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Abstract: Artificial intelligence (AI) is a relatively new branch of computer science involving many disciplines and 
technologies, including robotics, speech recognition, natural language and image recognition or processing, and 
machine learning. Recently, AI has been widely applied in the medical field. The effective combination of AI and big 
data can provide convenient and efficient medical services for patients. Colorectal cancer (CRC) is a common type 
of gastrointestinal cancer. The early diagnosis and treatment of CRC are key factors affecting its prognosis. This 
review summarizes the research progress and clinical application value of AI in the investigation, early diagnosis, 
treatment, and prognosis of CRC, to provide a comprehensive theoretical basis for AI as a promising diagnostic and 
treatment tool for CRC.
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Introduction

Colorectal cancer (CRC) is the most common 
type of malignant tumor in the digestive sys- 
tem and ranks as the fourth leading cause  
of cancer death worldwide [1, 2]. According to 
epidemiology investigations, in 2012, there 
were approximately 1.36 million new cases of 
CRC, which was the third highest incidence of 
malignant tumors in the world, ranking third  
for men and second for women. There were 
approximately 690,000 deaths, which is rank- 
ed as the fourth highest death toll caused by 
malignant tumors [3, 4]. It was estimated that 
in 2015, there will be 777,987 new cases and 
352,589 deaths caused by CRC in developed 
countries [5, 6]. However, the five-year survival 
time varies by country, ranging from 4.3% to 
5.3% for men and from 2.7% to 4.9% for wo- 
men. Although significant progress has been 
made in terms of understanding and treating 
CRC, high morbidity and mortality rates based 
on recurrence and metastasis in therapy are 
inevitable [7-9]. Currently, endoscopic screen-
ing is the most commonly used method for  
clinical screening of CRC, particularly colonos-
copy [10-14]. However, there are several prob-

lems with this approach, including poor patient 
compliance, a lack of family history [15, 16], 
inconvenience of real-time monitoring, expens-
es, and risk of complications [17, 18]. There- 
fore, there is significant research interest in 
identifying effective strategies for early diag- 
nosis, detection of recurrence, and monitoring 
the progression of CRC [19].

Artificial intelligence (AI), which is also called 
machine intelligence, refers to a type of in- 
telligence exhibited by machines. In computer 
science, AI research involves any device that 
can perceive its environment and act autono-
mously to achieve its goals [20]. Researchers 
have continuously studied and developed AI 
technology since its inception. AI technology 
has been widely used in medicine, the econo-
my, and daily life. In medicine, AI is mainly  
used for the diagnosis, treatment, and prog- 
nosis prediction of diseases. AI has two main 
branches in the medical field: a virtual branch 
and physical branch [21]. The virtual branch 
includes medical imaging, clinical assistant 
diagnosis and treatment, and drug research 
and development. The physical branch inclu- 
des surgical and nursing robots. Based on the 
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continuous development and widespread ap- 
plication of AI in the medical field, AI has di- 
verse application prospects for the diagnosis 
and treatment of tumors. Recent studies have 
shown that AI can play an important role in  
the diagnosis and treatment of CRC patients, 
which not only improves early screening effi-
ciency, but also significantly improves the five-
year survival rate of CRC patients following 
treatment. This review intends to provide an  
in-depth discussion of the research progress 
and clinical application value of AI in the inves-
tigation, early diagnosis, treatment, and prog-
nosis of CRC by summarizing findings relevant 
to AI and CRC, which should provide a compre-
hensive theoretical basis for AI as a promising 
diagnostic and treatment tool for CRC.

Development of artificial intelligence in medi-
cal research

AI is one of the most popular topics in mod- 
ern research. It is an emerging discipline that 
focuses on studying and developing theories, 
methods, technologies, and application sys-
tems for simulating, extending, and expanding 
human intelligence. At its core, AI is a branch  
of computer science. Researchers attempt to 
understand the essence of intelligence and 
design novel intelligent machines that can re- 
spond in a manner similar to human intelligen- 
ce. Research in this area includes robotics,  
language recognition, image recognition, and 
natural language processing. The progress of 
science and development of engineering tech-
nology will be applied to medicine to promote 
the development of medical technology. AI te- 
chnology has played a key role in the medical 
field in terms of constructing fast and accurate 
intelligent medical systems. 

Based on the rapid development of computer 
technology, imaging levels and the quality of 
medical imaging equipment have steadily im- 
proved in recent years [22]. The four main di- 
rections of future medical development are 
“personalization, precision, minimally invasive, 
and remote”. With assistance from computer 
technology, these directions have become in- 
creasingly clear [23]. Introducing AI technology 
into the field of medical image recognition is  
a goal with tremendous potential benefits for 
both patients and doctors. Leveraging AI to 
analyze medical images can significantly redu- 
ce costs and improve efficiency. However, for 

the practical application of medical image pro-
cessing, systems must be sufficiently flexible  
to adapt to the actual characteristics of pro-
cessed images [24]. The development of AI  
has recently entered a new era. AI has be- 
gun developing rapidly in professional applica-
tions. Although many applications are far from 
practical, they are very likely to be realized in 
the next 10 to 15 years [25].

Laboratory medicine is an important sector  
of modern medicine. Approximately 70% of  
the information required for clinical decisions 
comes from laboratory testing. The main goals 
of such testing are sample detection and in- 
terpretation. However, image recognition and 
decision-making systems incorporating AI te- 
chnology can play a major role in this field  
and can even subvert existing technology. AI 
applications in the pre-analysis stage mainly 
focus on sample collection and transfer, as  
well as the identification of unqualified sam-
ples. Such applications include blood draw- 
ing robots, sample transfer robots, automatic 
sample delivery, and the automatic identifica-
tion of unqualified samples [26]. In the analy- 
sis stage, image recognition is the most pro- 
minent technology because it can help solve 
morphological interpretation problems in test 
items, including bone marrow slices, blood 
smears, urinary sediment, fluorescent slices, 
and bacterial colonies. Through deep learning, 
computers can classify red blood cells based 
on their cell morphology. In the post-analysis 
phase, AI plays a more important role. Ma- 
chine learning techniques can perform intelli-
gent report reviewing and reexamination, gen-
erate critical value reports, and even find test 
tube labeling errors by analyzing historical  
data for multiple test items. Furthermore, AI 
technology can contribute to the transition 
from test reports to diagnostic reports. Using  
AI technology, through multi-parameter data 
mining, key indicators related to atrial fibrilla-
tion in peripheral blood can be identified to  
predict the risk of acute myocardial infarction, 
which cannot be achieved using a traditional 
single test item [27, 28]. 

Through deep learning, AI can be applied to 
diagnosing and treating clinical reproductive 
diseases. For example, one can use multi-lay- 
er neural networks to predict the pregnancy 
outcomes of infertility patients and extract tex-
ture features to identify embryos with more de- 
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velopmental potential among a series of em- 
bryo images. AI makes medical workers more 
accurate in their diagnosis and more person- 
alized in their treatment of reproductive dis- 
eases, and allows patients to predict their  
fertility more accurately. The directions of AI 
technology research in the assisted reproduc-
tion field are largely focused on how to use AI  
to predict the fertility of patients more accu-
rately, allowing doctors to develop individual 
optimal solutions to solve fertility problem;  
how to use intelligent embryo images to re- 
cognize and select embryos with the highest 
development potential; and how to create AI 
platforms with multi-omics intelligent analysis, 
diagnosis, and treatment. Currently, AI is main- 
ly applied to the prediction of abnormal sperm 
morphology and intra-cytoplasmic sperm in- 
jection (ICSI) [29], as well as evaluating ovum 
quality [30, 31], and embryonic development 
potential [32-35] and predicting in vitro fertil-
ization or ICSI pregnancy outcomes [36].

AI can also be widely used for the rapid diag- 
nosis [37], prediction [38], and treatment of 
tumors [39]. Additionally, AI can be used for 
medical journal editing and publishing [40],  
as well as in other medicine-related fields. The 

rapid development of AI is accompanied by 
numerous opportunities and challenges. We 
should take full advantage of these oppor- 
tunities and prepare for the future and make 
use of AI technology to promote the develop-
ment of medicine and realize faster diagnosis 
and more accurate treatment of diseases.

Applications of AI to CRC

Since 2010, the research and application of AI 
in medically assisted gastrointestinal disease 
diagnosis and treatment have grown signifi-
cantly [41]. In terms of the lower gastrointesti-
nal tract, AI has assisted in the examination of 
colorectal diseases and has been applied to 
colon polyps, adenomas, colon cancer, ulcer-
ative colitis, and intestinal motor diseases. Al- 
though the application of AI to the diagnosis 
and treatment of CRC still lacks systematic 
research, the continuous development of AI 
applications in the medical field is an indica- 
tion that AI will be used for the diagnosis and 
therapy of CRC eventually (Figure 1).

AI and CRC monitoring and diagnosis

Diagnosis is one of the core principles of me- 
dicine and relies on the integration of multi-

Figure 1. The application of AI in CRC diagnosis and treatment.
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source data analysis and clinician experience. 
Based on the wide variety of tumor symp- 
toms, the rapidity of tumor progression, indi-
vidual differences, and drug susceptibility, it is 
difficult to perform accurate tumor diagnosis. 
AI can aid doctors in the qualitative diagnosis 
and staging diagnosis of colon cancer, which 
currently rely heavily on colonoscopy and path-
ological biopsy [42].

AI application during colonoscopy

Colonoscopy can be used to directly observe 
lesions in the intestinal wall and colonoscopy 
doctors can determine whether lesions are re- 
lated to CRC through the analysis and screen-
ing of lesion images. As early as 2006, Lefere 
introduced the concept of virtual colonoscopy 
[43]. The advent of virtual colonoscopy was 
based on computed tomography colonography 
[44], which originated in 1994 and transform- 
ed local axial computed tomography images 
into three-dimensional cavity images. These 
images simulated optical colonoscopy and us- 
ed various types of films or virtual crosses to 
detect CRC and their adenomatoid polypoid 
precursors, as well as other neoplastic lesions. 
In recent years, the rapid development of AI 
technology has made colonoscopy a conve-
nient and accurate examination for screening 
CRC. To detect polyps, Fernandez-Esparrach et 
al. [45] designed an automatic colonic polyp 
detection method based on energy maps. They 
inputted 31 types of polyp information into a 
computer learning system and achieved a sen-
sitivity of 70.4% and specificity of 72.4%. This 
approach was subsequently refined through 
the development of deep learning technology 
[46, 47]. In 2017, Zhang et al. [48] developed  
a novel algorithm that automatically classi- 
fies polyps as hyperplasia and adenomatosis. 
Takemura et al. [49] distinguished neoplasia 
polyps from non-neoplasia polyps using nar-
row-band imaging (NBI) and support vector 
machine (SVM) technology, achieving a detec-
tion accuracy of 97.8%. Gregor et al. [47] de- 
signed and trained a convolutional neural net-
work (CNN) system to improve the adenoma 
detection rate (ADR) for colonoscopy. They col-
lected 8,641 representative marked images 
from more than 2,000 colonoscopy results for 
machine learning and tested their system’s  
predictive capabilities on 20 sets of colonos-
copy results. Their assistant system achieved  
a cross-validation accuracy of 96.4% and an 

area under the receiver operating characteris-
tic curve (AUC) of 0.991. Kominami et al. [50] 
demonstrated the practicability of real-time 
computer-aided diagnosis (CAD) for detecting 
small adenomatous polyps. Mori et al. [51] 
combined NBI with staining image technolo- 
gy to perform real-time image recognition to 
screen small neoplastic polyps and conducted 
prospective verification of auxiliary diagnoses. 
They achieved a final pathologic prediction  
rate of 98.1%. Wang et al. [52] demonstrated 
that real-time image recognition systems can 
significantly increase the ADR of colonoscopy. 
Akbari et al. [53] applied a polyp segmenta- 
tion method to screen tumors in colonoscopy 
polyps using a CNN. During the training pha- 
se, they improved the image patching method. 
In the testing phase, they conducted effective 
post-processing of a probability graph gene- 
rated by their CNN. Their method achieved a 
specificity of 74.8%, sensitivity of 99.3%, and 
accuracy of 97.7%. Renner et al. [54] used AI  
to construct a computer-assisted optical bio- 
psy system. When a colorectal intestinal tract 
was examined using endoscopy, 602 collect- 
ed images were uploaded to their system for 
deep learning. Their system processed the 
image information and distinguished neoplas-
tic polyps. The diagnostic accuracy and sensi-
tivity of their system were 78.0% and 92.3%, 
respectively. EndoBRAIN is an AI-assisted en- 
doscopic diagnosis system that analyzes cell 
nuclei, crypt structures, and microvessels in 
endoscopic images, to identify colon neoplas- 
ms. Kudo et al. [55] performed a retrospective 
comparative analysis of the diagnostic perfor-
mance of EndoBRAIN with those of 30 endos-
copists. While analyzing staining in endosco- 
pic images, EndoBRAIN distinguished neoplas-
tic lesions from non-neoplastic lesions with 
96.9% sensitivity, 94.3% specificity, 96.0% ac- 
curacy, a 96.9% positive predictive value, and 
94.3% negative predictive value. These values 
were significantly higher than those of the en- 
doscopists. Blanes-Vidal et al. [56] extended  
AI technology to capsule endoscopy. They de- 
veloped a CNN for the autonomous detection 
and localization of colon polyps in colon cap-
sule endoscopy. Compared to previous meth-
ods, their algorithm achieved unprecedented 
levels of accuracy (96.4%), sensitivity (97.1%), 
and specificity (93.3%). 

In the case of nonpolyposis colon cancer, the 
mucosa of malignant colon tumors under colo-
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noscopy are characterized by irregular, discon-
tinuous crypt structures, which can be diag-
nosed using CAD. Infocus-Breakpoint, which 
was designed in 2015, can measure the leng- 
th and area of a neoplasia in a 2D colonos- 
copic image directly, yielding accuracy at the 
millimeter level [57]. Stefanescu et al. [58] 
used CAD to process images from confocal 
laser endomicroscopy and trained their model 
using a two-layer feed forward neural network 
to diagnose malignant samples automatical- 
ly based on seven tested parameters. Their 
diagnostic error was 15.5%. Takeda et al. [59] 
studied endocytoscopy CAD for the diagnosis 
of invasive CRC. They trained their system on 
5843 endocytoscopy images of 375 lesions 
and tested it on 200 images. It achieved a  
sensitivity of 89.4%, specificity of 98.9%, and 
accuracy of 94.1%. Magnifying narrow-band 
imaging (M-NBI) can be used to make detail- 
ed observations of microvascular structures. 
Tamai et al. [60] used CAD based on M-NBI to 
classify mucosal lesions in the colon, includ- 
ing hyperplastic polyps, adenoma/adenocarci-
noma (intramucosal to submucosal-superfici- 
al) lesions, and submucosal-deep lesions wi- 
th accuracies of 83.9%, 82.6%, 53.1%, 95.6%, 
and 82.8%, respectively.

AI application in pathological biopsy

Pathological biopsy is necessary for the diag- 
nosis and grading of colon cancer. However, 
results are typically subjective assessments 
based on the past experience and knowledge 
of pathologists. Therefore, significant differen- 
ces between different observers are inevita- 
ble. The application of AI technology can auto-
matically classify and diagnose biopsy sam-
ples, significantly improving the accuracy of di- 
agnosis while reducing time and costs [61]. 
Rathore et al. [62] developed a novel colore- 
ctal cancer detection (CCD) system based on 
the SVM radial basis function algorithm, which 
classifies normal colon biopsy images and ma- 
lignant images, and then automatically deter-
mines malignant grades. Compared to previ- 
ous techniques, this CCD system has superior 
cancer detection (accuracy 95.40%) and gr- 
ading (accuracy 93.47%) capabilities. Subse- 
quently, based on this system, the same te- 
am proposed a hybrid feature-space-based 
colon classification (HFS-CC) technique [63] th- 
at classifies biopsy sample images using multi-

ple features, including geometric features, mor-
phology, and texture. An SVM was used as a 
classification tool to classify 176 subjects, and 
the HFS-CC technique achieved a test accura- 
cy of 98.07%. Yang et al. [64] combined a sub-
patch weight color histogram and least squar- 
es SVM to design a novel application of AI to 
CRC pathology. This method not only displays 
the color and spatial information of tumor ima- 
ges, but also reveals heterogeneous informa-
tion and achieves excellent accuracy for tumor 
classification (96.78%). Korsuk et al. [65] used 
AI for the classification of nuclei in colon cancer 
biopsies. Nuclei detection and classification in 
histopathology images of cancerous tissues 
stained with standard hematoxylin and eosin 
(HE) stains are challenging tasks, based on cel-
lular heterogeneity. Therefore, they designed  
a spatially constrained CNN (SC-CNN) to test 
nuclei and performed classification with the  
aid of a neighboring ensemble predictor (NEP). 
Korsuk examined 100 HE-stained colon cancer 
specimens and demonstrated that joint detec-
tion and classification using the SC-CNN and 
NEP yielded a high average F1 score (0.802) 
and enhanced accuracy (78.1%). 

Regarding immunohistochemistry (IHC), Abdel- 
samea et al. [66] developed an algorithm call- 
ed TuPaQ to segment CRC tumor epitheliums, 
providing a basis for automated biomarker qu- 
antification. TuPaQ can perform image prepro-
cessing, extract regions of interest, and quan-
tify tumor epithelial cells. The sensitivity and 
specificity were 84% and 95%, respectively, 
and the mean tumor area obtained was extre- 
mely close to the area quantified via manual 
annotation (r = 0.956, P < 0.001). AI can also 
be used to design pure image processing tools. 
Eycke et al. [67] proposed a method for auto-
matically annotating slide images from color- 
ectal tissue samples. This method is equipp- 
ed with a deep learning function and convo- 
lutional network system, and can segment 
glandular epitheliums in histological images in 
both HE staining and IHC sections.

AI application in blood tests and other tests

Blood testing is a noninvasive, accurate, and 
cost-effective diagnostic method. Therefore, im- 
proving the accuracy of blood tests can pro-
mote early tumor detection in CRC screening. 
Soares et al. [68] designed a classification me- 
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thod based on blood fluorescence spectros- 
copy. By training an SVM to identify CRC sam-
ples and normal samples, their method achi- 
eved a sensitivity and specificity for CRC of  
87% and 95%, respectively. For nonmalignant 
findings, these values were 60% and 79%, re- 
spectively. ColonFlag is a machine learning al- 
gorithm that uses basic patient information 
and complete blood cell counts to identify indi-
viduals at elevated risk of CRC for intensified 
screening. A large colon cancer screening cen-
ter in Calgary, Alberta studied the performance 
of ColonFlag for CRC screening [69]. ColonFlag 
generated scores based on the ages, sexes, 
red blood cell parameters, inflammatory cells, 
and platelets of 17,676 subjects and allowed 
them to undergo colonoscopy. For advanced 
precancerous subjects, the odds ratio for a 
positive ColonFlag result was 2.0 compared to 
those with normal colonoscopy results with a 
specificity of 95%. This demonstrated that Co- 
lonFlag can use routine blood test results to 
help identify high-risk groups for precancerous 
polyps and CRC. The CellMax (CMx®) platform  
is a system for the enrichment calculation of 
epithelial circulating tumor cells in the blood 
[70]. For a cohort of 47 subjects, including 32 
donors who underwent colonoscopy and were 
determined to have CRC, adenomas, or nega-
tive results, CMx achieved 100% experimental 
specificity and 80% clinical sensitivity, and its 
clinical feasibility was confirmed. In addition to 
blood cells, a recent study revealed that AI can 
also be used to analyze the content of serum 
protein biomarkers to achieve the noninvasive 
diagnosis of CRC [71]. 

AI has also been found to play an important  
role in genetic testing for CRC. Hu et al. [72] 
designed an experiment to compare the accu-
racies of three different neural networks (S- 
Kohonen, BP, and an SVM) for cancer classifi-
cation based on gene expressions. They clas 
sified 53 colon cancer patients with UICC  
II into a relapse group and no-relapse group. 
They found that the classification accuracy ob- 
tained by the S-Kohonen neural network re- 
ached 91%, which was much higher than that 
of the BP (66%) and SVM (70%). In 2017, Xu et 
al. [73] used an SVM system to identify differ-
entially expressed genes (DEGs) to distinguish 
patients with high risk and predict prognoses. 
Through a series of screening and validation 
studies, 15 genetic markers were identified as 

predictors of recurrence risk and prognosis for 
colon cancer patients. Kel et al. [74] develop- 
ed a method called the “walking pathway” to 
search for methylated DNA biomarkers for CRC 
and used AI to analyze cancer-specific enhan- 
cers. Zhang et al. [75] developed a counter-
propagation artificial neural network (CP-ANN) 
to obtain higher sensitivity and lower cost for 
the detection of the BRAF gene mutation, which 
involves a substitution of valine for glutamic 
acid at codon 600 (V600E), in CRC using near-
infrared testing. When testing for the BRAF 
V600E mutation in CRC, the CP-ANN achieved 
a diagnostic sensitivity of 100%, specificity of 
87.5%, and accuracy of 93.8%. Furthermore, 
this method can distinguish the BRAF V600E 
mutation from the wild type. 

AI application in clinicopathological feature 
analysis 

The incidence of CRC is a multi-step process. 
Most CRC cases are sporadic and span sever- 
al years, transforming from adenoma to carci-
noma [76]. Therefore, screening individuals wi- 
th early precancerous lesions may lead to a  
significant decrease in the incidence of CRC 
[77]. Ito et al. [78] developed an AI endoscopy 
system for the diagnosis of colon cancer bas- 
ed on a CNN using machine learning images, 
including 14 cTis cases with endoscopic re- 
section, and 14 cT1a and 13 cT1b cases with 
surgical resection. Their method analyzed pro-
truding, flat, and recessed lesions, and assist-
ed in detecting colon cancer. The cT1b sen- 
sitivity, specificity, and accuracy were 67.5%, 
89.0%, and 81.2%, respectively. However, ba- 
sed on its high cost, low efficiency, and poor 
patient compliance, colonoscopy screening of 
CRC has encountered many obstacles. As a 
result, CAD systems have been developed to 
screen potential CRC patients in high-risk gr- 
oups prior to colonoscopy. Researchers have 
developed AI systems to analyze patient infor-
mation comprehensively to predict the occur-
rence CRC. Selected information includes gen-
der, age, and complete blood count data. Re- 
searchers hope that such systems can encour-
age patients with positive prediction results to 
accept endoscopic checkups over time [38]. 
Similarly, to solve the issue of patient compli-
ance, a team led by Professor Xu designed a 
method for the early screening of CRC bas- 
ed on copy-number variation (CNV) in plasma 
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[79]. They determined the arm level of CNV by 
sequencing whole genomes and then train- 
ed an SVM to perform diagnosis. The results 
demonstrated that the method had higher 
specificity (88.9%) and sensitivity (91.7%) for 
early CRC diagnosis compared with the con- 
ventional z-score method. Regarding biopsy, 
Haj-Hassan et al. [80] used a CNN to predict 
three tissue types in CRC progression, namely 
benign hyperplasia, intraepithelial neoplasia, 
and carcinoma, with an accuracy of 99.17%. 
Song et al. [81] combined machine learning 
with Fourier transform infrared technology to 
classify CRC patients into different periods. 
They adopted the random forest algorithm  
and the overall prediction accuracy of their 
method reached above 90%. The manual seg-
mentation of gland specimens is typically ti- 
me intensive and heavily reliant on subjective  
judgment. To facilitate CRC grading diagnosis, 
the Rathore [82] team developed a gland seg-
mentation method based on a deep learning 
neural network. Two different CNNs were used 
to classify benign and malignant CRC images 
with pixel-wise HE staining and their accuracy 
rates were 98% and 95%, respectively. Subse- 
quently, this team constructed an end-to-end 
computational pathology pipeline to eliminate 
subjective differences. They also designed a 
novel segmentation method. Based on pre- 
vious studies, Graham et al. [83] improved a 
CNN and proposed a fully convolutional net-
work called MILD-Net, which compensated for 
the loss of information caused by max-pooling 
by reintroducing original images at multiple 
points within their network to reduce the un- 
certainty of diagnosis. In 2015, a team of re- 
searchers designed an artificial neural net- 
work (ANN) to explore the association betwe- 
en CRC-related genes and environmental fac-
tors [84]. Since then, methylated DNA has  
been widely used in AI diagnosis as a biomark-
er for early CRC. Kel et al. [74] developed an 
analytical method called the walking pathway 
to diagnose early CRC by extracting human 
methylated CpG from blood and feces. Cell- 
free DNA (cfDNA) has also been used to de- 
tect advanced CRC [85]. The proportion of tu- 
mor-sourced cfDNA in plasma is small; there-
fore, Wan et al. [86] designed an AI program  
to improve the sensitivity of plasma cfDNA 
extraction for CRC patients. For a CRC cohort 
heavily weighted toward the early stages of 
cancer (80% stage I/II), they achieved a mean 
AUC of 0.92 with a mean sensitivity of 85%. 

Based on the Cancer Genome Atlas database, 
Wang et al. [87] designed several ANN mo- 
dels to assist in CRC pathological feature an- 
alysis. By using a back propagation and learn-
ing vector quantization neural network, they 
established four diagnostic models for qualita-
tive diagnosis, M0/M1, carcinoembryonic anti-
gen testing, and clinical staging, respectively. 
Shahbazy et al. [88] introduced optimal fac- 
tors into their classification algorithm and im- 
proved the early diagnosis of CRC by visual- 
izing the relationship between different spec-
tral patterns in a case-control study. Based on 
an updated random forest model, the F-mea- 
sure score for TNM staging was 0.89, and the 
accuracy for five-year disease-free survival 
(DFS) rates was 84% (AUC of 0.82). 

Gupta et al. [89] selected 4021 CRC patients 
and applied machine learning algorithms to 
tumor stage prediction by considering tumor 
aggression scores as a prognostic factor. They 
found that tumor budding is an auxiliary prog-
nostic factor in the TNM staging system. Th- 
erefore, it was set up as an additional prog- 
nostic parameter in their CRC diagnosis guide 
[90]. However, based on the diversity of eva- 
luation systems, the artificial evaluation of tu- 
mor budding is inefficient and difficult to popu-
larize. To overcome this issue, Weis et al. [91] 
established and validated an automatic image 
processing method to quantify tumor budding 
in IHC sections of CRC. They combined mor- 
phological operations and machine learning 
techniques, such as k-means and hierarchical 
clustering, and reliably detected tumor buds in 
CRC samples. 

AI application combined with non-coding RNAs 
(ncRNAs) in CRC diagnosis

Although the human genome project has been 
completed, many physiological mechanisms 
remain unexplained based on present gene 
sequence information, particularly questions 
related to tumorigenesis. Therefore, the poten-
tial of ncRNAs for tumor diagnosis and treat-
ment has been explored gradually. However, 
the mechanisms of ncRNAs in tumorigenesis 
involve a large amount of information and  
computations, which implies that their analy- 
sis requires advanced detection methods and 
accurate processing instruments. Therefore, AI 
technology is considered as a bridge to con- 
nect ncRNAs with tumor researchers [92]. In 
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2011, Chang et al. [93] measured different 
expression profiles of micro RNAs (miRNAs) in 
20 pairs of stage II CRC tissues and corre-
sponding normal tissues, designed an ANN 
algorithm, and then tested its accuracy on  
102 samples. They identified three miRNAs 
(miR-139-5p, miR-31, and miR-17-92) that can 
predict the tumor status of stage II CRC. How- 
ever, this approach assumes a general inter- 
action relationship between miRNAs and tu- 
mors, which may lead to poor predictive accu-
racy. To optimize this method, Amirkhah [94] 
proposed a miRNA-associated tumor predic-
tion method based on naive Bayes classifica-
tion, called CRCmiRTar. Their model not only 
predicts miRNAs, but also reveals the interac-
tions between miRNAs and target messenger 
RNAs, facilitating the construction of a miRNA-
tumor interaction network from a new per- 
spective. There, although CRCmiRTar has only 
been demonstrated for CRC patients, it can  
be widely used for the detection of other dis-
ease-specific genes. ShrinkBayes is an im- 
provement of the traditional prediction model 
from another perspective [95]. Its designers 
considered that extrapolation based on the 
Bayes model could yield excessive degrees of 
freedom when sample sizes are insufficient; 
therefore, they introduced ShrinkBayes and 
demonstrated its predictive accuracy through 
studies with small sample sizes or complex 
designs. Xuan et al. [96] proposed a dual- 
CNN-based prediction method for disease-
related miRNA called CNNDMP. CNNDMP ex- 
plores the deep features of miRNA similarities 
and disease similarities. It also analyzes the 
deep features of miRNA-disease associations. 
Case studies on breast cancer, CRC, and lung 
cancer have demonstrated the powerful ca- 
pabilities of CNNDMP for detecting potential 
disease-associated miRNAs. Afshar et al. [97] 
screened four CRC-specific miRNAs from a da- 
tabase and accurately classified the sample 
data as cancerous and non-cancerous data 
using an ANN. This classification method has 
also been demonstrated in clinical trials. Cla- 
ssification testing on 297 patients from eight 
medical centers in Spain revealed that the  
sensitivity of an SVM classification model was 
85%, while its specificity was 90% [98]. In gen-
eral, AI has been explored in ncRNA-related 
fields to design new methods for screening  
CRC molecular markers, which has significant- 
ly accelerated the study of ncRNA mechanis- 
ms in tumor processes.

In summary, in the field of CRC diagnosis, AI 
has played an auxiliary role through image  
processing, tissue segmentation, molecular 
marker detection, gene prediction, etc. Althou- 
gh some applications have not been comple- 
tely realized, the potential for AI to make CRC 
diagnosis more convenient and efficient is 
beyond question.

AI and CRC therapy

Traditional treatment methods for CRC consist 
of surgery, chemotherapy, radiotherapy, and 
immunotherapy. The application of AI technolo-
gy to CRC treatment can help patients choose 
treatment methods that are appropriate for 
them and improve the curative effects of treat-
ment protocols by designing regimens that are 
more individualized and precise.

AI application in CRC surgery

CRC therapy is primarily surgical. However, so- 
me patients may have contraindications and 
cannot undergo surgeries. Additionally, compli-
cations following surgical therapy, such as ob- 
struction or perforation, are problematic for 
most CRC patients [99]. Therefore, if an accu-
rate preoperative evaluation can be perform- 
ed, it will aid CRC patients in selecting indi- 
vidualized treatments to improve their progno-
ses. Ding et al. [100] randomly selected 414 
patients with rectal cancer and performed 
“faster R-CNN” evaluation on magnetic reso-
nance imaging (MRI) plain scan images of pel-
vic lymph nodes. They designed controlled tri-
als and postoperative follow-up evaluations of 
rectal cancer to obtain recurrence data. The 
results demonstrated that compared to con-
ventional MRI evaluation, N staging evaluated 
based on the faster R-CNN was closer to the 
pathological criteria, indicating that applying a 
faster R-CNN has greater clinical value for pre-
operative staging and prognosis assessment 
for rectal cancer. Additionally, a faster R-CNN 
can also evaluate extramural vascular invasion 
(EMVI) in CRC patients. EMVI refers to tumor 
metastasis in the vascular lumen, where origi-
nal tumor cells invade the area outside the 
muscularis propria of the intestine, which is 
associated with poor outcomes for CRC [101]. 
AI can conduct a complete clinical evaluation  
of rectal cancer EMVI prior to surgery, which 
implies that patients with positive EMVI can 
receive neoadjuvant chemoradiotherapy prior 
to surgical therapy, which can significantly re- 
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duce local recurrence and improve prognosis. 
Ichimasa et al. [102] designed an AI for the  
preoperative prediction of lymph node metas-
tasis (LNM), to aid in predicting the need for 
additional surgery following endoscopic resec-
tion of T1 CRC. They selected T1 CRC patients 
who had undergone endoscopic resection from 
2001 to 2016 to perform machine learning. 
Their AI model analyzed 45 clinicopathological 
factors, where surgical specimens were used 
as the gold standard for the existence of LNM. 
For all models, sensitivity was 100%, specificity 
was 66%, and accuracy was 69%. Overall, the 
number of unnecessary surgeries identified by 
the AI model was more compared to the guide-
lines in America, Japan, and Europe. The emer-
gence of the Da Vinci robot was a major mile-
stone in tumor surgical therapy. This robot is 
constantly updated based on continual tech- 
nological progress and evolving social require-
ments [103]. We will witness the growing po- 
pularity of robot-assisted surgery in the CRC 
surgical therapy field. A retrospective study of 
71 patients who underwent rectal low anterior 
resection revealed that robot-assisted surgery 
had a lower conversion rate and lower compli-
cation rate compared to traditional surgery 
[104]. Another study with 61 patients found 
that robot-assisted surgery resulted in a less 
pronounced inflammatory response compared 
to open surgery [105]. Yang et al. [106] explor- 
ed the security of robots combined with lap- 
aroscopic surgery. In addition to the existing 
benefits of laparoscopic surgery, robot-assist- 
ed surgery has the potential advantage of pro-
tecting the pelvic autonomic nerve. Some re- 
searchers have analyzed the learning curve of 
robot-assisted colorectal surgery and pointed 
out that robots have a faster learning curve, 
which implies that fewer training cases will be 
required for robot-assisted colorectal surgery  
in the future [107]. Overall, robot-assisted 
colorectal surgery has better performance in 
terms of both short- and long-term outcomes 
[108]. 

AI application in CRC chemotherapy

While exploring the improvement of CRC drugs, 
a team led by Professor Sylvain Martel devel-
oped a system called NamiRobot that can de- 
liver drugs to cancer cells in a targeted man- 
ner. This robot can target cancer tumors more 
precisely by sensing the reduced oxygen levels 
caused by the proliferation of cancer cells and 
can also deliver drugs to hypoxic regions [109]. 

They went on to develop a computer-assisted 
magnetotactic displacement method to drive 
the drug-loaded magnetotactic bacteria MC-1, 
further enhancing the ability to target hypoxic 
regions [110]. AI technology can also promote 
research on new drugs. In combination with 
natural products, Cruz et al. [111] used mach- 
ine learning with molecular and nuclear mag-
netic resonance to detect the half-maximal in- 
hibitory concentration (IC50) of a new drug th- 
at targeted the colon cancer cell line HCT116. 
The overall prediction accuracy was over 63%. 
The improvement of molecular-docking-based 
virtual screening has facilitated the emerg- 
ence of drug polypharmacology. A DNN-based 
filter was designed to develop tumor chemo-
therapeutic drugs that inhibit both PI3K and 
tankyrase. This technique has provided techni-
cal support for designing multi-targeted drugs 
[112]. AI technology has also been applied in 
traditional Chinese medicine (TCM). Lin et al. 
[113] examined 261 cases of CRC treated  
by herbalists. They designed a model called 
DeepMedic to provide standardized terminolo-
gies for symptoms and prescriptions in TCM 
and trained their system to deliver accurate 
TCM diagnoses and suggest prescriptions for 
the treatment of CRC. Ferrari et al. [114] de- 
veloped an AI model based on MRI texture  
analysis to assess whether patients went into  
a pathology complete response (pCR) or non-
response (NR) following neoadjuvant chemo-
therapy (CRT). They used the random forest 
algorithm to construct two AI models and 
achieved AUC values of 0.86 and 0.83 for pCR 
patients and NR patients, respectively. The 
most significant effect of this AI model is that  
it can identify patients who will exhibit low 
acceptance at the early stages of chemoth- 
erapy and help doctors adjust treatment regi-
mens as soon as possible. Shi et al. [115] pro-
cessed data from pretreatment MRI and mid-
radiation follow-up MRI images captured three 
to four weeks after the start of CRT. They im- 
plemented a CNN and analyzed a multi-para-
metric MRI protocol, including T2. Multi-period 
analysis effectively reduces errors and incre- 
ases the accuracy of predictions. Oyaga-Iriarte 
et al. [116] constructed an SVM-based AI mo- 
del to predict the rate of toxicity (resulting in 
leukopenia, neutropenia, and diarrhea) of irino-
tecan in metastatic CRC. They collected basic 
information from 20 CRC patients, collected 
their serums at different periods of treatment, 
and constructed an AI model based on the  
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contents of irinotecan and its metabolites. 
They predicted high degrees of leukopenia, 
neutropenia, and diarrhea with accuracies of 
76%, 75%, and 91%, respectively. 

AI application in the personalization and preci-
sion of CRC

The personalization and precision of cancer 
treatments have become major themes in on- 
cology research. The International Business 
Machines Corporation, in conjunction with the 
Memorial Sloan Kettering Cancer Center, de- 
veloped a system called “Watson for Oncolo- 
gy” (WFO). WFO is an AI system that can as- 
sist in the precision medicine treatment of 
tumors. It can automatically extract medical 
characters from doctor records and translate 
them into a practical language for learning. 
According to Dr. Anderson, approximately 90% 
of Watson’s current recommendations during 
clinical trials are in line with those of its hu- 
man counterparts [117]. In South Korea, the 
concordance rate between chemotherapy re- 
gimens for CRC determined by a multidiscipli- 
nary team (MDT) and WFO recommendations 
was also analyzed [118]: In 61 CRC samples, 
the concordance rate between WFO and the 
MDT was 46.4%, which increased to 88.4% 
after including the “for consideration” cate- 
gory. This experiment proved that the fun- 
ctionality of WFO can be enhanced through 
continuous adjustments. Tokyo University Hos- 
pital has also used WFO for the gene sequ- 
encing of cancer patients and received results 
within four to five days, significantly reducing 
wait time [119]. The WFO human caring model 
provides more individualized and considerate 
nursing services, which can effectively allevi- 
ate the discomfort of patients during the pro-
cess of chemotherapy [120]. Personalized me- 
dicine has predominantly focused on geneti-
cally altered cancer genes that stratify drug 
responses. An AI model designed by Keshava 
et al. [121] can identify subpopulations that 
react differently to inhibitors of the same or  
different targets and can help doctors under-
stand the mechanisms of resistance and pa- 
thway cross-talk. As the corresponding data-
base continues to be enriched, this model can 
be used to identify new cancer subpopula- 
tions, analyze their genetic biomarkers, and 
find effective drug combinations. AI has also 
shown impressive performance for targeted 
drugs. Ding et al. [122] trained an AI system  

to screen effective molecular markers by inte-
grating transcriptomics and proteomics data  
at the system biology level. Candidate mole- 
cular markers were integrated to predict bio-
markers and develop targeted drugs, which 
provide assistance for the clinical treatment of 
CRC. S100A9 is a potential protein target for 
the targeted therapy of CRC, but the scarcity  
of atom-level data makes it difficult to deve- 
lop drugs for S100A9. Lee et al. [123] design- 
ed an AI model to predict the protein-protein 
interactions of S100A9 with various drugs and 
tested the specificity of the drugs on 2D molec-
ular descriptors, providing technical support  
for the design of new targeted drugs. AI can 
also be combined with metabolomics to iden- 
tify drugs that target cancer-specific metabo-
lism [124]. Nowak et al. [125] focused on drug 
repurposing to use existing cancer drugs to 
treat new indicators. They combined specific 
phenotypic studies with mechanistic studies, 
chemical genetics, and omics assays to create 
AI models that successfully predicted disease-
drug pairs. Additionally, the application of AI in 
clinical management cannot be ignored. Horta 
et al. [126] collected information from CRC  
surgical patients at a private hospital in Lisbon 
over a 10-month period, to train an AI model  
to support decisions regarding the selection of 
patients who should be offered co-manage-
ment services.

In summary, with the advent of the big data  
era, treatment for CRC will become personal-
ized and diversified. The development of AI  
cannot only reduce the burden on clinicians 
effectively, but also help provide more accur- 
ate and humanistic medical services for each 
patient.

Artificial intelligence and predicted colorectal 
cancer prognosis

The prognoses of patients with CRC are some 
of the most important indicators for therapy 
evaluation. A poor prognosis often refers to 
tumor metastasis and lymphocyte infiltration. 
In recent years, although medical technology 
has developed continuously, the prognoses of 
CRC patients have not improved significantly. 
The emergence of AI has allowed clinicians to 
predict the prognoses of CRC patients more 
quickly and accurately.

Grundner et al. [127] used the genetic mark- 
ers of CRC patients to train a model based on 
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different algorithms. Their model can be used 
to predict overall survival (OS), DFS, recurren- 
ce survival rates, and other clinical prognostic 
results. Peng et al. [128] developed a prog- 
nostic ANN scoring system for CRC in stage  
IIA, which can predict the 10 y OSs and DFSs  
of IIA CRC patients based on clinical data. 
Mezheyeuski et al. [129] proposed a compu- 
ter-aided analysis method for tissue sections 
based on multifractal analyses of cytokeratin-
stained tumor sections. Their method quanti- 
tatively evaluates the morphological complex- 
ity of tumor-stroma interfaces and proves that 
it is possible to obtain prognosis information 
from graph data with the assistance of AI. A 
study by Kather et al. [130] demonstrated that 
AI can assess the independent prognostic fac-
tors of CRC (such as OS, CRC-specific OS, and 
recurrence-free OS) based on pathological im- 
ages with an accuracy of 94%. Geesink et al. 
[131] used a semi-automatic method based  
on deep learning to classify the tumor-stroma 
ratios (TSRs) of CRC pathological specimens. 
The TSR is an independent prognostic factor 
and patient assignment that can effectively 
assist in prognosis prediction. Tumors are as- 
signed “stroma-high” or “stroma-low” based  
on TSRs. Skrede et al. [132] constructed 10 
CNNs to search for CRC prognostic biomark- 
ers. They collected more than 12 million ima- 
ge tiles with distinct outcomes to train the 10 
models and integrated the results of using  
cancer-specific survival as the primary metric 
for selecting novel prognostic biomarkers. Ba- 
sed on potential prognostic biomarkers, such 
as mesothine, researchers can also use AI te- 
chniques to assess correlation coefficients 
[133]. 

The metastasis of CRC is typically a marker of  
a malignant prognosis. As early as 2015, re- 
searchers constructed deep learning models 
based on protein-protein interaction networks 
to diagnose CRC metastases and improved 
these models by selecting more effective mo- 
lecular markers and algorithm parameters 
[134]. Subsequently, Saghapour et al. [135] 
combined the logistic regression model (LRM) 
with an ANN system to create a mixed predic-
tion model in which the LRM performed pa- 
rameter selection for the ANN, which was us- 
ed for analysis. This model was determined to 
provide high accuracy for predicting the me- 
tastasis of late-stage CRC. Zhi et al. [136] fo- 

und that SVM models can be used to screen 
the DEGs of metastatic CRC. Through the inte-
gration of five databases, their SVM system 
identified 40 characteristic genes, as well as 
protein processing in the endoplasmic reticu-
lum, AMP-activated protein kinase signaling 
pathways, and ubiquitin-mediated proteolysis 
pathways. Their model can help precisely dis-
tinguish metastatic CRC samples from non-
metastatic samples. Regarding CRC LNM, Ta- 
kamatsu et al. [137] extracted information  
from cytokeratin immunohistochemical imag- 
es and trained an AI model for the prediction  
of LNM. They obtained a sensitivity of 80.0%, 
specificity of 94.5%, and AUC of 0.938. These 
values are higher than those of traditional pre-
diction methods. The DNN model designed by 
Zhou et al. [138] can assist in the automatic 
identification of metastatic lymph nodes in the 
pelvic cavities of CRC patients. Lu et al. [139] 
assessed the accuracy of a faster R-CNN sys-
tem for LNM diagnosis. Nearly 80000 training 
epochs were used to construct an automatic 
testing platform that realized an MRI diagnosis 
time of 20 s, which is 30 times faster than the 
average time taken by radiologists. The corre-
sponding AUC was 0.912, indicating good clini-
cal feasibility. The infiltration of immune cells  
is also a key factor in CRC metastasis [140]. 
Eyraud et al. [141] performed computer-aided 
analysis of whole-slide digital images derived 
from tissue microarrays to assess the cell in- 
filtration of CRC and explored the relationship 
between tumor microenvironments and CRC 
metastasis. Ge et al. [142] used CIBERSORT  
to analyze the infiltration of 22 immune cells  
in tumor microenvironments and screened 404 
immune-related genes in CRC, as well as 40 
immune-related genes in adjacent non-tumor 
tissues. Reichling et al. [143] used digital tu- 
mor parameters to quantify lymphocyte den- 
sity and the surface area of infiltration in the 
tissues surrounding tumors automatically and 
analyzed the prognoses of CRC patients in 
stage III.

In the near future, AI technology will help doc-
tors perform diagnosis and treatment, and  
also provide CRC patients with personalized 
and accurate prognosis evaluations. AI makes 
it possible to predict outcomes based on vari-
ous factors before accepting a treatment, th- 
ereby helping clinicians make sound medical 
decisions.
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Conclusions and prospects

The development of AI for CRC diagnosis and 
treatment has progressed through the follow-
ing stages: 1) understanding cancer at the 
molecular level through deep learning, 2) as- 
sisting in the diagnosis and prognosis of CRC 
based on images and pathological specimens, 
3) clinical drug design and screening, and 4) 
promoting the personalization and precision of 
CRC diagnosis and treatment. Owing to the  
continuous improvements in AI technology, 
specifically in terms of image recognition and 
natural language extraction, AI is bound to play 
an increasingly important role in the field of 
CRC treatment (Table 1). The rapid develop-
ment of the internet has provided AI unlimit- 
ed possibilities: First, Imler et al. [144] de- 
signed a quality-measuring AI system. Their 
system can monitor colonoscopy results from 
many institutions simultaneously, using blind-
ed, paired, and annotated expert manual re- 
views as a reference standard. As this system 
can be put into practice, improving detection 
rates and controlling costs will be a reality for 
potential CRC patients. Second, AI can be in- 
tegrated with mobile devices. Marzuki et al. 
[145] from Malaysia released an AI-supported 
mobile app, called ColorApp, on the Google 
store to share information regarding CRC. This 
app uses the nominal group technique, tar- 
gets community educationists and clinicians, 
as well as community representatives, and 
enables users to receive current information 
and perform simple analysis. Third, AI can pro-
vide personalized healthcare as a virtual assis-
tant for individuals and families. Some digital 
devices exist that can measure a user’s heart 
rate and blood pressure in real time. AI can  
be used to promote the integration of services 
and data, even make a preliminary diagnosis, 
which will lead to more streamlined and effi-
cient care pathways. It is evident that AI can 
make drastic changes to the landscape of the 
healthcare system and replace the need for a 
medical consultation in some cases [146].

In recent years, the use of AI in cancer diagno-
sis and treatment has become a hot topic am- 
ong medical researchers, and developments in 
computer hardware have enabled this narrow 
field to become fertile ground for clinicians. 
However, training a computer to “think” like a 
human is a complex task that depends on  
various factors. The continued development of 
AI technology still faces many limitations. First, 
AI diagnosis lacks reliable guidelines and gold 

standards. In many cases, pathologists provi- 
de inconsistent judgments regarding the same 
pathological section (particularly early lesions), 
but such inconsistencies can be reduced by 
providing supportive evidence regarding the 
signs and symptoms of various cases. When  
an AI system diagnoses pathological sections, 
it only focuses on external input criteria, neg- 
lecting other information regarding the pati- 
ent, which could lead to overdiagnosis [147]. 
Second, a lack of stratification of image sig- 
nal strength limits the accurate diagnosis of 
tumors. There are many immune landscapes 
for cancer, which implies that imaging signals 
must be differentiated in more subtle ways to 
provide more accurate guidance for immuno-
therapy. Third, developing an AI system is ex- 
pensive and difficult. During the training of  
a deep learning network, a large number of 
training samples and verification samples are 
required to improve accuracy. Even if an im- 
proved algorithm is developed to handle small 
sample sizes, its accuracy will inevitably be 
impacted [95]. Similarly, based on the quantity 
of the training sample, training processes re- 
quire powerful computer configurations and 
long training times. Machine maintenance is 
also excessive. Furthermore, because AI train-
ing methods are extremely complex, nonpro- 
fessionals can only conduct auxiliary diagno- 
sis and treatments based on exploited func-
tions, which makes it difficult to update data-
bases and algorithms when encountering no- 
vel cases. This significantly affects system de- 
velopment and popularization. Fourth, internet 
equipped with AI faces issues in terms of user 
screening and privacy protection. Increasing 
heterogeneous data sources and the richness 
of user data strongly increases the possibility 
of anonymized data reidentification. A suitable 
technical solution to mitigate the challenge of 
preserving privacy while answering the incre- 
asing need of data-driven science for access-
ing large genomic phenotypic datasets is non-
existent [148]. 

However, the general application prospects of 
AI in medicine are optimistic. We believe that  
in the near future, AI will be closely integrated 
with the various aspects of medicine and pro-
mote the progress of medicine to a greater 
extent.
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Table 1. The application of AI in CRC diagnosis and treatment

Types of AI Authors/
Year

Type of  
experiment Purpose Sample size All types of AI used Results Ref.

ANN (Artificial neural network) Wan et 
al./2019

Retrospective Detection the cfDNAs in CRC patients 546 CRC and 271  
non-cancer controls

ANN AUC 0.92
Sensitivity 85%
Specificity 85%

[86]

Chang et 
al./2011

Prospective Finding miRNAs that can predict 
tumor status in stage II CRC

20 paired stage II tumor 
and normal tissues

Median accuracy:
miR-139-5p 90.9%
miR-31 90.9%
miR-19b-1 100%

[93]

Afshar et 
al./2019

Prospective Identification of CRC-miRNAs  
biomarkers

371 patients and 150 
controls

AUC 1 [97]

Peng et 
al./2016

Prospective Prediction of OS and DFS of stage IIA 
CRC patients

117 stage IIA CRC patients Accuracy 87.9% 
Sensitivity 53.8%
Specificity 97.8%

[128]

Saghapour 
et al./2017

Retrospective Prediction of metastasis of advanced 
CRC

54 specimens from 
database

Sensitivity 100%
Specificity 95.8%

[135]

Zhang et 
al./2019

Prospective Detection of genetic mutations in 
colon cancer

312 CRC tissue samples CP-ANN (Counter  
propagationartificial neural 
network)

Accuracy 93.8% 
Sensitivity 100%
Specificity 87.5%

[75]

Amirkhah et 
al./2015

Retrospective Prediction of CRC-associated miR-
NAs and construction of interactive 
network

204 functional interactions ANN and Naïve Bayes AUC 0.956
Sensitivity 93%
Specificity 86.1%

[94]

CNN (Convolutional neural network) Gregor et 
al./2018

Retrospective Improving the adenoma detection 
rate

More than 2000 patients CNN Accuracy 96.4%
AMC 0.991

[47]

Zhang et 
al./2017

Retrospective Automatic Detection and  
Classification of Colorectal Polyps

215 polyps Precision 87.3%
recall rate 87.6%
accuracy 85.9%

[48]

Akbari et 
al./2018

Retrospective A method of polyp accurate  
segmentation

200 images Accuracy 97.7%
Specificity 74.8%
Sensiticity 99.3%

[53]

Blanes-Vidal 
et al./2019

Prospective Automatical detection of polyps dur-
ing capsule endoscopy

255 patients Accuracy 96.4% 
Sensitivity 97.1%
Specificity 93.3%

[56]

Eycke et 
al./2018

Retrospective Separating the glands from  
the epithelium in the images

165 HE images and 4 sets 
of IMC images

Accuracy 91.2% [67]

Ito et 
al./2019

Prospective Assistance on diagnose of stage 1b 
colon cancer

190 colon lesion images Accuracy 67.5% 
Sensitivity 87.2%
Specificity 89%

[78]

Haj-Hassan 
et al./2017

Prospective Prediction of 3 types of tissue  
associated with CRC progression by 
pathological biopsy

30 CRC patients Accuracy 99.2% [80]

Rathore et 
al./2017

Retrospective Multi-step glandular segmentation 
model

3 datasets Accuracy 98% and 95% 
respectly

[82]

Weis et 
al./2018

Prospective Detection of tumor  
budding-associated TNM stage

20 CRC patients [91]

Shi et 
al./2019

Prospective Prediction of chemoradiation therapy 
response in rectal cancer

51 patients pCR accuracy 86%
Good response (GR)  
accuracy 93%

[115]
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Kather et 
al./2019

Retrospective Prediction of OS and DFS of CRC 
from image informations

86 CRC tissue slides Accuracy 94% [130]

Geesink et 
al./2019

Prospective Classification of Tumor-stroma ratio 
(TSR) for rectal cancer whole-slide 
images

129 rectal  
adenocarcinoma patients

Accuracy 94.6% [131]

Skrede et 
al./2020

Retrospective Searching for prognosis markers 
of CRC

920 patients Accuracy 76% 
Sensitivity 69%
Specificity 66%

[132]

Zhou et 
al./2019

Prospective Automatic identification of pelvic  
metastatic lymph nodes from CRC 
tissues

301 patients AUC 0.886 [138]

Korsuk et 
al./2016

Retrospective Classification of nuclei and detection 
of tumor through pathology images

100 colon cancer  
specimes stained with HE

SC-CNN (Spatially  
constrained convolutional 
neural network)

Accuracy 78.1% [65]

Xuan et 
al./2018

Retrospective Prediction of miRNA-diseases Data from dbDEMC, 
miRCancer and PhenomiR

DCNN (Dual convolutional 
neural network)

Average AUC 0.538 [96]

Ding et 
al./2019

Retrospective Diagnosis of metastatic lymph node 
for preoperative assessment

414 rectal cancer patients Faster R-CNN (Faster  
region-based convolutional 
neural network)

r value 0.912 [100]

Lu et 
al./2018

Prospective Assistance on MRI diagnosis of 
lymph node metastasis of CRC

414 patients AUC 0.912 [139]

SVM (Support vector machine) Takemura 
et al./2012

Retrospective Predicion of the histology of  
colorectal tumors

371 colorectal lesions SVM Accuracy 97.8%
sensitivity 97.8%
specificity 97.9%

[49]

Rathore et 
al./2015

Prospective Classification of normal and  
malignant colon pathology samples

174 colon biopsy images Detection accuracy 95.40%
Grading accuracy 93.47%

[62]

Rathore et 
al./2015

Prospective Classification of colon biopsy images 174 colon biopsy images Accuracy 98.07% [63]

Yang et 
al./2019

Prospective Classification of colon patholoty 
images through accurate color and 
spatial information

180 pathology images Accuracy 83.1% 
Sensitivity 81.9%
Specificity 84.2%

[64]

Soares et 
al./2017

Retrospective Classification of CRC samples and 
normal samples by fluorescence 
wavelength

dataset including 12,341 
wavelengths

Sensitivity 87%
Specificity 95%

[68]

Xu et 
al./2017

Retrospective Prediction on risk of recurrence of 
colon cancer and their prognosis

5 microarray datasets of 
colon cancer samples

Accuracy 92% [73]

Xu et 
al./2018

Prospective Screening early CRC by copy-number 
variation (CNV) in plasma

70 samples Sensitivity 91.7% 
Specificity 88.9%

[79]

Gupta et 
al./2019

Retrospective Prediction of TNM stage and  
prognosis of CRC

4021 CRC patients F-measure 0.89
Accuracy 84%
AUC 0.82

[89]

Villanueva 
et al./2019

Prospective Classification of clinical CRC patients 
based on miRNA screening

297 patients AUC 0.92
Sensitivity 85%
Specificity 90%

[98]

Ichimasa et 
al./2018

Retrospective Prediction of the need for additional 
surgery after endoscopic resection 
of T1 CRC

690 patients Accuracy 100% 
Sensitivity 69%
Specificity 66%

[102]
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Zhi et 
al./2018

Retrospective Screening the differentially 
expressed genes (DEGs) for CRC 
metastasis

Dataset from The Cancer 
Genome Atlas database

Precision 98%-100% [136]

Ding et 
al./2019

Retrospective Classification and integration of 
biomarkers

Information from Gene 
Expression Omnibus (GEO) 
database

RFE-SVM (Recursive feature 
elimination-SVM), RF etc.

Several models’ accuracy 
over 80%

[122]

CAD (Computer-aided diagnosis) Stefanescu 
et al./2016

Retrospective Diagnosis for advanced colorectal 
cancer in confocal laser  
endomicroscopy

1035 images CAD accuracy error 15.5% [58]

Tamai et 
al./2017

Prospective Classification of colorectal lesions for 
magnifying narrow-band imaging

121 lesions Sensitivity 83.9%
Specificity 82.6%

[60]

Kominami 
et al./2016

Prospective Prediction of histologic diagnoses of 
colorectal lesions

41 patients Real-time CAD and SVM Accuracy 93.2%
Sensitivity 93.0%
Specificity 93.3%

[50]

Mori et 
al./2018

Prospective Prediction of histologic diagnoses of 
colorectal lesions after application 
of NBI

791 patients Real-time CAD pathologic prediction rate 
98.1%

[51]

Takeda et 
al./2017

Retrospective Diagonsis for invasive colorectal  
cancer through endocytoscopy 
images

375 lesions EC-CAD (Endocytoscopy  
computer-aided diagnosis)

Accuracy 94.1% 
Sensitivity 89.4%
Specificity 98.9%

[59]

RF (random forest) Song et 
al./2019

Retrospective Classification of stages of CRC 1000 samples RF Accuracy more than 90% [81]

Ferrari et 
al./2019

Prospective Classification of pCR and NR of local-
ly-advanced rectal cancer patients 
after neoadjuvant chemotherapy

55 patients pCR AUC 0.86
NR AUC 0.83

[114]

Oyaga-
Iriarte et 
al./2019

Prospective Prediction of drug toxicity in  
metastatic CRC patients

20 CRC patients RF, SVM and BSLR (Backward 
stepwise logistic regression)

Accuracy:
leukopenia 76%
neutropenia 75% 
diarrhea 91%

[116]

Lee et 
al./2019

Retrospective Measuring the specificity of the drug 
to the target

Information from patent 
searching

RF, DT (Decision tree) and Naïve 
Bayes

AUC:
test set validation 0.859
cross-validation 0.839

[123]

Grundner et 
al./2018

Retrospective Prediction of CRC clinical outcome RF and neural network Accuracy:
relapse 71%
RCT-R 70%

[127]

Takamatsu 
et al./2019

Retrospective Prediction of lymph nodes  
metastasis of early CRC

397 T1 CRC patients RF and SML (Supervised  
machine learning)

AUC 0.938
Sensitivity 80%
Specificity 94%

[137]

Surgical robot Spanheimer 
et al./2017

Retrospective Robot-assisted surgery 71 patients Surgical robot Lower conversion rate: 0% 
to 7%

[104]

Yang et 
al./2018

Prospective Robot-assisted surgery 300 patients Advantage in pelvic  
autonomic nerve  
protection

[106]

Waston Kim et 
al./2019

Prospective Providing individualized and accurate 
diagnosis and treatment plan

61 CRC patients Wason concordance rate 88.4% [118]

Miyano et 
al./2019

Whole genome sequencing and 
interpretation of the data for less 
turnaround time

[119]
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Akturk et 
al./2018

Prospective Measuring the meaning of life and 
symptom management in cancer 
patients undergoing chemotherapy

158 patients Watson’s Human Caring Model posttest score 164.21±36.5
General Symptom Inventory 
score 55.06±13.19

[120]

Others Fernandez 
et al./2016

Prospective Automatical detection of polyps  
during colonoscopy

24 patients Energy map Accuracy 70.4
Specificity 72.4%

[45]

Hilsden et 
al./2018

Retrospective Screening precancerous lesions of 
colon cancer through basic patient 
informations

17,676 individuals ColonFlag odds ratio 2.0
Specificity 95%

[69]

Gupta et 
al./2019

Prospective Analyse system for enrichment  
calculation of epithelial circulating 
tumor cells (CTCs) in blood

32 young healthy donors CellMax Clinical sensitivity 80%
Clinical specificity 80%

[70]

Hu et 
al./2015

Prospective Classification of CRC based on gene 
information

53 colon cancer patients S-Kohonen Accuracy 91% [72]

Shahbazy et 
al./2016

Retrospective Detection the TNM stage and DFS 
of CRC

289 CRC patients SKN (Supervised Kohonen 
network)

TNM stage F-meature 0.89
DFS accuracy 84%, AUC 0.82

[88]

Sylvain 
Martel et 
al./2016

Cancer cell targeted drug delivery Cancer-Fighting Nanorobots [109, 110]

Cruz et 
al./2018

Retrospective Detection of drug semi-inhibitory 
concentration

18,850 organic compounds CADD (Computer-aided drug 
design)

overall predictability  
accuracies more than 63%

[111]

Berishvili et 
al./2018

Retrospective Design of multi-target drugs Compounds datas from 
ChEMBL database v.23

DNN (Deep neural network) AUC 0.96 [112]

Lin et 
al./2019

Retrospective Providing diagnosis and prescription 
of Chinese medicine

261 CRC cases Neural network analysis Similarity to medical records 
81.9%

[113]

Keshava et 
al./2019

Prospective Identifying subpopulations for 
patients based on pharmacological 
response

327 patients SEABED (SEgmentation And  
Biomarker Enrichment of  
Differential treatment response)

[121]

Pacheco et 
al./2019

Retrospective Network-based drug target prediction 
targeting cancer-specific metabolism

Information from database Rfastcormics (Fastcormics  
RNA-seq workflow)

Accuracy above 94% [124]

Horta et 
al./2018

Retrospective Assessment of the necessity  
of co-management in internal and 
surgical department

Electronic clinical health 
records of CRC patients

Takagi-Sugeno fuzzy modelling AUC 0.81
Accuracy 77% 
Sensitivity 74%
Specificity 78%

[126]

Ge et 
al./2019

Prospective Analysing the nvasion of immune 
cells in tumor microenvironment

404 CRC and 40 adjacent 
non-tumorous tissues

CIBERSORT concordance index:
TNM stage I-II 0.69
stage III-IV 0.71
AUC over 0.67

[142]

Reichling et 
al./2020

Retrospective Automatical quantification of the  
lymphocyte density and surface area

Database of 1018 patients LASSO (Least absolute  
shrinkage and selection  
operator)

less than 10% relapse risk [143]

Notes: CNN: A kind of deep feedforward neural network composed of convolutional layer and pooling layer. Its artificial neurons can simultaneously respond to a part of surrounding units in the coverage area, which has excellent performance for 
large-scale image processing. ANN: A mathematical model of distributed parallel information processing that mimics the behavioral characteristics of animal neural networks. It is widely used to information process and storage, and has a certain 
ability of self-learning and self-adaptation. CAD: A method that combines imaging and medical image processing technology with the computational power of computers to assist the detection of lesions and improve the accuracy of diagnosis. 
SVM: A stratified discriminant model optimized by dual theory, which shows many unique advantages in solving small sample, nonlinear and high-dimensional pattern recognition. RF: An ensemble learning method that takes decision tree as 
the basic unit, which integrates multiple classification results before output, and can process variable input samples with excellent accuracy. Naïve Bayes: A commonly used supervised learning algorithm based on Bayesian theory, which is 
characterized with multivariate classification, biased and unbiased class probabability, no iteration and high learning efficiency. Watson: A technology platform that uses cognitive systems to reveal insights from unstructured data through natural 
language processing and machine learning, with the steps of understanding, learning, reasoning and interaction. Surgical robot: Surgical robot is classified into dominant type and auxiliary type. It can improve the success rate of surgery by learn-
ing surgical skills, skill decomposition and analysis, and surgical process analysis and learning through machine learning.
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