MMPs, CAFs from colon and breast car-
cinoma express uPA and its receptor uPAR, key 
components of the activation of plasminogen to 
the serine protease plasmin [74]. In ovarian 
carcinoma cancer cells engage with their stro-
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mal fibroblasts a specific feed-forward loop me-
diated by cancer cell-derived paracrine bFGF 
and EGF inducing uPA transcription in the fibro-
blasts. In turn the serine protease system helps 
in activating these paracrine factors from tumor 
cell surface/matrix [75].  
 
Regulation of motility and stemness 
 
Cancer progression towards a malignant state 
involves the achievement of ability to invade 
surrounding tissues through extensive remodel-
ing of the surrounding ECM, therefore seeding 
metastases elsewhere [76]. Clinical and experi-
mental data sustain the hypothesis that CAFs 
regulate cell motility and the metastatic spread 
towards secondary organs. The cancer cell-
derived efferent signals triggers a stromal re-
sponse initiating a vicious cycle of paracrine 
afferent signals leading to tumor invasion and 
loss of tissue integrity (see Figure 1). Efferent 
signals that have an impact on fibroblast attrac-
tion, differentiation, proliferation and production 
of proinvasive signals have been identified as 
transient heterotypic cell–cell contacts or se-
creted growth factors, chemochines or lipid 
products as PDGF-α/β, TGFβ1, bFGF, IL-6, LPA, 
eicosanoids [22,77]. Once stromal cells are 
attracted, they differentiate into CAFs and elicit 
cancer cells exit from dormancy, affecting can-
cer cell motility and aggressiveness. Activated 
CAFs then induce invasive growth by cell-cell 
contacts or by paracrine diffusible signals. The 
afferent proinvasive growth signals that are 
identified by screening the secretome from MFs 
or CAFs include TGFβ, HGF, VEGF, FGF, SDF-1, 
as well as various types of protease activity, 
including matrix metalloproteases, cathepsins 
and plasminogen activators (Figure 1) [77,76].  
 
The proinvasive activity of human CAFs in vitro 
was shown by De Wever et al. using human co-
lon cancer cells and stroma fibroblasts isolated 
from surgical colon cancer fragments [78]. The 
involvement of soluble mediators has been sug-
gested by the maintenance of this proinvasive 
activity in conditioned media from CAFs. A co-
implantation tumor xenograft mouse model 
showed that CAFs are able to stimulate invasive 
growth of breast and colon cancer cells [78,65]. 
In vitro co-culture experiments showed that TGF-
β secreted by colon, breast and squamous car-
cinoma cells modulates myofibroblast differen-
tiation and promotes HGF dependent invasion 
[79,80]. A similar motogenic and pro-metastatic 

effect was also shown for CAFs isolated from 
surgical prostate carcinoma specimens [23]. In 
this model CAFs exert a very powerful metas-
tatic spur as they prompt spontaneous lung me-
tastases after heterotopic co-injection of cancer 
and stromal cells.  
 
CAFs mainly contribute to the invasive and me-
tastatic process by inducing EMT of tumor cells, 
a known epigenetic program leading cells to 
engage a motile and proteolytic phenotype 
[81,82]. In addition to the pro-migratory spur, 
EMT has also been correlated with the induction 
of a cancer stem cells phenotype. Indeed, in 
both breast and prostate cancer cells the gen-
eration of cancer stem cells has been shown to 
be driven by EMT through overexpression of 
Snail or Twist transcription factors [83,84]. In 
keeping with this, Giannoni reported that CAFs 
isolated by prostate carcinoma specimens, by 
means of activating the EMT epigenetic pro-
gram, promote/select the generation of cancer 
stem cells [23]. Indeed CAFs affect clonogenic-
ity and self-renewal ability of carcinoma cells, 
lead to increase in their expression of acknowl-
edged cancer stem cell markers (CD133+ and 
high CD44/CD24 ratio) and the formation of 
non-adherent prostaspheres, a property associ-
ated with prostate stem cells [23,85,84,86]. 
Finally, the analysis of tumor-forming ability, as 
well as spontaneous lung metastasis formation 
of carcinoma cells after contact with CAFs, re-
vealed that the diabolic interplay between can-
cer cells and their activated stroma contributes 
to generate a population of prostate cancer 
stem cells with defined ability to form primary 
tumors and distant metastases [23]. The role of 
CAFs in prostate cancer stem cell biology has 
been further stressed in a conditional Pten dele-
tion mouse model of prostate adenocarcinoma 
[87]. Indeed, compared with mouse urogenital 
sinus mesenchyme or normal prostate fibro-
blasts, CAFs enhance spheroid formation, as 
well as prostatic glandular structures with le-
sions, high proliferative index and tumor-like 
histopathology.  
 
Conversely to embryonic EMT, EMT serving tis-
sue repair or metastatic dissemination is often 
correlated with tissue inflammation and persists 
until the provoking spur is eliminated [81]. In 
this context CAFs play a key role in sustaining a 
chronic pro-inflammatory stimulus, giving rise to 
multiple effects and culminating in prompting 
the escape from the hostile tumor microenviron-
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ment. In incipient tumors CAFs have been 
shown to orchestrate macrophage recruitment 
and neovascularization in strict dependence on 
NF-B activation [68,88]. In keeping with the 
idea that metastasis is a phenomenon reminis-
cent of the migratory/invasive behaviour of in-
flammatory cells, Giannoni reported that CAF-
mediated EMT undergoing cells share with in-
flammatory cells the same signals. Indeed, CAFs 
exert their propelling role for EMT by eliciting pro
-inflammatory pathways in metastatic cells, ex-
ploiting oxidative stress and involving activation 
of COX-2, NF-kB and HIF-1 [30].  
 
In addition to epigenetic mechanisms influenc-
ing cross-signalling between CAFs and cancer 
cells, the motile spur may also be initiated by 
stromal mutations. Mouse prostate carcinoma 
cells induce upregulation of p53 in stromal 
CAFs, mainly through a paracrine mechanism 
[16], thereby creating a selective pressure lead-
ing to the expansion of a p53-lacking subpopu-
lation of CAFs. These CAFs lacking p53 contrib-
ute to cancer invasion and to the eventual loss 
of p53 in the epithelium. Moreover, in several 
sporadic breast cancers CAFs carry p53 muta-
tions and this is significantly associated with 
lymph-node metastases [89]. EMT induced by 
CAFs in cancer cells may be the main responsi-
ble for the achievement of mutations by tumor 
stroma. Indeed stromal-derived MMP-3, that is 
frequently upregulated in breast cancer, in-
duces genomic instability through upregulation 
of reactive oxygen species (ROS) [49]. Alterna-
tively, mutated stromal cells might directly de-
rive from cancer cells that have undergone EMT 
and achieve the characteristics of CAFs [90].  
 
Regulation of tumor metabolism 
 
One of the main differences observed among 
cancer and normal cells is their glucose me-
tabolism. Indeed, cancer cells primarily use glu-
cose by aerobic glycolysis, producing lactate 
(the so-called Warburg effect), while normal 
cells completely catabolize glucose by oxidative 
phosphorylation [91]. The Warburg effect, cou-
pled with increased glucose uptake due to in-
complete glucose oxidation, facilitates in can-
cer/proliferating cells the efficient anabolism of 
macromolecules needed to construct a new cell 
from glicolytic intermediates [92]. The M1 or M2 
splice isoforms of pyruvate kinase (PK), a key 
regulatory glycolytic enzyme, drives glucose me-
tabolism towards aerobic glycolysis (PKM2) or 

oxidative phosphorylation (PKM1) [93]. Of note, 
all cancer cells studied to date exclusively ex-
press PKM2, an enzyme with lower catalytic 
activity with respect to PKM1, whereas cells in 
many normal differentiated tissues express 
PKM1 [93]. Recently Heiden clarifies that can-
cer cells uses PKM2 to short-circuit ATP produc-
tion during glycolysis, thereby producing pyru-
vate for lactate production without ATP-
mediated inhibition of glycolysis [94]. This land-
mark paper finally clarifies the molecular basis 
of the Warburg effect.  
 
Stromal fibroblasts have been shown to partici-
pate in the complex metabolism of tumors, en-
gaging a biunivocal relationship with cancer 
cells forcing them to respire and overcome en-
ergy depletion due to the Warburg effect. In par-
ticular, fibroblasts in contact with epithelial can-
cer cells undergo myo-fibroblast differentiation 
and produce lactate and pyruvate through aero-
bic glycolysis [95]. This “corrupted” stroma pro-
duces energy-rich metabolites which are used in 
cancer cells for TCA cycle and ATP production 
(Figure 3). Histopathological analysis reveals 
that PKM2 and lactate dehydrogenase are 
highly expressed in the stroma of breast cancer 
lacking caveolin-1 expression [95]. In addition, 
fibroblasts undergoing activation due to caveo-
lin-1 deletion, or in response to down-regulation 
of caveolin-1 upon oxidative stress induced by 
contact with cancer cells, show a stabilization of 
HIF-1. The metabolic consequence in these 
CAFs is the HIF-1-mediated shift towards aero-
bic glycolysis and elimination of mitochondrial 
activity through mitofagy [96]. The advantages 
gained by cancer cells through CAFs contact are 
two: the upload of lactate/piruvate, i. e. energy 
rich metabolites to fuel their TCA cycle, and the 
protection from apoptosis induced by the hostile 
tumor microenvironment.  
 
Although these data are intriguing and pose the 
molecular basis for the role of CAFs in control-
ling the metabolism of tumor cells, for the mo-
ment they remain limited to CAFs activated by 
deletion/down-regulation of caveolin-1. In colo-
rectal carcinoma, histological analyses sug-
gested an opposite behaviour of the tumoral 
stroma. Indeed, the stroma infiltrating these 
tumors expresses aerobic glycolysis enzymes 
and the authors propose a role of these stromal 
cells to buffer and recycle products of anaerobic 
metabolism of cancer cells in order to sustain 
invasive cancer growth [97]. On the basis of 
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these controversial findings, further confirma-
tions in other experimental settings, as in ex-
vivo CAFs, are therefore needed. However, in 
keeping with this role of CAFs as metabolic syn-
ergistic bystanders, we recently observed that 
the contact between prostate CAFs and their 
carcinoma cells gives rise to an increase in their 
sensitivity to stresses as pH and hypoxia an sus-
tains their proliferative rate (unpublished re-
sults).  
 
Reorganization of tumor ECM 
 
The tumor microenvironment is composed by 
both cellular and non-cellular components. The 
major cellular components include fibroblasts, 
endothelial and immune cells that, collectively, 
produce the variety of molecules that represent 

the non-cellular components of the tumor 
stroma. i.e. the extracellular matrix (ECM) pro-
teins, proteases, cytokines and growth factors. 
Recent data are unveiling the relationship be-
tween the architecture of ECM and many impor-
tant cell functions such as proliferation, differ-
entiation and cancer [98,99]. The stiffness (or 
“compliance”) of the ECM affects cell morphol-
ogy, integrin signalling, and the cellular actin 
cytoskeleton, thereby participating in the control 
of the cell cycle [100]. 
 
The ECM structure is profoundly altered in tu-
mors and CAFs retain a major role in this proc-
ess because they are the main responsible for 
production of ECM proteins, including collagens, 
fibronectin and many others, as well as prote-
ases and other enzymes involved in post-

Figure 3. Metabolic interplay between CAFs and cancer cells. Tumor cells are characterized by an high proliferation 
rate and consequently undergo a strong activation of anabolic pathways that allow rapid growing. In the model re-
ported in this figure cancer cells force CAFs to undergo aerobic glycolysis, and to produce energy-rich nutrients 
(lactate or pyruvate) which are used in cancer cells for TCA cycle, ATP production, sustaining anabolism and growth. 
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transcriptional modification of ECM proteins 
themselves. Indeed, many cancers are associ-
ated with desmoplasia, a common fibrotic state, 
characterized by an accumulation of type I and 
III collagens, accompained by increased degra-
dation of type IV collagen [101,102]. Of note, 
tumor desmoplasia has been associated with 
poor prognosis of cancers [103] and it is not 
exclusive of primary tumors, as it has been ob-
served also in metastatic sites [104].  
 
Tumor cells greatly affect their ECM, both from a 
quantitative point of view, leading progressively 
to increased matrix deposition, and qualitatively 
leading to a progressive stiffening of the 3D 
matrix. Both qualitative and quantitative 
changes in ECM have been reported to influ-
ence proliferation, survival and migration of can-
cer cells [105,106]. In particular, tumor fibrillar 
collagens are linearized and their maturation 
process is enhanced, as they show an increased 
number of covalent cross-link between collagen 
molecules [107]. Collagen crosslinking is pre-
dominantly catalyzed by lysyl oxidase (LOX), ex-
pressed in fibroblasts during the early stages of 
breast carcinogenesis, while in a later stage LOX 
is induced also in carcinoma cells exposed to 
hypoxic environment, a common feature in 
many aggressive cancers [108]. These over-
matured collagen fibres produced by LOX activa-
tion positively affect tumor cell migration and 
invasion. Indeed, in a mouse model of breast 
carcinoma, the treatment with LOX inhibitors, 
leading to decrease of ECM crosslinks, prevents 
tissue stiffening and delay tumor progression 
[107]. It has been shown that ECM stiffening 
within tumor microenvironment, through activa-
tion of integrins and discoidin domain receptor-
1 enhances growth factor-mediated cell migra-
tion, thereby contributing to the metastatic proc-
ess [109,107].  
 
Another important consequence of matrix rigid-
ity in tumors is that it contributes, together with 
impaired vascular and lymphatic mesh, to in-
crease interstitial fluid pressure. This phenome-
non decreases drug delivery inside tumors con-
tributing to reduce the efficacy of chemother-
apy. In a mouse model of pancreatic adenocar-
cinoma the reduction of tumor-associated CAFs 
leads to an increased efficacy of chemotherapy, 
thereby suggesting a key role for CAFs also in 
intra-tumor drug delivery [110].  
 
Besides collagen two other ECM members, 

mostly produced by fibroblasts and enhanced in 
CAFs, have been shown to play a role in tumor 
microenvironment: fibronectin and hyaluronan. 
Fibronectin mediates a wide variety of cellular 
interactions with ECM and plays important roles 
in cell adhesion, migration and growth [111]. It 
can be a ligand for a dozen members of the 
integrin receptor family [112], including the 
α5β1 receptor, and regulates collagen fibril 
structure  [113]. Upon activation CAFs show 
enhanced expression of fibronectin, as well as 
de novo expression of its variant ED-A [6]. Stro-
mal fibronectin is positively associated with hu-
man tumor metastatic potential and MMP se-
cretion [104]. Indeed, up-regulation of fi-
bronectin, together with tissue transglutami-
nase, facilitates the metastatic spreading of 
A431 tumor cells [114]. In addition, fibronectin 
regulates ovarian cancer metastatic potential by 
promoting a ligand-independent activation of 
the c-Met proto-oncogene through binding to its 
α5β1 receptor [115]. Finally, increased expres-
sion of hyaluronan by intratumoral fibroblasts 
plays a key role in the recruitment of tumor-
associated macrophages, key regulators of tu-
mor progression through CAF and endothelial 
cell recruitment [116]. 
 
Remodelling of the ECM by proteases conceiva-
bly enhances tumor invasion and metastasis by 
dissolving contacts between tumor cells and 
adjacent cells or matrix and by creating a physi-
cal path through degradation of the ECM. CAFs 
may also serve as guidance structures that di-
rect the migration of epithelial cancer cells. Im-
aging of collective migration of squamous cell 
carcinoma cells and CAF demonstrated that 
CAFs behave as leading cells, degrading ECM 
and creating the path for cancer cells, moving 
within these tracks [117].   
 
Preparation of metastatic niche 
 
It is becoming increasingly clear that only a mi-
nority of malignant cells undertakes the metas-
tatic route, and, of those, an even smaller frac-
tion succeeds in this task [118]. Evidence also 
exists that these cells may share some proper-
ties with somatic or embryonic stem cells, which 
has led to the hypothesis that metastases are 
initiated by cell clones endowed of unique self-
renewal and tumor propagating capacity like 
cancer stem cells [119]. In keeping with this 
idea CAFs within the primary tumors elicit 
achievement of stem-like traits (see above, 
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[23]). Of note, the role of CAFs embraces also 
the preparation of the metastatic site in which 
the secondary tumor will grow up. It has been 
known since many years that metastatic cancer 
cells preferentially grow in secondary sites with 
particular and selected microenvironment 
[120]. Recently Duda et al. reported that metas-
tatic cells bring their own soil, i. e. CAFs originat-
ing from the primary tumors, to the lung in order 
to modify the metastatic site and to colonize it 
[121]. The first effects that CAFs exert while 
they are circulating in the bloodstream are the 
protection of cancer cells from apoptosis. Once 
arrived in the metastatic niche the co-traveling 
CAFs provide and early growth advantage to the 
accompanying cancer cells that do not enter 
dormancy [121]. In addition prostate cancer 
and fibroblasts resident in the metastatic niche 
co-evolve, thereby accelerating growth of metas-
tatic colonies [122]. It is therefore feasible that 
metastatic cells affect reactivity of these tissue 
resident stromal fibroblasts in a similar manner 
to the biunivocal interplay engaged within the 
primary tumor. In keeping with this, metastatic 
cells induce activation of resident fibroblasts 
and expression of ECM proteins and chemoki-
nes [122].  
 
Therapeutic implications 
 
Given the essential contribution of stroma in 
cancer progression, CAFs have recently 
emerged in recent years as new interesting 
therapeutic targets. The main reasons for 
choosing CAFs are targets are: i) CAFs are ge-
netically stable, in comparison to cancer cells, 
and this is a guarantee for maintaining them 
sensitive to drugs; ii) CAFs are the main respon-
sible for the structure of tumor ECM (collagens, 
proteoglycans, glycosaminoglycans, etc) that 
hampers the diffusion of anti-cancer agents 
through solid tumours; iii) The crosstalk be-
tween CAFs and tumor cells favours the sur-
vival, the proliferation and the invasive features 
of cancer cells.  
 
Tumor stroma-directed therapies can target the 
growth factors/cytokines that mediate this 
crosstalk within tumor microenvironment pro-
moting an anti-cancer effect. In a mouse model 
of cervical carcinogenesis, the block of PDGF 
receptor signaling in CAFs inhibits progression 
of premalignant lesions [123] while overexpres-
sion of trombospondin-1, an angiogenesis in-
hibitor, has been shown to inhibit cervical tumor 

growth accompanied by a decrease of two 
markers of CAFs, αSMA and desmin [124]. Pre-
clinical studies using NK4, a competitive an-
tagonist of Met, as well as anti-HGF monoclonal 
antibodies, showed a remarkable inhibition of 
tumor growth and metastasis [125,126]. In ad-
dition, inhibition of stromal cell proliferation in a 
pancreatic cancer model, using a specific inhibi-
tor of the Hedgehog receptor, allows improved 
delivery of gemcitabine to the tumor and in-
creased survival [110].  
 
Interestingly, CAF-directed therapy can be used 
also to overcome loss of effects of VEGF inhibi-
tors. In fact, it has been shown that PDGF-C pro-
duced by CAFs is able to elicit VEGF production 
of tumor cells, thereby sustaining the angio-
genic shift. Hence, antibodies against PDGF-C 
can be used in order to inhibit angiogenesis in 
tumor refractory to anti VEGF treatment [127].  
 
COX-2 is a protein involved in the inflammatory 
response whose expression is markedly in-
creased when fibroblasts are co-cultured with 
cancer cells [128]. Up-regulation of COX-2 in a 
mouse xenograft model resulted in increased 
VEGF and MMP14 expression, which contribute 
to cancer progression and invasion of COX-2-
expressing tumors [129]. The involvement of 
COX-2 in CAF-tumor interplay has been also re-
ported for prostate carcinoma malignancy 
through EMT [23].  Along this line of evidence, 
anti-inflammatory drugs as selective COX-2 in-
hibitors as celecoxib or refecoxib, represent a 
promising therapeutic tool for targeting CAF-
induced effects on tumor progression. 
 
Another promising approach is the inhibition of 
CAF MMT in order to eliminate the efferent way 
affecting cancer aggressiveness. In vitro 
myofibroblast differentiation from hepatic stel-
late cells was halted by inhibition of DNA methyl
-tranferase 1 by 5-aza-2 –deoxycytidine [130], 
while a monoclonal Ab against FAP, a protein 
involved in the MMT process, is extremely active 
in clinical trials [131]. Similarly, Cat et al re-
ported that MMT of skin cancer fibroblasts in 
response to TGF-β is abolished by antioxidant 
treatment using trolox or selenite [28]. Again, 
MMT inhibition is effective in inhibiting skin can-
cer progression towards the most aggressive 
phenotype. 
 
In conclusion, the large range of therapeutic 
approaches that are emerging from basic and 
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applied research, are promising and encourag-
ing. Unfortunately they need to be focused for 
each tumor histotype, in the light of the variabil-
ity of the role played by CAFs in each tumor his-
totype, as well as considering the specific tissue 
source of their CAFs. Hence, every future ther-
apy directed against CAFs, or tumor stroma in 
general, will be more effective in the presence 
of exhaustive studies on CAF taxonomy and ac-
curate and detailed comprehension or CAF-
tumor relationship.  
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