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Abstract: A compelling set of links between chemotherapy- or radiation-induced intestinal inflammation and mi-
crobial dysbiosis has emerged. It is the proportional imbalance between pathogenic and beneficial bacteria that 
aggravates intestinal mucositis. Bacteria that ferment fibers and produce short-chain fatty acids (SCFAs), (such as 
acetate, propionate, and butyrate) are typically reduced in the mucosa and feces of patients undergoing cancer 
therapy. In contrast, increasing lipopolysaccharide-producing bacteria result in proinflammatory events by interact-
ing with Toll-like receptors. A collective acceptance is that bacterial metabolites are critical in recovering intestinal 
homeostasis. We herein review evidence supporting the positive roles carried out by SCFAs. SCFAs, acting as sig-
naling molecules, directly activate G-coupled-receptors and inhibit histone deacetylases. Thus, SCFAs are able to 
strengthen the gut barrier and regulate immunomodulatory functions. Furthermore, it is possible to reverse intes-
tinal microbial dysbiosis and subsequently suppress the secretion of proinflammatory cytokines by directly apply-
ing SCFA-producing bacteria. In addition, anticancer effects of SCFAs have proved in the colorectal cancer. In this 
review, we discuss microbial dysbiosis and its impact on chemotherapy- or radiation-induced intestinal mucositis. 
Moreover, we summarize the mechanisms of SCFA production and its effects on intestinal mucositis. This review 
suggests the therapeutic potential of SCFAs for the management of chemotherapy- or radiation-induced intestinal 
inflammation.
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Introduction

Alteration of the gastrointestinal mucosa is the 
main lesion that occurs after radiotherapy or 
chemotherapy [1]. Both radiation and drugs are 
directly involved in intestinal crypt cell apopto-
sis and villous atrophy [2, 3], which breaks 
down the intestinal barrier. Patients suffering 
from chemotherapy- or radiation-induced intes-
tinal inflammation present with vomiting, ab- 
dominal pain, diarrhea, malnutrition, fatigue, 
electrolyte imbalance, and infections [1]. Addi- 
tionally, fatal complications, such as fistula for-
mation, obstruction, or perforation, may appear 
along with the late-onset toxicities of chemicals 
and irradiation [4].

The gut microbiota plays a complex and dynam-
ic role that is integral to the immune system 

and human health [5]. It is currently understood 
that, besides the impact of gut microbiota on 
the response to diverse forms of cancer thera-
py, tumor treatments may in turn affect the 
microbiota (that is, induce dysbiosis) [6, 7]. 
Intestinal dysbiosis is distinguished by an over-
whelming disbalance in the relative abundance 
of beneficial bacteria and pathogenic bacteria, 
even presenting a conspicuous dearth of bene-
ficial bacteria and an overgrowth of harmful 
bacteria [1]. Published studies [8, 9] have sug-
gested that intestinal microbial dysbiosis may 
aggravate the inflammation provoked by radia-
tion and chemical reagents. For example, the 
decreased proportions of butyrate-producing 
bacteria, such as Roseburia, Coprococcus, and 
Faecalibacterium, can disrupt the mucus layer. 
At molecular level, the mechanism by which 
microbiota affects mucositis is its capacity to 
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manufacture either pathogenic metabolites or 
the salutary that protect it from diseases. 
Evidence suggests that SCFAs can suppress 
the secretion of the proinflammatory cytokine 
IL-6 by inhibiting the nuclear factor-κB (NF-κB) 
signaling pathway [10].

There are neither standardized therapeutic  
nor potential prophylactic to relieve mucositis 
symptoms or allow a safe dose of radiation and 
chemical reagents for superior cancer control. 
Glutamine, antibiotics, granulocyte-macropha- 
ge colony-stimulating factor, and sucralfate did 
not show any clinical benefit in this regard [1]. 
This review will then focus on SCFAs derived 
from microbial fermentation of dietary fibers 
and their therapeutic potential in versatile 
aspects of pathology processes. SCFAs, as sig-
naling molecules, are capable of mitigating pro-
inflammation through the conversion of the 
intestinal epithelium and permeability [11]. 
Furthermore, SCFAs will restore homeostasis 
by ascending beneficial bacteria and decreas-
ing the pathogenic [11]. Based on the attenua-
tion of chronic inflammation and interaction 
with microbiota, SCFAs can contribute to anti-
cancer therapeutic efficacy. In conclusion, the 
use of SCFAs is an optional strategy for manag-
ing enteritis. In this review, we present the com-
position and function of symbiotic bacteria in 
the healthy intestinal tract. Subsequently, we 
describe the specifics of chemotherapy- or radi-
ation-induced intestinal mucositis associated 
with microbial dysbiosis. A better understand-
ing of the molecular mechanism of SCFAs is 
required to develop and implement optimal  
preventive and curative approaches for patient 
care. By reviewing the active mechanism of 
regulation of dysbiosis, anti-inflammatory res- 
ponses, and SCFAs inhibition of tumor growth, 
we suggest considering SCFAs along with anti-
cancer therapies.

Composition and functions of symbiotic mi-
crobiota in healthy human intestinal tract

There is a distinct raise in the understanding of 
the completeness and sophistication of the 
host-microbiota relationship and its effects on 
human health [5, 12, 13]. The number of com-
mensal bacterial species in the robust gut rang-
es between 500 and 1,000 [14], which trans-
lates into a ratio of bacteria to human cells 
close to 1:1 [15]. The gut microbiota, referring 

to bacteria as well as fungi, viruses, archaea, 
phages, and protozoa, reside in the human 
intestine [16]. The constituent bacterial spe-
cies have been identified predominantly to five 
phyla by the sequencing of 16S-rRNA-encoding 
genes: Actinobacteria, Bacteroidetes, Firmi- 
cutes, Proteobacteria, and Verrucomicrobia 
[16]. Among these, Bacteroidetes and Fir- 
micutes are roughly represent about 98%of the 
gut microbiota [17, 18]. Owing to the acidic and 
anaerobic environment in the intestinal canal, 
anaerobes are much more abundant than aer-
obes [19]. Recent research [20] revealed that 
the proximal gastrointestinal tract is dominated 
by Firmicutes and that the colon is enriched by 
Bacteroidetes. Precisely because the majority 
is bacteria, the main research on gut microbio-
ta is limited to this domain. In order to uncover 
the composition and coordination of commen-
sal bacteria, large-scale endeavors is neces-
sary to be launched [21]: the US National In- 
stitutes of Health (NIH)-funded Human Micro- 
biome Project (HMP), the European Meta- 
genomics of the Human Intestinal Tract (Me- 
taHIT), and the American Gut Project (Figure 1).

The interactions between the host and com-
mensal bacteria extend beyond the local enter-
ic environment [22] in, for instance, inflamma-
tory bowel disease (IBD), autoimmune disease 
[23], cancer ([24]), metabolic syndrome [12, 
25] and neurodegenerative disorders [26]. 
Microbiome-wide studies have documented 
significant correlations between commensal 
bacteria and enteric homeostasis, exemplified 
by nutrient metabolism upon dietary intake 
[22], promoting effects of physiological and bio-
chemical processes [27], maintenance of the 
gut barrier function and the immune system 
[28], as well as protection against translocation 
of intestinal pathogens [29, 30]. To prevent the 
intestinal barrier function from being breached, 
Lactobacillus forms a biofilm covering the 
enterocytes so that the pathogen-associated 
receptors are split away from pathogenic bacte-
ria in the intestinal milieu [31]. Furthermore, it 
is substantiated that microbiota-associated 
metabolites have effects on modulating NLRP6 
inflammasome signaling and secretion of IL-18. 
The activation of inflammasome signaling is 
crucial for hindering it from gut dysbiosis and 
intestinal inflammation provoked by barrier 
damage [32]. Moreover, symbiotic bacteria 
help consolidate the integrity of the entero-
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cytes. For example, to trigger off an increased 
tolerance of epithelium to foreign stimuli, La- 
ctobacillus can stimulate the biosynthesis of 
heat-shock protein 72 within enterocytes in a 
p38 mitogen-activated protein kinase (p38/
MAPK)-dependent manner [33]. Analogously, 
Streptococcus thermophiles will manufacture 
lactic acid to suppress pathogenic bacteria by 
decreasing the pH of the gut environment [34]. 
Beyond physical isolation and production of 
inhibitory metabolites, beneficial bacteria is 
able to inhibit the growth of harmful bacterial 
species through metabolic competition or con-
tact-dependent killing [35]. For example, coloni-
zation by bacteriocin-producing Enterococcus 
faecalis limits the number of indigenous E. fae-
calis as well as infection by vancomycin-resis-
tant E. faecalis [36]. Under iron-starving cir-
cumstance, microcins produced by the probi-
otic Escherichia coli strain Nissle 1917 hamper 
intestinal colonization by other symbiotic E. coli 
and Salmonella [37].

Mutuality between chemotherapy- or radia-
tion-induced intestinal inflammation and gut 
microbial dysbiosis

Chemotherapy- or radiation-induced enteritis 
associated with gut microbial dysbiosis

The incidence of chemotherapy- or radiation-
induced enteritis has risen rapidly in recent 

years. The risk of diarrhea is approximately 
10% in patients receiving standard chemother-
apy for colorectal cancer with FOLFOX (folinic 
acid, 5-fluorouracil, and oxaliplatin) and about 
20% in patients receiving the FOLFOXIRI regi-
men (FOLFOX, and irinotecan) [38]. Appro- 
ximately 50% of patients suffer from gastroin-
testinal mucositis after pelvic or abdominal 
radiation treatment and the incidence is higher 
in patients undergoing concurrent chemothera-
py [39]. The occurrence of such side effects 
may impair patients’ quality of life, increase 
healthcare costs, and result in late-onset toxici-
ties, eventually interrupting therapy. This review 
aims to reveal the underlying mechanisms  
of the intestinal microbiota in intestinal inflam-
mation and discuss potential implications for 
the clinical treatment of gastrointestinal mu- 
cositis.

Commonly, chemotherapy- or radiation-related 
intestinal microbial dysbiosis is characterized 
by an imbalanced proportion between benefi-
cial and pathogenic bacteria (Figure 2). Explicit 
modifications of the microbiota constitution 
have been observed during therapy in clinical 
studies (Table 1). Facts reflected by these clini-
cal studies are that patients receiving standard 
anticancer treatments exhibit conspicuous 
alteration in their intestinal bacteria. Although 
some changes may be secondary, no matter 
whether to the underlying diagnosis or to inflam-

Figure 1. Schematic diagram of sequencing development.
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mation, it is confessed that they conduce to 
mucositis pathogenesis. In a pediatric and ado-
lescent population receiving chemotherapy, a 
marked reduction of Firmicutes phylum and  
an increase of Bacteroidetes (i.e., Bacteroides 
and Parabacteroides) in relative abundance 
were reported. The authors [40] concluded that 
the disturbed balance in the intestinal microbi-
ota (specifically for the mucolytic gram-positive 
anaerobic bacteria, including Ruminococcus 
gnavus and R. torques) may contribute to the 
development of gastrointestinal complications 
in children with acute lymphocytic leukemia fol-
lowing chemotherapy. In intestinal microbial 
dysbiosis associated with radiation enteritis, 
patients presented a higher abundance of 
Bacteroides, Serratia, Prevotella, Megamonas, 

and Novosphingobium in their fecal specimens 
[2]. Furthermore, 454 high-throughput pyrose-
quencing analyses were performed in feces of 
patients undergoing conditioning chemothera-
py, which provided detection of low-abundance 
species and description of rarefaction dimen-
sions about the more thorough understanding 
of chemotherapy-associated modifications of 
gut microbes [1]. At genera level, there was a 
marked increase in Escherichia and a profound 
decrease in butyrate-producing bacteria (Ro- 
seburia, Faecalibacterium etc.). Thus, patients 
experienced conditioning chemotherapy exhibit 
regulations of the gut microbiota characterized 
by a significant establishment of Escherichia 
genus bacteria, the most frequently isolated 
pathogens from blood culture in patients with 

Figure 2. The overwhelming imbalance between beneficial and pathogenic bacteria is the main characteristic of 
chemotherapy- or radiotherapy-associated intestinal microbial dysbiosis. In this context, SCFAs concentration is 
decreased by a large margin. It also disrupts the intestinal barrier. In case of increased permeability or interrupted 
mucus layer, intestinal inflammation is more severe in this chaos milieu after chemotherapy or radiotherapy. SCFAs, 
short chain fatty acids; ↑, increased; ↓, decreased.
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Table 1. Intestinal microbiota alternation during anticancer treatment in clinical studies

Study year (ref) Number of patients Anticancer treatment Bacteria-detecting 
techniques Samples Bacteria Alteration

Rajagopala et al., 2019 [40] 32 pediatric and adolescent acute 
lymphoblastic leukemia (ALL) patients

Chemotherapy qPCR and 16S rRNA 
gene sequencing

Feces Relative abundance: 
Phylum level:
Firmicutes↓; Bacteroidetes↑
Genus level: Bacteroides↑
Alistipes↓; Parabacteroides↑
Lachnospiraceae-UCG-005↑
Faecalibacterium↓
Pseudobutyrivibrio↓
Lachnoclostridium↑; Fusicatenibacter↓

Wang el at., 2019 [2] Eighteen patients with stage II-IV 
cervical cancer (CCa) 

Pelvic radiotherapy DT: 50.4 
Gy in 28 fractions

DNA extraction; 16S 
rRNA gene sequencing 
and bioinformatics

Feces Relative abundance:
Phylum level: Bacteroidetes↑
Proteobacteria↑ Firmicutes↓
Class level: Gammaproteobacteria↑
Order level: Enterobacteriales↑
Oceanospirillales↑
Family level: Enterobacteriaceae↑
Phyllobacteriaceae↑
Beijerinckiaceae↑
Ruminococcaceae↓; Bacteroidaceae↓
Genus level: Serratia↑
Bacteroides↑ Prevotella↑
Megamonas↑, Novosphingobium↑
Prevotella↑

Montassier et al., 2015 [9] 28 patients with non-Hodgkin lym-
phoma

5 consecutive chemotherapy 
days: high-dose carmustine 
(bis-chloroethylnitrosourea), 
etoposide, aracytine and 
melphalan

16S rRNA gene 
sequencing and 454 
high-throughput  
pyrosequencing

Feces Relative abundance: 
Phylum level:
Firmicutes↓; Actinobacteria↓
Proteobacteria↑
Family level: Enterococcaceae↑
Enterobacteriaceae↑

Genus level: Ruminococcus↓
Oscillospira↓, Blautia↓
Lachnospira↓, Roseburia↓
Dorea↓, Coprococcus↓
Anaerostipes↓, Clostridium↓
Collinsella↓; Adlercreutzia↓
Bifidobacterium↓; Citrobacter↑
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Wang et al., 2015 [8] 8 females with cervical cancer, 1 
female with anal cancer and 2 males 
with colorectal cancer

Conventional radiotherapy at 
a dosage of 1.8-2.0 Gy/day, 
five times a week during the 
5-week period (a cumulative 
dosage of 44-50 Gy)

454 high-throughput 
pyrosequencing

Feces Relative abundant: 
Phylum level:
Firmicutes/Bacteroidetes ratio↓
Family level:
Lachnospiraceae↓
Genus level: Faecalibacterium↓,
Oscillibacter↓, Roseburia↓,
Streptococcus↓; Clostridium↑
Bacteroides↑

Klebsiella↑, Enterococcus↑
Megasphaera↑, Parabacteroides↑

Stringer et al., 2013 [42] 11 patients with colorectal cancer; 2 
with breast cancer; 1 with melanoma, 
and 2 healthy individuals

Different chemotherapy treat-
ment protocols with or without 
concomitant antibiotics

qPCR Feces Relative abudance:
Genus level: Lactobacillus↓,
Bacteroides↓, Bifidobacterium↓,
Enterococcus↓, Staphylococcus↑
Species level: Escherichia coli↑

Nam et al., 2013 [41] 9 gynecological cancer patients Pelvic radiotherapy DT: 50.4 
Gy in 28 fractions

454 high-throughput 
pyrosequencing

Feces Relative abundant: 
Phylum level:
Firmicutes↓, Fusobacterium↑
Family level: Eubacteriaceae↓,
Fusobacteriaceae↑; Streptococcacea↑

*↑, increase; ↓, decrease.



SCFAs’ therapeutic potential in inflammation

3514 Am J Cancer Res 2020;10(11):3508-3531

cancer and bacteremia [9]. In addition, a de- 
cline in the Firmicutes phylum in fecal samples 
is a typical feature of gut microbial dysbiosis 
associated with chemotherapy [9] and radio-
therapy [41]. Moreover, there was a decreas- 
ed relative abundance of Lactobacillus and 
Bifidobacterium in the feces of patients after 
chemotherapy [42]. However, evidences from a 
recent meta-analysis [43] showed no benefits 
for the utilization of probiotics in radiotherapy-
induced diarrhea and suggested that future 
research focused on pairing gastrointestinal 
toxicities with certain microbial phenotypes to 
allow targeted microbiota manipulation.

A comprehensive review [44] proposed five 
pathways through which intestinal microbial 
dysbiosis may impact the pathophysiology of 
intestinal mucositis: (i) inflammation and oxida-
tive stress, (ii) gastrointestinal permeability 
destruction, (iii) mucus layer formation altera-
tion, (iv) epithelial repair, and (v) secretion of 
immune factors. Availing to these overlapping 
steps, the intestinal microbial dysbiosis enables 
proinflammatory responses to be sustained. As 
for the changes in epithelial permeability or 
barrier, a recent in vitro study [2] showed that 
incubating enterocytes with fecal bacteria from 
patients with severe radiation enteritis impaired 
cell layer integrity, increased permeability, and 
stimulated cytokine secretion and NF-κB path-
way activation. Hakansson et al. [45] showed 
that leucocytes infiltrated into irradiated nor-
mal cells when cells were exposed to ra- 
diation. 

Sustaining proinflammatory responses in-
duced by chemotherapy- or radiation-associat-
ed intestinal microbial dysbiosis

The formation of reactive oxygen (ROS), nitro-
gen (RNS), and sulfur species (RSS) activate 
the NF-κB pathway implicated with mucositis, 
promoting the production of proinflammatory 
cytokines such as IL-1β, IL-6, and TNF-α and 
subsequently promoting key inflammatory re- 
sponses [46]. These inflammatory responses 
and ROS lead to mitochondrial dysfunction, 
which triggers the amplification of ROS produc-
tion from impaired mitochondria. 

Toll-like receptors and gastrointestinal mucosi-
tis: Research [47] found that microbiota dysbio-
sis in mice gut following the administration of 
broad-spectrum antibiotics has been accompa-

nied by increased susceptibility to methotrex-
ate-induced intestinal injury, which is sup-
pressed by Toll-like receptors (TLR) 2 ligands. 
The potential mechanism by which TLR affects 
the intestinal proinflammatory response in che-
motherapy- or radiation-induced epithelial da- 
mage is the robust activation of the NF-κB path-
way [44, 48]. For instance, in mice subjected to 
chemotherapy or radiotherapy, TLR4 drives the 
secretion of proinflammatory cytokines (IL-1β, 
TNF-α, and IL-6) corresponding to lipopolysac-
charide (LPS)-producing bacteria through the 
TLR4-MyD88-NF-κB signaling pathway, which 
has a crucial impact on tumor response to anti-
cancer treatments [49-52]. This significant 
mechanism is shown in Figure 3. Conversely, 
mitigation of irinotecan-associated pain and 
gut toxicity appeared in TLR4-knockout mi- 
ce [48]. Egan et al. [53] showed that the NF-κB 
pathway is essential for radiation-induced ap- 
optosis and inflammation by altering down-
stream transcriptional factors that ultimately 
produce inflammatory cytokines. This study 
showed that activation of NF-κB also mediates 
LPS proinflammatory function. More specifical-
ly, Gerassy-Vainberg et al. [54] highlighted that 
the imbalance proportion of propionate-pro-
ducing bacteria (Akkermansia) is highly associ-
ated with increased secretion of IL-1β by the 
host. Analogously, the inflammatory events 
may be multiple partially due to the lack of anti-
inflammatory bacteria (Faecalibacterium pra- 
usnitzii and Bifidobacterium) [55, 56]. Such 
occurrences will induce the secretion of IL-10 
[54] and antagonize the inhibitory-κB kinase 
degradation by producing nonlipophilic com-
pounds [55]. Furthermore, SCFAs have been 
reported to inhibit the activation of the NF-κB 
signaling pathway in stressed enterocytes. 
Hence, if SCFA-producing bacteria (Rumino- 
coccus, Coprococcus, and Roseburia) were 
absent after chemotherapy or radiotherapy, gut 
inflammation could potentially increase.

Oxidative stress: After chemotherapy or radio-
therapy, DNA is damaged directly or indirectly 
via the formation of free radicals such as ROS, 
RNS, and RSS [57]. Intestinal inflammation pro-
longs the chemotherapy or radiation response 
by producing more free radicals, cytokines, and 
growth factors [58], which means that oxidative 
stress occurs after the proinflammatory events, 
in both tumor cell death and normal tissue tox-
icity. For example, patients exposed to the 
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standard radiotherapy dose can develop immu-
nogenic cell death and radiation enteritis, asso-
ciated with the release of proinflammatory 
cytokines (IL-1β, IL-6, and TNF-α) [2, 59, 60]. 
These proinflammatory cytokines are capable 
of triggering the amplification of free radicals 
production by stimulating ROS- and RNS-
producing enzymes such as cyclooxygenase-2, 
nicotinamide adenine dinucleotide phosphate 
oxidase, and nitric oxide synthase (NOS) [61]. 
Overproduction of ROS causes oxidative dam-
age to the intestinal epithelium and contributes 
to acute and chronic complications [62]. For 
instance, IL-1β is able to induce neutrophils to 
release superoxide through activation of the 
p38/MAPK signaling pathway [63]. Moreover, 
IL-1β is capable of upregulating the expression 
of the gene encoding inducible NO synthase 
(iNOS), thus increasing capillary permeability to 
induce inflammation by enriching the concen-

secretion of G-CSF. However, microbial translo-
cation enhances intestinal tumor progression 
and subsequently leads to intestinal barrier 
dysfunction [66]. Modulating the tight junction 
proteins is also a remarkable way to regulate 
intestinal permeability. For example, Bifidoba- 
cterium can upregulate the expression of genes 
encoding claudin (a tight junction protein) [67]. 
The relative abundance of such bacteria is 
always decreased after chemo- or radiothera-
py. Furthermore, LPS-producing bacteria are 
able to interact with TLRs and subsequently 
activate the NF-κB signaling pathway. In this 
context, IL-1β is capable of widening the inter-
cellular spaces and disrupting the tight jun- 
ctions.

The epithelial mucus layer is another protective 
factor that prevents enteritis contributing to 
intestinal integrity and is regulated by gut bac-

Figure 3. LPS-producing bacteria interact with TLRs through the NF-κB sig-
naling pathway. For instance, TLR4 drives the secretion of proinflammatory 
cytokines in enterocytes corresponding to LPS-producing bacteria through 
the TLR4-MyD88-NF-κB signaling pathway. Then, TRAF6 is activated. After 
that, the compound of TAB1/2 and TAK1 is activated, and subsequently pro-
motes the IKK complex to phosphorylate the IκB molecule, which ultimately 
undergoes ubiquitination and degradation. Then, NF-κB, including p50 and 
p65, will translocate into the nucleus to regulate the expression of genes en-
coding IL-1β, IL-6, and TNF-α. LPS, lipopolysaccharide; TLRs, Toll-like recep-
tors; MyD88, myeloid differentiation factor 88; IRAK, IL-1 receptor-associat-
ed kinase; TRAF6, TNF receptor-associated factor 6; TAK1, TGF-β-activated 
kinase 1; IKK, inhibitor of κB kinase; NEMO, NF-κB essential modulator; I-κB, 
inhibitor of κB; P, phosphorylation; P50/P60, subunits of NF-κB; Ub, ubiqui-
tination; ↑, increase.

tration of NO within the endo-
thelium [64]. Likewise, TNF-α 
could clear lesioned cells or 
bacterial infection by induc- 
ing ROS. Therefore, the oxida-
tive stress nearly synchro-
nized with inflammation res- 
ponses aggravates the micro-
environment in the lesioned 
gut during/after chemothera-
py or radiotherapy.

Intestinal barrier: Microbial 
homeostasis has some pro-
tective effects on the intesti-
nal barrier, particularly in the 
lesioned gut milieu. However, 
chemotherapy or radiotherapy 
can break the balance of com-
mensal bacteria, impairing the 
barrier function by increasing 
intestinal permeability and 
interrupting the mucus layer 
(Figures 2 and 4).

To facilitate an antitumor 
effect, cyclophosphamide in- 
creases intestinal permeabili-
ty by allowing microbial trans-
location to trigger the matura-
tion of T helper 17 (Th17) cells 
in the lamina propria [65]. 
Th17 cells can aggravate oxi-
dative stress by promoting the 
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teria. It consists of glycoproteins, mucins, im- 
munoglobulins, and butyrate. The main reason 
for the mucus layer interruption induced by 
chemo- or radiotherapy is the decrease in 
butyrate-producing bacteria [8, 9]. In addition, 
several bacteria can damage the mucus layer 
directly. For instance, Enterobacteriaceae me- 
mbers, which increase in the gut after chemo-
therapy, impair the absorption of cysteine, pro-
line, and methionine [9], leading to a reduction 
in mucin synthesis. Importantly, the gut micro-
biota may also damage the intestinal mucosa 
by altering the absorption of bile salts and 
changing stool frequency after radiation thera-
py [54]. Furthermore, secretory immunoglobu-
lin A (sIgA), a vital antibody, is able to neutralize 
toxins and suppress pathogens in the mucus 

layer. However, sIgA concentration may be 
declined after radiotherapy due to intestinal 
microbial dysbiosis. In an animal model [68], it 
was found that an increase in Sutterella spp. 
modulates an sIgA-low phenotype, which em- 
powers the hosts to be predisposed to dextran 
sulfate sodium (DSS)-induced colitis.

SCFA biosynthesis, absorption, and distribu-
tion

SCFAs are dated from microbial fermentation of 
dietary fibers and have versatile implications 
for the human body. Unlike microbiota-accessi-
ble carbohydrates that are digested by host 
enzymes in jejunum and ileum, dietary fibers 
are slaked by the microbial fermentative activi-

Figure 4. SCFAs regulate chemotherapy- or radiotherapy-associated intestinal microbial dysbiosis and repair the 
intestinal barrier. Applying SCFAs directly or SCFA-producing bacteria regained intestinal homeostasis and ordered 
the milieu by increasing the proportions of beneficial bacteria and reducing the number of pathogenic bacteria. 
Thereupon, the recovered mucus layer and reduced intestinal permeability also emerged. SCFAs, short chain fatty 
acids; ↑, increased; ↓, decreased.
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ty in the colon [69]. The major metabolites  
of such activities are SCFAs, including acetate, 
propionate, butyrate, isobutyrate, 2-methylbu-
tyrate, and isovalerate [70, 71]. In particular, 
keeping a fixed proportion with each other, ace-
tate, propionate, and butyrate are taking up 
approximately 86% of the total human SCFAs in 
the gut [70]. Relatively minor amounts of 
branched-chain fatty acids, such as isobutyr-
ate, 2-methylbutyrate, and isovalerate exclu-
sively originate from branched-chain amino 
acids valine, isoleucine, and leucine [71]. Ace- 
tate production pathways are widely distribut- 
ed among bacterial groups, whereas pathways 
for propionate, butyrate, and lactate produc-
tion appear more highly conserved and sub-
strate specific. Further supplementation of 
diets rich in dietary fiber increases SCFAs and 
then restores the beneficial gut microbiota and 
feathers out the microbial metabolites [72].

SCFAs are the major end products of the sac-
charolytic fermentation mediated by the enzy-
matic repertoire of specific members of the gut 
microbes escape digestion and absorption 
[73]. SCFA production pathways are relatively 
well understood and have been recently 
described in detail (Table 2). Biosynthesis of 
acetate is from pyruvate either via the acetyl 
coenzyme A (CoA) pathway or via the Wood-
Ljungdahl pathway [74]. Propionate, is synthe-
sized via three branches: (i) via the succinate 
pathway; (ii) via acrylate pathway [75], and (iii) 
via the propanediol pathway [76]. Another 
major SCFA, butyrate, is synthesized in multiple 
ways: (i) via the so-called classical pathway: 
butyryl-CoA can be transformed to butyrate by 
phosphotransbutyrylase and butyrate kinase 
[77]; (ii) acetate CoA-transferase route [78]; (iii) 
the microbe-induced condensation of lactate 
and acetate; (iv) via the lysine pathway [79].

Moreover, the biological gradient of SCFAs var-
ies across different downstream tissues along 
the gut lumen. The highest levels occur in the 
cecum and proximal colon and the concentra-
tion declines toward the distal colon [70]. 
Butyrate is the primary energy source for colo-
nocytes. It is metabolized in the epithelium 
mucosa and is partly consumed in the liver [80, 
81]. Acetate and propionate are absorbed in 
the portal vein. Acetate is released as the most 
abundant SCFA in the peripheral circulation 
[82]. Propionate is metabolized in the liver and 

thus the hepatic capacity to utilize SCFA inter-
acts with gut SCFA production, leading to non-
significant splanchnic propionate and butyrate 
output and high peripheral concentrations of 
acetate [81, 83].

SCFAs as signaling molecules

It is necessary to elucidate the potential molec-
ular mechanisms involving SCFAs (Figure 5) 
before illustrating the mechanisms through 
which SCFAs repair chemotherapy- or radiation-
related metabolic dysfunction and inflam- 
mation.

SCFA as a ligand of the g protein-coupled re-
ceptor

G protein-coupled receptor (GPCR) is a family of 
superproteins in the human body, and the 
human genome encodes for approximately 800 
GPCRs [84]. SCFAs activate GPCR in the extra-
cellular environment and have anti-inflammato-
ry effects by binding to three GPCRs in the 
intestine, namely: free fatty acid receptor 2 
(GPR43 or FFAR2), free fatty acid receptor 3 
(GPR41 or FFAR3), and hydroxycarboxylic acid 
receptor 2 (GPR109A or HCAR2). GPR43/
FFAR2 is a Gi/o- and Gq-dual-coupled GPCR 
[85]; however, GPR41/FFAR3 and GPR109A 
couple only to Gi [86]. Propionate is the most 
potent activator of GPR41/FFAR3, while the 
most sensing affinity of GPR43/FFAR2 is to 
acetate. At present, it is unsealed whether 
GPR43 is expressed on the apical or basolat-
eral side of the cell [86]. GPR109A is highly 
activated by butyrate and expressed on the 
lumen-facing apical membrane of colonic and 
small intestinal epithelial cells.

One pathway for SCFAs activating GPCR is 
associated with intestinal epithelial cells (IECs). 
In inflammation-induced colon cancer mouse 
models, SCFAs are able to stimulate efflux and 
hyperpolarization of K+ by interacting with 
GPR43 and GPR41 on IECs, which results in an 
increase in the secretion of IL-18 and NLRP3 
inflammasomes, both of which are critical fac-
tors for intestinal homeostasis [87]. Similarly, 
butyrate can relieve intestinal inflammation 
through the homologous pathway via GPR109A 
in IECs [88]. In addition, SCFAs may influence 
GPCR by affecting the immune system. A study 
[89] showed that GPR43 (-/-) mice are more 
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Table 2. SCFA production by microbes in the gut
Study year (ref) SCFAs Producers Pathway Distribution
Louis et al., 2014 [142]; Rey et al., 2010 [143] Acetate Most of the enteric bacteria, e.g., Akkermansia muciniphila, Bacteroides spp.,  

Bifidobacterium spp., Prevotella spp., Ruminococcus spp.
From pyruvate via acetyl-CoA Intestinal

Blautia hydrogenotrophica, Clostridium spp., Streptococcus spp. Wood-Ljungdahl pathway Circulation

Louis et al., 2014; Scott et al., 2006 [76] Propionate Bacteroides spp., Phascolarctobacterium succinatutens, Dialister spp., Veillonella spp. Succinate pathway Intestinal

Megasphaera elsdenii, Coprococcus catus Acrylate pathway

Salmonella spp., Roseburia inulinivorans, Ruminococcus obeum Propanediol pathway Circulation

Louis et al., 2014; Duncan et al., 2002 [78] Butyrate Coprococcus comes, Coprococcus eutactus Phosphotransbutyrylase/Butyrate kinase 
intestinal pathway 

Intestinal

Roseburia spp., Coprococcus catus, Faecalibacterium Acetate CoA-transferase pathway Intestinal
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likely to develop DSS-induced IBD. In this con-
text, GPR43 is necessary for the chemotaxis of 
neutrophils; simultaneously, inflammatory fac-
tors stimulated by LPS bacteria are decreased 
by SCFAs in neutrophilic granulocytes [90]. 
Besides, in neutrophils, it has been reported 
that butyrate and propionate are able to inhibit 
the maturation and function of dendritic cells 
(DCs) via GPR43 and GPR109A [88, 91]. 
Moreover, Wu el at. [92] reported that acetate 
is beneficial for IECs against harmful bacteria 
by promoting intestinal IgA response which  
was mediated by “metabolite-sensing” GPR43 
in DCs.

SCFA as an inhibitor of histone deacetylase

In addition to anti-inflammatory effects in the 
extracellular space, SCFAs can also act as sig-
naling molecules that enter cells by sodium-
coupled monocarboxylate-transporter 1 (SM- 
CT1/SLC5A8) [93]. Acetyl groups derived from 
acetyl-CoA decorated histone tails by histone 
acetyltransferases (HATs) to promote gene 
transcription. In contrast, repressive chromatin 
structures are formed through the removal of 

acetyl groups induced by histone deacetylases 
(HDACs) [94]. Thus, histone acetylation plays a 
crucial role in gene expression. Due to the anti-
cancer and immunosuppressive effects of 
HDAC inhibitors, SCFAs may emerge as triggers 
of cancer and immune homeostasis because of 
the collective acceptance that butyrate and, to 
a lesser extent, propionate are both HDAC 
inhibitors [95, 96].

Acting as an efficient HDAC inhibitor, butyrate 
has been the most investigated SCFA in alter-
ing gene expression, including cell proliferation, 
apoptosis, and differentiation [97]. The butyr-
ate concentration may emerge as a critical 
modulator that allows tautomerism between 
being an HAT activator and an HDAC inhibitor in 
a cell- and environment-specific context. For 
example, butyrate has up to 3 times more in 
cancer cells than in normal colonocyte [80].

One of the mechanisms by which SCFAs inhibit 
HDAC is to regulate the innate immune system. 
For example, LPS-stimulated butyrate restrains 
proinflammatory effectors in lamina propria 
macrophages, such as NO, IL-6, and IL-12. In 

Figure 5. SCFAs, including acetate, propionate, and butyrate, have broad impacts on various aspects of host physiol-
ogy or pathology. In the distal gut, sensed by GPR41, GPR43, and GPR109a, luminal SCFAs are able to attenuate 
inflammation by stimulating the chemotaxis of neutrophils, inhibiting NF-κB, increasing the secretion of IL-18, and 
activating the NLRP3 inflammasome pathway. SCFAs can enter cells through diffusion or SLC5A8-mediated trans-
port and act as an energy source or an HDAC inhibitor. SCFAs promote Foxp3 and inhibit HDAC to regulate Tregs 
SCFAs can also increase the concentration of IL-10 and decrease the number of Th17 cells to reduce inflammation 
and tumorigenesis. SCFAs, short chain fatty acids; ↑, direct action; ♩, inhibit action.
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this way, our intestinal immune system be- 
comes hyporesponsive to beneficial symbionts 
[10]. Furthermore, butyrate and propionate 
enable the inhibition of the differentiation of 
bone marrow stem cells to DCs induced by the 
granulocyte-macrophage colony stimulating 
factor via HDAC1 and HDAC3 [98, 99]. In addi-
tion, SCFAs regulate the generation of regula-
tory T cells (Tregs) and suppress the activation 
of effector T cells (Th1, Th2, and Th17) through 
HDAC inhibition. SCFAs increase the expression 
of Foxp3 and IL-10, both key factors limiting 
intestinal inflammation in colonic Tregs (cTregs), 
to promote microbiota-induced cTreg develop-
ment associated with de novo generation of 
inducible Tregs (iTregs) by inhibiting HDAC in 
DCs [42]. Further research [100] reveals that 
SCFAs as HDAC inhibitors alleviate the inflam-
matory effect by increasing the content of p70 
S6 kinase (S6K) and enhancing the acetylation 
of phosphorylated ribosomal protein S6 (rS6). 
Besides, there is another role SCFAs play in 
regulating gene expression within B cells to pro-
mote antibodies, by interacting with HDAC 
[101].

Although acetate is generally considered to 
have little connection with HDAC inhibitors, 
recent research [102] reported that it may alter 

the expression of FoxP3 and IL-17 by increasing 
the aromatic hydrocarbon receptor and enhanc-
ing histone acetylation in Caco-2 cells. This 
implies that acetate is a potential inhibitor of 
HDAC, but its pathway may be different from 
that of butyrate and propionate. However, a 
study [103] found that butyrate plays a domi-
nant role in the early stage of inflammation by 
promoting the expression of T-bet and IFN-γ in T 
cells. This suggests that butyrate may activate 
the collective immune response by increasing 
inflammatory factors in the early stage of 
inflammation to alleviate the aggravation of the 
cancer.

Positive roles played by SCFAs

Accumulating evidence suggests that the 
SCFAs, butyrate in particular, play positive roles 
in regulating metabolic dysfunction of the host 
(Figure 6).

SCFAs and immunity

Since the physical and biochemical barriers 
anatomically divide the immune cell from com-
plicated bacterial milieu, our intestine is a 
standalone immunological site where perturba-
tion of the equilibrium is mainly modulated by 
microbiota [104]. Nevertheless, chemotherapy 

Figure 6. The summary of the short chain fatty acids mechanism.
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and radiotherapy, cancer treatment modalities, 
can lead to intestinal microbial dysbiosis, thus 
provoking persistent inflammation and dam-
aged gut homeostasis. In this review, we focus 
on SCFAs exerting anti-inflammatory effects by 
acting as signaling molecules toward a delicate 
balance after chemotherapy or radiotherapy.

Since the immune system can be persistently 
impacted, it is important to stay hyporespon-
sive to pathogenic bacteria and launch immu-
nosuppressive mechanisms under the sti- 
mulation of radio- or chemotherapy. The sup-
pressive activity is achieved by the full reciproc-
ity between SCFAs and their targets in the host 
(GPCR and/or HDAC). Accumulating evidence 
has suggested the mechanism of SCFAs in Treg 
cells. Arpaia et al. [105] reported that providing 
acetate, propionate, and butyrate is able to 
alleviate the apparent decrease of colonic 
Tregs, which indicates that these three SCFAs 
independently affect Treg cells. Acetate and 
propionate stimulate the expansion of Treg 
cells and increase the expression of IL-10 by 
activating GPR43 to upregulate the expression 
of Foxp3 [106]. Furthermore, inflammation is 
attenuated by increasing Tregs and IL-10 via 
the signaling of GPR109A. Butyrate blocks the 
translocation of NF-κB pathway signal into the 
nucleus to suppress subsequent activation of 
downstream gene expression and generation 
of IL-6 [88].

Considering the high SCFA receptors expres-
sion in immune cells [88, 107, 108], we specu-
late that SCFAs play significant roles in T cell 
function. The description of the role SCFAs 
played in the T cells differentiation has revealed 
a fact that this process typically hinges on 
immunological milieu [100]. Unlike a previous 
study showing high expression of GPR43 in 
myeloid and Tregs cells [106], Park et al. [100] 
revealed that T cells express GPR43 inconspic-
uously and that cytokine expression is adjusted 
by SCFA-mediated HDAC inhibition other than 
GPR43. In addition, they also suggested that, if 
the host was eliminating pathogens, the differ-
entiation from naive T cells into Th1 and Th17 
cells to boost immunity. To summarize, SCFAs 
is able to regulate T cell function, but further 
research is desire for pinpointing the underly-
ing mechanism. When it comes to human 
monocytes, SCFAs promote secretion of pros-
taglandin E2 through pertussis toxin-sensitive 

GPCRs, thereby inhibiting inflammatory res- 
ponses [109].

The inhibitory effect of SCFAs on HDAC activity 
has been discussed above, including promot-
ing histone acetylation, affecting gene expres-
sion and inflammatory response, and regaining 
intestinal homeostasis and cancer protection 
[109].

SCFAs and chemotherapy- or radiation-associ-
ated intestinal microbial dysbiosis

Previous research [8, 9] suggest that, after che-
motherapy or radiotherapy, patients with enter-
itis present low levels of SCFA-producing bacte-
ria in their gut. Hence, SCFAs concentration is 
often found to be decreased in fecal samples 
of such patients. SCFAs have antagonistic 
effects on intestinal microbial dysbiosis, result-
ing in an increase in the number of beneficial 
bacteria and a decrease in the quantity of 
pathogenic bacterium in the gut (Figure 4). For 
example, Haenen et al. [110] found that pigs 
fed a resistant starch-supplemented diet exhib-
ited higher proportions of butyrate- or propio-
nate-producing bacteria, whereas potentially 
pathogenic bacteria (E. coli and Pseudomonas 
spp.) were decreased. Relevant results [111] 
showed that mice with DSS-induced colitis fed 
a high-fiber diet exhibited more Bacteroidetes 
(Porphyromonadaceae and Rikenellaceae) and 
Firmicutes (Lachnospiraceae) in their feces 
accompanied with less moderate enteritis than 
mice fed diets containing zero fiber, which 
reflects the potential therapeutic effects of 
SCFAs in attenuating inflammation. Similarly, 
dietary fibers enriched Bacteroidaceae and 
Bifidobacteriaceae and decreased potentially 
pathogenic bacteria such as Erysipelotricha- 
ceae [109]. There is a natural synergy between 
butyrate and Bifidobacterium in anti-inflamma-
tory function by downregulating the expression 
of IL-8 [112] and upregulating the number of 
Tregs at injured sites [113]. In addition, Bifido- 
bacterium can inhibit LPS-induced autophagy 
to maintain intestinal barrier [114].

Specifically, butyrate exclusively activates the 
peroxisome proliferator-activated receptor ga- 
mma, a nuclear receptor that impairs the gene 
encoding iNOS [115], an interaction that has 
been confirmed to hinder the production of 
nitrate in IECs. Nitrate, a respiratory electron 
acceptor, is hanker for the reproduction of 
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some pathogenic bacteria (Escherichia and 
Salmonella spp.) [116]. Once nitrate is lacking, 
the ratio of these harmful bacteria decline. 
Therefore, SCFAs are candidates for restoring 
gut homeostasis and managing lesioned intes-
tinal mucosa.

However, direct application of SCFAs is not as 
valid as the direct administration of alive SCFA-
producing bacteria to the mucosa recovery and 
intestinal homeostasis. For example, butyrate 
had lesser impact on attenuating inflammation 
in mice with 2,4,6-trinitrobenzene sulfonic acid-
induced colitis than injections with alive F. 
prausnitzii or F. prausnitzii supernatant. How- 
ever, both approaches increased IL-10 and 
declined IL-12 and TNF-α [56]. This may be due 
to the fact that a constant production and deliv-
ery of SCFAs to the mucosa is necessary to 
exert various effects.

SCFAs and the intestinal barrier

When suffering from chemotherapy- or radio-
therapy-related intestinal inflammation, the 
permeability of enterocytes is increased, and 
the mucus layer is destroyed on account of 
intestinal microbial dysbiosis. Thus, the muco-
sitis after the above cancer treatment is always 
accompanied by impaired barrier function. In 
the intestinal mucosa, SCFAs exert beneficial 
effects on IECs and immune cells through the 
induction of intracellular or extracellular pro-
cesses (Figures 4 and 5).

First, the SCFA butyrate restores the epithelial 
barrier function by settling the hypoxia-induc-
ible factor 1 (HIF-1, a transcription factor coor-
dinating barrier protection), profiting from the 
low O2 concentrations in the colon. Although 
the reduction of HIF-1α expression and butyr-
ate levels is greatly apparent in antibiotic-treat-
ed or germ-free (GF) mice, the expression of 
HIF-1α is regained after supplementing butyr-
ate administration [117]. Importantly, rescue 
experiments demonstrated that butyrate plays 
a critical role towards HIF-1 in maintaining bar-
rier integrity because it seldom induces the 
barrier function without HIF-1β in T84 cells 
[117]. Second, butyrate influences the expres-
sion of genes encoding tight-junction compo-
nents and protein reassembly through the acti-
vation of certain transcription factors, including 
the signal transducer and activator of transcrip-
tion 3 and specificity protein 1 [109]. Several in 

vitro studies have revealed that transepithelial 
electrical resistance is increased by butyrate in 
inflammatory conditions in mice and humans 
[118-121]. Hence, butyrate has a paramount 
contribution to recover tight junctions, which is 
an important therapeutic target. Third, butyrate 
promotes epithelial barrier function by consoli-
dating the mucus layer, where sIgA can neutral-
ize toxins and pathogens after chemo- or radio-
therapy. Butyrate is capable of promoting mu- 
cin compound by upregulating the expression 
of the MUC1-4 genes [122]. Another important 
mechanism is the synthesis of antimicrobial 
peptides (AMPs) by IECs. Recent studies have 
shown that the expression of the AMPs RegIIIγ 
and β-defensins is distinctly suppressed in 
Gpr43 KO mice, while Gpr43 activation induced 
by butyrate impairs AMP secretion, including 
cathelicidin, in experimental models [123, 
124]. As a result, SCFAs can improve the micro-
environment of epithelium by maintaining the 
physiologic composition of mucus and upregu-
lating the secretion of AMPs. 

SCFAs and anticancer effects

Recent compelling evidence suggests that the 
gastrointestinal microbiota plays a role in mod-
ulating responses to cancer immunotherapy 
[125-127], and data demonstrate that the 
microbial communities within the tumor micro-
environment can contribute to therapeutic effi-
cacy [128]. Generally speaking, patients su- 
ffering solid tumors usually treated with che-
motherapy or radiotherapy. In this context, 
chronic inflammation within a tumor bed is a 
well-established risk factor for tumor remission 
after chemotherapy or radiotherapy, partially 
owing to the infiltration of some cancer-facilitat-
ing cells such as M2 macrophages and IL-17-
producing cells [129, 130]. Research from pre-
clinical models shows that oral administration 
of feces from patients with colorectal cancer to 
GF mice can induce polyp formation, produce 
carcinogenic signals, and alter the local im- 
mune milieu to promote intestinal carcinogen-
esis through metabolites of oncogenic gut bac-
teria [131].

Pathogenic bacteria but also commensal mi- 
crobial elements have been validated to play a 
vital role in the response to inflammation and 
other pathological processes. Existing evi-
dence inferred that chemotherapy and radio-
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therapy may influence microbial dysbiosis, as 
well as toxicity, via a variety of proposed mech-
anisms, although in-depth knowledge is need-
ed. Preclinical models show that the gut micro-
biota is a double-edged sword to oxaliplatin, 
leading to either mechanical hyperalgesia or 
tumor cytotoxicity, the chemotherapy-related 
complications, by a way of increased ROS and 
proinflammatory factors in the dorsal root gan-
glion [132]. Ionizing irradiation has been report-
ed to alter the constitutions of gut microbes in 
preclinical models too, reducing the abundance 
of Firmicutes and increasing the abundance of 
Proteobacteria and subsequently increasing 
susceptibility to colitis [54]. Furthermore, al- 
tered mucus quality is the main cause of 
increasing susceptibility to DSS-induced colitis 
in GF and antibiotic-treated mice [88].

To demonstrate the anticancer effects of SC- 
FAs, the following mechanism is proposed. 
Based on early in vitro data, it seems that 
SCFAs inhibit HDACs to suppress cancer cells 
[133, 134]. Nevertheless, this mechanism 
alone is unable to explain entirely the SCFAs 
effect on carcinogenesis in vivo. Accumulating 
evidence suggests that the suppressive effects 
of SCFAs on chronic inflammatory responses 
and intestinal carcinogenesis are mediated by 
SCFAs receptors [135], which function in an 
explicitly GPCR-associated manner rather than 
inhibition in HDACs. Activation of GPR43 by 
acetate plays a protective role against gut 
inflammation in mice [107], which suggests 
that SCFAs have a phylactic role in colonic 
inflammation. Likewise, the expression of the 
SCFA receptors GPR109A and GPR43 is mark-
edly reduced in colon cancer [136], supporting 
the favorable role of SCFA signaling as well. 
Importantly, many mechanisms remain unclear 
and are the focus of studies currently investi-
gating the causal links between tumor-associ-
ated microbiota and metabolites in inflamma-
tion response and cancer.

The SCFA receptors function in suppressing 
carcinogenesis is frequently linked to chronic 
inflammation. Particularly, butyrate appears to 
play a phylactic part based on the distinct 
decline butyrate-producing bacteria in an ame-
lioration of experimental colitis via GPR109A 
[88]. Although the corresponding connection 
with GPR43 does not have a dominant state on 
colon cancer development [135], the SCFA-

GPR43 axis is going to boost barrier immune 
responses, which limits persistent bacterial 
invasion, chronic inflammatory responses, and 
colon cancer development [137]. However, 
Coutzac et al. [138] observed that, in mice and 
patients, high serum levels of butyrate and pro-
pionate are associated with resistance to CTLA-
4 blockade and a higher proportion of Treg 
cells. 

Discussion and future perspective

Chemo- or radiotherapy induce major changes 
in the composition of the gut microbiota; subse-
quently, these random disruptions and the 
resulting metabolites are able to participate in 
the development of mucositis. Basic and clini-
cal data suggest that SCFAs produced by micro-
bial interactions with dietary polysaccharides 
are important energy resources and signaling 
molecules. In this review, we focus on the 
mechanism that SCFAs, as signaling molecules, 
adjust versatile class of intestinal immune sys-
tem towards microenvironment homeostasis. It 
has become increasingly accepted that SCFA-
producing bacteria are beneficial for human 
health, therefore, the therapeutic impacts of 
SCFAs in inflammation are important issues of 
concern and should be paid more attention 
from the public Unlike microbially produced 
metabolites, exogenously administered SCFAs 
are probably not as effective as the administra-
tion of live SCFA-producing bacteria to the 
mucosa [10, 56]. Moreover, it needs to be a 
constant production and delivery of SCFAs to 
the mucosa for anti-inflammatory effects to 
occur [109]. Therefore, the success rules of 
SCFAs might be framed by enriching or recover-
ing SCFA-producing bacteria in molding intesti-
nal mucosa homeostasis from chemotherapy 
or radiotherapy-induced microbial dysbiosis. At 
molecular level, we discussed the anti-inflam-
matory mechanisms of SCFAs towards intesti-
nal microbiota and immunity by acting as sig-
naling molecules. SCFAs act as GPCR ligands in 
the extracellular milieu and HDAC inhibitors in 
the intracellular milieu. Both methods can com-
bat intestinal inflammation and revolve the 
homeostasis by affecting the innate immune 
system and regulating Treg cells. Furthermore, 
recent studies prefer GPCR-associated recep-
tors to HDAC inhibitors to explain the impaired 
effect of SCFAs. In addition, because of the 
increased expression of SLC5A8 and GPR109A, 
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the host targets seem to exert a higher affinity 
for SCFAs than before [73]. The protective 
effect of SCFAs, as signal molecules, has been 
verified in animal models [87, 110], but there is 
still a lack of interrelated data in the human. 
Advancements of SCFAs in clinic research are 
proceeding slowly, because of the collective 
acceptance that SCFAs seem to play different 
roles in various outside environment and 
human internal milieu rather than to work 
alone. It is necessary to consider the genetic 
background, bacterial metabolites interac-
tions, and tumor microenvironment when we 
expect SCFAs to combat intestinal inflamma-
tion. This is why the opposite is observed in 
enteritis with similar amounts of SCFAs: resis-
tance effect and aggravation [90, 138, 139].
Since targets and SCFAs receptors is diverse 
between animal and the human body, in-depth 
studies are requisite for more details. 

Although there currently are some challenges 
in the prevention of intestinal inflammation 
after chemotherapy or pelvic radiotherapy, 
moderate diet supplements of SCFAs lead to 
restoring bacterial homeostasis, attenuating 
inflammation, maintaining the barrier function, 
promoting antitumor effects, and mucosal 
repair after cancer treatments. Regrettably, 
few clinical trials explored the direct causality 
between SCFAs and enteritis. It’s worth noting 
that more investigators prefer focusing their 
attentions on the effect of different intaking-
dietary fiber to uncovering the deep relation-
ship of SCFAs and inflammation. Among their 
relevant preclinical trials [140, 141], SCFAs are 
regarded as specific indicators to imply the 
extent of intestinal inflammation. Spatiotem- 
poral concentration of SCFAs can indicate 
intestinal microbial imbalance and the subse-
quent occurrence of inflammation after under-
going chemo- or radiotherapy. Nevertheless, 
there is still a lack of a “gold standard” for the 
diagnosis of enteritis in clinical use. This sug-
gests that SCFAs have the potential to be 
regarded as predictive markers for the risk of 
mucositis and could be a guide of precaution-
ary measures. Lucubration of the gut microbio-
ta and their metabolites by modern inspection 
techniques, such as metagenomic approaches, 
should contribute to personalized investigation-
al strategies that can be ascertained in future 
clinical trials. Furthermore, improving identifi-
cation techniques will make it possible to 

regard SCFAs as the biomarker in clinical detec-
tion index. SCFAs also inspire new ideas to treat 
other related intestinal diseases for the aspect 
of prophylaxis, diagnosis and intervention. 
Owing to deriving from microbial fermentation, 
SCFAs may be affected by food intake and 
microbial abundance. Thus, in order to mitigate 
enteritis associated with chemotherapy or 
radiotherapy, therapeutic approaches including 
adjusting food intake, regulating the proportion 
of gut bacteria and subsequently alter the con-
centration of SCFAs should be considered into 
clinical application. To achieve this prospective 
goal, further clinical research is indispensable 
in the future. 
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